Tânia Martins-Marques 
  
Gonçalo F Coutinho 
  
Attila Kiss 
  
Emilie Dubois-Deruy 
email: emilie.deruy@pasteur-lille.fr
  
Yara E Masr 
email: yara.elmasri@pasteur-lille.fr
  
Annie Turkieh 
email: ani.turkieh@pasteur-lille.fr
  
Philippe Amouyel 
email: philippe.amouyel@pasteur-lille.fr
  
Florence Pinet 
email: florence.pinet@pasteur-lille.fr
  
Jean-Sébastien Annicotte 
email: jean-sebastien.annicotte@inserm.fr
  
Cardiac Acetylation in Metabolic Diseases

Keywords: acetylation, heart, obesity, diabetes, heart failure, enzymes

Lysine acetylation is a highly conserved mechanism that affects several biological processes such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene transcription or chromatin structure. This post-translational modification, mainly regulated by lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity, type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to disease development. In this review, we summarize the mechanisms involved in the regulation of cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs and KDACs as potential therapeutic targets for heart failure.

Introduction

Obesity is a worldwide epidemic associated with several public health challenges including type 2 diabetes, hypertension, obstructive sleep apnea, dyslipidemia and cardiovascular disease, and notably heart failure. The prevalence of these disorders (e.g., obesity, type 2 diabetes and heart failure) is still increasing and heart failure remains the most common cause of cardiovascular morbidity and mortality in the world [START_REF] Virani | Heart Disease and Stroke Statistics-2021 Update[END_REF]. Interestingly, although heart failure could provoke systolic or diastolic cardiac dysfunction, obesity and type 2 diabetes are more often characterized by cardiac hypertrophy and diastolic dysfunction [START_REF] Nakamura | Cardiomyopathy in obesity, insulin resistance and diabetes[END_REF]. Moreover, diastolic heart failure remains one of the more challenging diseases to treat and, thus, a better understanding of the physio(patho)logical mechanisms involved in metabolic heart disease is necessary to propose new pharmacological therapies. In this context, epigenetic or protein post-translational modifications, including phosphorylation, methylation, O-GlcNAcylation, ubiquitylation, and acetylation, could represent interesting targets since they modulate gene or protein expression during metabolic diseases [START_REF] Schwenk | Genetic and epigenetic control of metabolic health[END_REF].

Protein acetylation is a highly conserved mechanism that was first described 60 years ago, in which an acetyl group is covalently attached to the ε-amino group of lysine residues [START_REF] Allfrey | Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[END_REF]. This modification induces important changes to the protein structure at its lysine residue, by altering its charge status and adding an extra structural moiety [START_REF] Ketema | Post-translational Acetylation Control of Cardiac Energy Metabolism[END_REF]. These post-translational modifications can regulate protein-protein interactions, stability and function. Acetylation was first described to regulate chromatin structure and histone 2 of 14 activity, associated to epigenetic-mediated gene regulation [START_REF] Allfrey | Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[END_REF]. Since then, several proteomic analyses enabled to identify more than a thousand acetylation sites in both histone and non-histone proteins [START_REF] Lundby | Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns[END_REF][START_REF] Kim | Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey[END_REF][START_REF] Choudhary | Lysine acetylation targets protein complexes and co-regulates major cellular functions[END_REF], and, interestingly, revealed that the subcellular distribution of acetylation is tissue dependent [START_REF] Hosp | Lysine acetylation in mitochondria: From inventory to function[END_REF]. Focusing on cardiovascular and metabolic diseases, Table 1 indicates some of the most common proteins modified by cardiac acetylation. 

Cardiac Acetylation

Regulation of Lysine Acetylation

Lysine acetylation is a reversible mechanism that is regulated by the dynamic actions of lysine acetyltransferase (KATs) and lysine deacetylase (KDACs) enzymes [START_REF] Fukushima | Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure[END_REF]. There are three categories of KATs: the MYST family, the Gcn-5-related N-acetyltransferases (GNATs) and the E1A-associated protein of 300 kDa/CREB binding protein (p300/CBP) family [START_REF] Wagner | Mitochondrial Acetylation and Diseases of Aging[END_REF]. KDACs are broadly categorized into four classes based on function and DNA sequence similarity. Class I (reduced potassium dependency 3 family), II (histone deacetylase 1 family) and IV (HDAC11) are considered as classical KDACs with zincdependent active sites, whereas class III enzymes are a family of silent information regulator 2-like nicotinamide adenine dinucleotide (NAD + )-dependent deacetylases/mono-ADPribosyl transferases known as sirtuins 1 to 7 [START_REF] Wagner | Mitochondrial Acetylation and Diseases of Aging[END_REF]. Interestingly, the level of expression of KATs and KDACs follows a specific tissue distribution, suggesting specific functions in these different organs [START_REF] Shao | Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets-"Sand Out and Gold Stays[END_REF]. For example, in physiological conditions, KATs are weakly expressed in vascular tissue, except for the lysine acetyltransferase KAT2B, which is highly expressed [START_REF] Shao | Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets-"Sand Out and Gold Stays[END_REF]. Conversely, a database mining approach analyzing the expression profile of 164 enzymes in human and murine tissues highlighted heart as tissue in which KATs and KDACs are in the highest varieties [START_REF] Shao | Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets-"Sand Out and Gold Stays[END_REF]. In addition to tissue-specific expression, both KATs and KDACs have precise subcellular localizations related to their specific targets (Figure 1) and can regulate each other. For example, cardiomyocyte overexpression of SIRT6 decreases P300 levels, where SIRT6 promotes ubiquitination and degradation of P300 [START_REF] Shen | SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300[END_REF]. Moreover, cardiomyocyte overexpression of SIRT3 increases SIRT1 expression [START_REF] Peugnet | Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes[END_REF].
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Physiological Roles of Lysine Acetylation

Lysine acetylation can modulate cell growth, metabolism, protein-protein interactions, protein stability, subcellular localization, gene transcription, chromatin structure or enzymatic activity [START_REF] Lundby | Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns[END_REF][START_REF] Kim | Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey[END_REF]. This post-translational modification plays an essential role in cardiac physiology (Figure 2). factor 2; GCN5L1: general control of amino acid synthesis 5 like-1; CBP: CREB binding protein.
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Heart Development and Cardiac Ageing

Acetylation can regulate embryonic heart development and cardiac progenitor fate [START_REF] Yang | Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications[END_REF][START_REF] Pane | Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer[END_REF]. TBX5, a T-box family transcription factor, is involved in heart and forelimb development and is acetylated by KAT2A and KAT2B at lysine 339, leading to stimulate its transcriptional activity [START_REF] Ghosh | Acetylation of TBX5 by KAT2B and KAT2A regulates heart and limb development[END_REF]. Knockdown of KAT2A and KAT2B in zebrafish severely impairs heart development and induces pericardial oedema by inhibiting TBX5 [START_REF] Ghosh | Acetylation of TBX5 by KAT2B and KAT2A regulates heart and limb development[END_REF]. Besides KATs, the lysine deacetylase enzymes HDAC4 and HDAC5 are also able to interact with TBX5 to exert a repressive role on cardiac genes transcription through deacetylation [START_REF] Ghosh | HDAC4 and 5 repression of TBX5 is relieved by protein kinase D1[END_REF]. Furthermore, TBX1, another T-box family transcription factor expressed in cardiac progenitors, represses myocyte enhancer factor 2c (Mef2c) gene expression by reducing histone 3 acetylation on lysine 27 [START_REF] Pane | Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer[END_REF]. Moreover, acetylation of vestigial-like 4 (VGLL4) 

Heart Development and Cardiac Ageing

Acetylation can regulate embryonic heart development and cardiac progenitor fate [START_REF] Yang | Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications[END_REF][START_REF] Pane | Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer[END_REF]. TBX5, a T-box family transcription factor, is involved in heart and forelimb development and is acetylated by KAT2A and KAT2B at lysine 339, leading to stimulate its transcriptional activity [START_REF] Ghosh | Acetylation of TBX5 by KAT2B and KAT2A regulates heart and limb development[END_REF]. Knockdown of KAT2A and KAT2B in zebrafish severely impairs heart development and induces pericardial oedema by inhibiting TBX5 [START_REF] Ghosh | Acetylation of TBX5 by KAT2B and KAT2A regulates heart and limb development[END_REF]. Besides KATs, the lysine deacetylase enzymes HDAC4 and HDAC5 are also able to interact with TBX5 to exert a repressive role on cardiac genes transcription through deacetylation [START_REF] Ghosh | HDAC4 and 5 repression of TBX5 is relieved by protein kinase D1[END_REF]. Furthermore, TBX1, another T-box family transcription factor expressed in cardiac progenitors, represses myocyte enhancer factor 2c (Mef2c) gene expression by reducing histone 3 acetylation on lysine 27 [START_REF] Pane | Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer[END_REF]. Moreover, acetylation of vestigial-like 4 (VGLL4) at K225 by P300 negatively regulates its binding to the transcription factor TEA Domain Transcription Factor 1 (TEAD1), leading to decreased neonatal cardiomyocytes proliferation and cardiomyocytes necrosis [START_REF] Lin | Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth[END_REF]. Inhibition of HDAC1 was also described to decrease the proliferation cardiomyocyte in zebrafish [START_REF] Bühler | Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish[END_REF]. Indeed, mutation in HDAC1 gene that induces protein instability is associated with decreased cardiomyocyte proliferation, suggesting an important role of HDAC1 during heart growth [START_REF] Bühler | Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish[END_REF].

In addition, sirtuins are well-described regulators of aging and have been associated with longevity [START_REF] Cencioni | Sirtuin function in aging heart and vessels[END_REF][START_REF] Watroba | Sirtuins at the Service of Healthy Longevity[END_REF][START_REF] Lombard | SIRT6 in DNA repair, metabolism and ageing[END_REF]. Indeed, mice deficient for SIRT1 [START_REF] Cheng | Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[END_REF][START_REF] Packer | Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: Implications for understanding the effects of current and future treatments for heart failure[END_REF], SIRT3 [START_REF] Benigni | Sirt3 Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by Opa1 Gene Transfer[END_REF] or SIRT6 [START_REF] Mostoslavsky | Genomic Instability and Aging-like Phenotype in the Absence of Mammalian SIRT6[END_REF] display a shorter life span with severe cardiac damage, such as hypertrophy and fibrosis.

SIRT1 is well known to be cardioprotective by decreasing oxidative stress and inflammation, which promotes cardiomyocyte survival [START_REF] Packer | Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: Implications for understanding the effects of current and future treatments for heart failure[END_REF]. Moreover, SIRT3 is required for cardiomyocyte survival under several stress conditions such as serum starvation, genotoxic and oxidative stress [START_REF] Sundaresan | SIRT3 Is a Stress-Responsive Deacetylase in Cardiomyocytes That Protects Cells from Stress-Mediated Cell Death by Deacetylation of Ku70[END_REF]. Altogether, these studies demonstrate that KDACs and KATs exert crucial functions during heart development and cardiac ageing.

Cardiac Contraction

Recently, reversible acetylation of sarcomeric proteins has been described as a mechanism regulating cardiac function. The comparison of lysine acetylation patterns from rats as well as from human skeletal muscle biopsies revealed that 80% of the proteins involved in muscle contraction were acetylated [START_REF] Hosp | Lysine acetylation in mitochondria: From inventory to function[END_REF]. Moreover, proteomic analyses suggested that HDAC6 is localized in Z-disks and acts as a sarcomeric protein desacetylase [START_REF] Lin | HDAC6 modulates myofibril stiffness and diastolic function of the heart[END_REF]. Among them, acetylation can impact the β-myosin heavy chain (lysine 34, lysine 58, lysine 213, lysine 429, lysine 951 and lysine 1195) [START_REF] Landim-Vieira | Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts[END_REF], titin [START_REF] Loescher | TTN): From molecule to modifications, mechanics, and medical significance[END_REF], CapZβ1 (lysine 199) [START_REF] Lin | Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ[END_REF] or cardiac troponin I [START_REF] Lin | Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity[END_REF], directly affecting cardiac contraction.

Role of Lysine Acetylation in Cardiac Energy Metabolism and Mitochondrial Activity

Proteomic analyses suggested that the subcellular distribution of lysine-acetylated proteins is tissue dependent [START_REF] Hosp | Lysine acetylation in mitochondria: From inventory to function[END_REF]. For example, the heart and muscles, both high energydemanding organs, are tissues with the largest fraction of mitochondrial protein acetylation [START_REF] Hosp | Lysine acetylation in mitochondria: From inventory to function[END_REF]. Calorie restriction or changes in nutrition specifically affect the mitochondrial acetylome, but not the cytosol or nucleus [START_REF] Pougovkina | Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation[END_REF], suggesting different roles for lysine acetylation in the mitochondria, nucleus and cytoplasm. Indeed, mitochondrial lysine acetylation was described to modulate cell metabolism by regulating fatty acid β-oxidation, the tricarboxylic acid cycle, the urea cycle, and oxidative phosphorylation [START_REF] Tomczyk | Mitochondrial Sirtuin-3 (SIRT3) Prevents Doxorubicin-Induced Dilated Cardiomyopathy by Modulating Protein Acetylation and Oxidative Stress[END_REF].

In the early newborn period, an important change in myocardial energy substrate metabolism occurs with an increase in fatty acid β-oxidation [START_REF] Yang | Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications[END_REF], associated with an increase in long chain acyl CoA dehydrogenase (LCAD) and L-3-hydroxy acyl-CoA dehydrogenase (β-HAD) acetylation and activation [START_REF] Fukushima | Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart[END_REF]. At the cardiac level, mitochondrial general control of amino acid synthesis 5 like-1 (GCN5L1) triggers LCAD and β-HAD acetylation [START_REF] Thapa | Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions[END_REF][START_REF] Thapa | Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart[END_REF] whereas SIRT3 deacetylates both LCAD and β-HAD [START_REF] Hirschey | SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation[END_REF][START_REF] Alrob | Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling[END_REF]. The implication of GCN5L1 in cardiac metabolism was confirmed by genetic deletion approaches. Indeed, knockdown of GCN5L1 in H9c2 cardiomyoblasts decreases maximal mitochondrial respiration and activity of proteins involved in fatty acid oxidation [START_REF] Fukushima | Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart[END_REF].

However, there is no consensus about the effects of lysine acetylation on fatty acid β-oxidation. Indeed, some studies suggested an inhibitory effect [START_REF] Fukushima | Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure[END_REF] whereas others suggested a stimulatory effect [START_REF] Hirschey | SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation[END_REF][START_REF] Alrob | Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling[END_REF]. As an example, it was reported that an impaired fatty acid β-oxidation was linked to a reduced acetylation and activity of LCAD in the liver [START_REF] Hirschey | SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation[END_REF] or heart [START_REF] Alrob | Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling[END_REF] of SIRT3 knockout mice. On the other hand, cardiac mitochondrial protein hyperacetylation induced by SIRT3 deletion is associated with an increased fatty acid β-oxidation rates [START_REF] Fukushima | Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure[END_REF]. This discrepancy could be due to organ, physio(patho)logical status (e.g., diabetes, obesity or newborn period) or acetylated proteins themselves, and are well described in the following review [START_REF] Fukushima | Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure[END_REF].

The implication of sirtuins in metabolic regulation is well detailed in a recent review [START_REF] Maissan | Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: A systematic review[END_REF]. Indeed, SIRT6 was described as a gatekeeper of glucose metabolism in cardiomyocytes. SIRT6 partial depletion decreased mitochondrial respiration whereas SIRT6 overexpression enhanced basal oxygen consumption [START_REF] Khan | SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart[END_REF]. Conversely, fatty acid uptake increases in SIRT6deficient cardiomyocytes and is decreased in SIRT6-overexpressed cardiomyocytes [START_REF] Khan | SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ[END_REF]. Of note, proteins involved in mitochondrial biogenesis can also be acetylated, such as optic atrophy 1 (OPA1) through SIRT3 which is able to activate OPA1 by deacetylation of the residues lysine 926 and lysine 931 [START_REF] Samant | SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress[END_REF]. Finally, a cross-talk between SIRT1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and AMP-activated protein kinase (AMPK) has been described to regulate cardiac metabolism [START_REF] Packer | Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: Implications for understanding the effects of current and future treatments for heart failure[END_REF]. Indeed, PGC-1α is a transcription factor playing a central role in the regulation of cellular energy metabolism, mitochondrial biogenesis and oxidative phosphorylation. SIRT1 could interact with PGC-1α and increase its expression levels [START_REF] Aquilano | Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria: Possible direct function in mitochondrial biogenesis[END_REF]. Moreover, AMPK increases cellular NAD + levels and subsequently increases SIRT1 activity, resulting in PGC-1α deacetylation and activation [START_REF] Cantó | AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity[END_REF].

Mitochondrial Oxidative Stress

It is well described that several mitochondrial proteins involved in oxidative stress are acetylated in the heart [START_REF] Tomczyk | Mitochondrial Sirtuin-3 (SIRT3) Prevents Doxorubicin-Induced Dilated Cardiomyopathy by Modulating Protein Acetylation and Oxidative Stress[END_REF]. Oxidative stress is defined by a production of reactive oxygen species (ROS) higher than anti-oxidant capacities. Indeed, although different molecular processes may contribute to global oxidative stress, the majority of ROS originates from the mitochondrial compartment in the heart. Excessive ROS production occurs during mitochondrial dysfunction and induces irreversible damage to mitochondria, defining them as significant contributors to the development of cardiovascular disease [START_REF] Senoner | Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?[END_REF][START_REF] Dubois-Deruy | Oxidative Stress in Cardiovascular Diseases[END_REF]. In this context, we recently described that SIRT3 deacetylates and activates the mitochondrial superoxide dismutase 2 (SOD2), but there is a decreased interaction between SIRT3 and SOD2 induced SOD2 acetylation on lysine 68 and its subsequent inactivation, leading to mitochondrial oxidative stress and dysfunction in hypertrophied cardiomyocytes [START_REF] Peugnet | Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes[END_REF]. Moreover, SIRT3 inhibition increased oxidative stress in neonatal rat cardiomyocytes [START_REF] Peugnet | Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes[END_REF] or human aortic endothelial cells [START_REF] Winnik | Mild endothelial dysfunction in Sirt3 knockout mice fed a high-cholesterol diet: Protective role of a novel C/EBP-β-dependent feedback regulation of SOD2[END_REF].

Other anti-oxidant enzymes were described to be acetylated in the heart, such as peroxiredoxin 1 [START_REF] Leng | Inhibition of HDAC6 Activity Alleviates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Potential Role of Peroxiredoxin 1 Acetylation and Redox Regulation[END_REF] in the mitochondria or nuclear factor erythroid 2-related factor 2 [START_REF] Xu | Protection of the enhanced Nrf2 deacetylation and its downstream transcriptional activity by SIRT1 in myocardial ischemia/reperfusion injury[END_REF] in the nucleus.

Implication of Cardiac Acetylation in Metabolic Heart Disease

Post-translational acetylation triggers modification of the activity of several proteins that occurs in obesity, diabetes and early stage of heart failure as detailed below [START_REF] Fukushima | Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes[END_REF][START_REF] Hou | Identification of epigenetic factor KAT2B gene variants for possible roles in congenital heart diseases[END_REF]. Table 2 summarizes the cardiac modulation of KATs and KDACs expression levels reported in metabolic heart disease. Unknown Increase [START_REF] Leng | Inhibition of HDAC6 Activity Alleviates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Potential Role of Peroxiredoxin 1 Acetylation and Redox Regulation[END_REF] KATs: lysine acetyltransferases; KDACs: lysine deacetylases; SIRT: sirtuins; HDAC: histone deacetylase; GCN5L1: general control of amino acid synthesis 5 like-1.

Cardiac Hypertrophy

Cardiac hypertrophy is a consequence of genetic, mechanic or neurohormonal changes contributing to heart failure progression. Interestingly, total KAT activity was found to be increased in the hearts of mice subjected to phenylephrine (PE), an hypertrophic stimulus [START_REF] Peng | Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice[END_REF]. In this context, the increased expression of P300 and KAT2B acetylases may explain hypertrophied cardiomyocytes under PE [START_REF] Peng | Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice[END_REF][START_REF] Mao | Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE-induced cardiomyocyte hypertrophy[END_REF][START_REF] Shen | SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300[END_REF][START_REF] Sunagawa | The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats[END_REF]. In addition, PE-induced hypertrophy also decreases SIRT6 expression, leading to an increase in histone H3 acetylation on lysine 9 (H3K9) [START_REF] Mao | Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE-induced cardiomyocyte hypertrophy[END_REF][START_REF] Shen | SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300[END_REF][START_REF] Sunagawa | The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats[END_REF]. Interestingly, PE-induced hypertrophy is decreased by treatment with polyunsaturated fatty acid [START_REF] Sunagawa | The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats[END_REF] or anacardic acid [START_REF] Peng | Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice[END_REF] in association with a decreased H3K9 acetylation. In parallel, overexpression of P300 induces an increased size of cardiomyocytes and a modification of their myofibrillar organization [START_REF] Sunagawa | The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats[END_REF], whereas inhibition of P300 by siRNA attenuates hypertrophic response in neonatal rat cardiomyocytes [START_REF] Shen | SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300[END_REF]. On the other hand, overexpression of SIRT6 [START_REF] Shen | SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300[END_REF] or SIRT3 [START_REF] Peugnet | Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes[END_REF] decreased cardiomyocytes hypertrophy. As an example, NAD inhibits oxidative stress and hypertrophy induced by PE in cardiomyocytes or by angiotensin II in mice [START_REF] Pillai | Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway[END_REF]. Indeed, NAD requires SIRT3 to deacetylate and activate liver kinase B1 (LKB1) and its target AMPK [START_REF] Pillai | Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway[END_REF]. Furthermore, a decreased SIRT2 protein expression was reported in hypertrophic hearts from mice whereas cardiac-specific SIRT2 overexpression protected the hearts against angiotensin II-induced hypertrophy [START_REF] Tang | SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy[END_REF]. As shown for SIRT3, SIRT2 deacetylates LKB1 at lysine 48, these promote the phosphorylation of LKB1 and the subsequent activation of AMPK signaling [START_REF] Tang | SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy[END_REF]. Moreover, SIRT7 levels increase in myocardial tissues after pressure overload induced by transverse aortic constriction in mice [START_REF] Yamamura | Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting with and Deacetylating GATA4[END_REF]. Cardiomyocyte-specific deletion of SIRT7 exacerbates hypertrophy and fibrosis induced by transverse aortic constriction, suggesting an antihypertrophic role of SIRT7 [START_REF] Yamamura | Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting with and Deacetylating GATA4[END_REF]. Indeed, SIRT7 deacetylates the hypertrophy response transcription factors such as GATA-binding factor 4 (GATA4) in cardiomyocytes [START_REF] Yamamura | Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting with and Deacetylating GATA4[END_REF]. Conversely, P300 acetylates GATA4 and activates its DNA binding activity, inducing cardiac hypertrophy and heart failure [START_REF] Shimizu | Multimerization of the GATA4 transcription factor regulates transcriptional activity and cardiomyocyte hypertrophic response[END_REF].

Finally, HDAC3 expression and activity increase during hypertrophy [START_REF] Wang | Histone deacetylase 3 suppresses the expression of SHP-1 via deacetylation of DNMT1 to promote heart failure[END_REF] whereas a decreased binding of HDAC3 to myofibrils is observed in PE-induced hypertrophy in neonatal rat cardiomyocytes that increases the acetylation of CapZβ1 at lysine 199 and alters myofibril growth during cardiac hypertrophy [START_REF] Lin | Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ[END_REF].

Cardiac Fibrosis

Cardiac fibrosis, defined as an excessive deposition of extracellular matrix in the cardiac muscle, is an important contributor to several heart diseases. Interestingly, in isoproterenol-injected mice, KAT2B activity was found to be increased only in cardiac fibroblasts, whereas no effects were observed in cardiomyocytes isolated from these mice [START_REF] Lim | P300/CBP-Associated Factor Activates Cardiac Fibroblasts by SMAD2 Acetylation[END_REF]. In this model, KAT2B induces acetylation of SMAD2 and, subsequently, activates SMAD2 and the transforming growth factor β signaling pathway [START_REF] Lim | P300/CBP-Associated Factor Activates Cardiac Fibroblasts by SMAD2 Acetylation[END_REF]. SMAD3 could also be acetylated during cardiac fibrosis [START_REF] Chen | Resveratrol ameliorates myocardial fibrosis by regulating Sirt1/Smad3 deacetylation pathway in rat model with dilated cardiomyopathy[END_REF][START_REF] Wu | Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation[END_REF]. Activation of SIRT1 by resveratrol [START_REF] Chen | Resveratrol ameliorates myocardial fibrosis by regulating Sirt1/Smad3 deacetylation pathway in rat model with dilated cardiomyopathy[END_REF], nicotinamide mononucleotide [START_REF] Wu | Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation[END_REF] or geniposide [START_REF] Li | Geniposide alleviates isoproterenol-induced cardiac fibrosis partially via SIRT1 activation in vivo and in vitro[END_REF] could decrease SMAD3 acetylation and fibrosis. Moreover, inhibition of P300 appears to exert anti-fibrotic functions [START_REF] Rai | Acetyltransferase p300 inhibitor reverses hypertensioninduced cardiac fibrosis[END_REF].

Decreased α-tubulin acetylation and increased HDAC6 were also described in cardiac fibroblasts or the heart from isoproterenol-induced fibrosis. Interestingly, treatment of cardiac fibroblasts with tubastatin A, an HDAC6 inhibitor, restored α-tubulin acetylation and decreased fibrosis [START_REF] Tao | Epigenetic factors MeCP2 and HDAC6 control α-tubulin acetylation in cardiac fibroblast proliferation and fibrosis[END_REF].

Heart Failure

Cardiac hypertrophy and fibrosis are both involved in heart failure development by activation of several intracellular signaling pathways, leading to left ventricular remodeling with systolic dysfunction. Despite the best modern therapeutic management, left ventricular remodeling remains independently associated with heart failure and cardiovascular death at long-term follow-up after myocardial infarction [START_REF] Bauters | Long-term prognostic impact of left ventricular remodeling after a first myocardial infarction in modern clinical practice[END_REF]. Moreover, alterations in cardiac energy metabolism, both in terms of changes in energy substrate preference and decreased mitochondrial oxidative metabolism and ATP production, are key contributors to heart failure development [START_REF] Ketema | Post-translational Acetylation Control of Cardiac Energy Metabolism[END_REF].

An increase in P300 expression is observed during ischemia/reperfusion injury [85] and myocardial infarction [START_REF] Sunagawa | The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats[END_REF]. Interestingly, it was described that activation of P300 acetylase, leading to an increase in acetylated H3K9 induced by myocardial infarction, is reversed by treatment with polyunsaturated fatty acid [START_REF] Sunagawa | The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats[END_REF]. Indeed, eicosapentaenoic acid and docosahexaenoic acid directly blocks the histone acetyltransferase activity of P300 and subsequently reduces both hypertrophy and fibrosis induced by myocardial infarction in rats [START_REF] Sunagawa | The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats[END_REF]. Other P300 inhibitors were also described to be cardioprotective, such as Ecklonia stolonifera Okamura extract [START_REF] Katagiri | Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity[END_REF], curcumin [START_REF] Sunagawa | an inhibitor of p300-hat activity, suppresses the development of hypertension-induced left ventricular hypertrophy with preserved ejection fraction in dahl rats[END_REF] and metformin [START_REF] Sunagawa | Metformin suppresses phenylephrine-induced hypertrophic responses by inhibiting p300-HAT activity in cardiomyocytes[END_REF]. Moreover, KAT2B levels are also increased by ischemia/reperfusion injury [START_REF] Qiu | Downregulation of P300/CBP-Associated Factor Attenuates Myocardial Ischemia-Reperfusion Injury Via Inhibiting Autophagy[END_REF].

The expression and activity of sirtuins are also highly impacted during heart failure. As an example, a decrease in SIRT3 and SIRT6 expressions were observed in human failing hearts that induces a global increase in protein acetylation [START_REF] Khan | SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ[END_REF][START_REF] Zhang | MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation[END_REF]. Proteomic analysis also identified an increased acetylation of mitochondrial proteins induced by transverse aortic constriction [START_REF] Horton | Mitochondrial protein hyperacetylation in the failing heart[END_REF].

Inhibition of SIRT3 was also described to induce mitochondrial oxidative stress and hypertrophy, notably by increasing the inactive form of SOD2 (acetylated on lysine 68) in hypertrophy [START_REF] Peugnet | Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes[END_REF] or following ischemia/reperfusion [START_REF] Porter | SIRT3 deficiency exacerbates ischemia-reperfusion injury: Implication for aged hearts[END_REF]. Moreover, deletion of SIRT2 exacerbates cardiac hypertrophy and fibrosis and decreases cardiac ejection fraction and fractional shortening in angiotensin II-infused mice by inhibition of AMPK activation, whereas cardiac-specific SIRT2 overexpression reversed this phenotype [START_REF] Tang | SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy[END_REF]. SIRT1 expression and activity are decreased in the heart following ischemia/reperfusion [START_REF] Ding | SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats[END_REF]. SIRT1 inhibition was also reported to increase endoplasmic reticulum stress-induced cardiac injury by decreasing eukaryotic initiation factor 2 alpha (eIF2α) deacetylation on lysine 143 in cardiomyocytes and in adult-inducible SIRT1 knockout mice [START_REF] Prola | SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation[END_REF].

Acetylation of contractile proteins is also modified during heart failure. For example, acetylation of β-MHC on lysine 951 was decreased in both ischemic and non-ischemic failing hearts [START_REF] Landim-Vieira | Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts[END_REF].

Obesity

Obesity is a major cause of disability and is often associated with cardiac hypertrophy, fibrosis, type 2 diabetes, obstructive sleep apnea and alteration of cardiac metabolism. It has notably described an increase in genes involved in fatty acid oxidation [START_REF] Thapa | Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart[END_REF]. Moreover, several studies have suggested an increase in acetylation raised from the non-enzymatic reaction of high levels of acetyl-CoA generated during a high-fat diet (HFD) and obesity [START_REF] Ketema | Post-translational Acetylation Control of Cardiac Energy Metabolism[END_REF]. Furthermore, hyperacetylation of mitochondrial proteins and metabolic inflexibility was reported in response to HFD or obesity. SIRT3 expression is decreased in left ventricles of obese patients and is associated with an increased level of brain natriuretic peptide (BNP), a marker of cardiac dysfunction and of protein acetylation [START_REF] García-Rivas | Mitochondrial Hyperacetylation in the Failing Hearts of Obese Patients Mediated Partly by a Reduction in SIRT3: The Involvement of the Mitochondrial Permeability Transition Pore[END_REF]. It was also reported that exposure of cardiomyoblasts H9c2 to palmitate led to an increase in both SIRT3 and GCN5L1 RNA levels [START_REF] Thapa | Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart[END_REF]. At the metabolic level, HFD induced an increase in SCAD and LCAD acetylation and activity [START_REF] Thapa | Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart[END_REF]. Moreover, the acetylation level of α-tubulin on lysine 40 is increased in the hearts of HFD mice and a pharmacological activation of α-tubulin acetylation decreases glucose transport [START_REF] Renguet | α-Tubulin acetylation on lysine 40 controls cardiac glucose uptake[END_REF].

In the other hand, cardiac specific inhibition of SIRT6 in mice exposed to HFD-induced cardiac hypertrophy and lipid accumulation [START_REF] Gao | SIRT6 regulates obesity-induced oxidative stress via ENDOG/SOD2 signaling in the heart[END_REF]. In this context, SIRT6 activated the expression of endonuclease G and SOD2, that could decrease oxidative stress and hypertrophy [START_REF] Gao | SIRT6 regulates obesity-induced oxidative stress via ENDOG/SOD2 signaling in the heart[END_REF].

Type 2 Diabetes

As obesity, type 2 diabetes is also associated with several cardiac dysfunctions such as cardiac hypertrophy and fibrosis, and acetylation may be involved in these mechanisms. Indeed, SIRT1 expression and activity are decreased in the heart of diabetic rats, induced by HFD and streptozotocin injection and, conversely, an up-regulation of SIRT1 by adenovirus attenuates cardiac dysfunction and oxidative stress [START_REF] Ding | SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats[END_REF]. Moreover, in a model of sucrose-fed rats, cardiac dysfunction is associated with a decreased SIRT3 protein expression (despite an increase at RNA level) and an increased GCN5L1 (protein and RNA) and mitochondrial protein acetylation [START_REF] Thapa | Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart[END_REF][START_REF] García-Rivas | Mitochondrial Hyperacetylation in the Failing Hearts of Obese Patients Mediated Partly by a Reduction in SIRT3: The Involvement of the Mitochondrial Permeability Transition Pore[END_REF]. Decreased SIRT3 levels are also associated with an increased acetylation of SOD2, and an increased oxidative stress and apoptosis in heart of diabetic mice [START_REF] Dai | Weighted Gene Co-Expression Network Analysis Identifies ANGPTL4 as a Key Regulator in Diabetic Cardiomyopathy via FAK/SIRT3/ROS Pathway in Cardiomyocyte[END_REF]. Interestingly, exposure of cardiomyoblasts H9c2 to high glucose concentration decreased SIRT3 [START_REF] Li | Sirtuin 3 Alleviates Diabetic Cardiomyopathy by Regulating TIGAR and Cardiomyocyte Metabolism[END_REF] and increased GCN5L1, oxidative stress and autophagy mediated by cytoplasmic Forkhead box O1 (FOXO1) acetylation [START_REF] Thapa | Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart[END_REF][START_REF] Lai | SIRT3-AMP-Activated Protein Kinase Activation by Nitrite and Metformin Improves Hyperglycemia and Normalizes Pulmonary Hypertension Associated with Heart Failure with Preserved Ejection Fraction[END_REF]. Conversely, expression of GCN5L1 is decreased in hearts of diabetic ZSF1 rats, a model characterized by obese animals with hyperglycemia, hyperinsulinemia and cardiac dysfunction [START_REF] Thapa | Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions[END_REF]. This decreased GCN5L1 expression and activity, with no modulation of SIRT3, induced a decrease of short-and long-chain acyl CoA dehydrogenases and a reduced respiratory capacity [START_REF] Thapa | Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions[END_REF]. One explanation could be the transition from prediabetes, in which GCN5L1 becomes elevated to promote mitochondrial fatty acids oxidation, to an overt diabetic state, in which GCN5L1 expression is downregulated leading to an overall decrease in mitochondrial fuel oxidation [START_REF] Thapa | Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions[END_REF].

On the other hand, OVE26 mice, a mouse model of type 1 diabetes, develop cardiac dysfunction with increased left ventricle diameters and fibrosis and decreased ejection fraction associated with an increase in HDAC3 activity, oxidative stress and inflammation [START_REF] Xu | Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway[END_REF]. Interestingly, the selective HDAC3 inhibitor RGFP966 reversed the cardiac phenotype in these mice [START_REF] Xu | Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway[END_REF]. In another model of type 1 diabetes, injection of streptozotocin in rats induced cardiac dysfunction, cardiac hypertrophy, fibrosis and inflammation [START_REF] Alshehri | Kaempferol protects against streptozotocin-induced diabetic cardiomyopathy in rats by a hypoglycemic effect and upregulating sirt1[END_REF] as well as oxidative stress [START_REF] Leng | Inhibition of HDAC6 Activity Alleviates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Potential Role of Peroxiredoxin 1 Acetylation and Redox Regulation[END_REF]. This oxidative stress is due to an increased HDAC6 activity leading to a decrease in the acetylated form of peroxiredoxin 1, suggesting that acetylation of peroxiredoxin 1 is involved in this activation [START_REF] Leng | Inhibition of HDAC6 Activity Alleviates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Potential Role of Peroxiredoxin 1 Acetylation and Redox Regulation[END_REF]. In this context, tubastatin A, a highly selective inhibitor of HADC6, may represent an interesting pharmacological target since treatment of diabetic rats with tubastatin A increased acetylation of peroxiredoxin 1 and decreased oxidative stress and cardiac dysfunction [START_REF] Leng | Inhibition of HDAC6 Activity Alleviates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Potential Role of Peroxiredoxin 1 Acetylation and Redox Regulation[END_REF]. Conversely, SIRT1 expression and activity appear to be decreased in the left ventricles of streptozotocin-induced diabetic rats [START_REF] Alshehri | Kaempferol protects against streptozotocin-induced diabetic cardiomyopathy in rats by a hypoglycemic effect and upregulating sirt1[END_REF] and mice [START_REF] Ding | Reduction of SIRT1 blunts the protective effects of ischemic post-conditioning in diabetic mice by impairing the Akt signaling pathway[END_REF]. In these models, reduced SIRT1 expression is associated with acetylation of endothelial nitric oxide synthase [START_REF] Alshehri | Kaempferol protects against streptozotocin-induced diabetic cardiomyopathy in rats by a hypoglycemic effect and upregulating sirt1[END_REF] or Akt [START_REF] Ding | Reduction of SIRT1 blunts the protective effects of ischemic post-conditioning in diabetic mice by impairing the Akt signaling pathway[END_REF]. In addition, SIRT6 expression is also decreased in the hearts of diabetic mice [START_REF] Khan | SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ[END_REF], suggesting that sirtuin family members may play a crucial role in type 1 diabetes-associated cardiac dysfunctions.

Pharmacological Modulation of Cardiac Acetylation

Due to the major implication of KATs and KDACs in cardiac dysfunction induced by obesity, type 2 diabetes or heart failure, targeting these enzymes could be beneficial for patients.

First, inhibition of P300 appears to be a promising approach to inhibit cardiac hypertrophy and fibrosis induced by several stimuli. As an example, oral administration of eicosapentaenoic acid (1 g/kg) or docosahexaenoic acid (1 g/kg) one week after myocardial infarction preserved fractional shortening and decreased cardiac hypertrophy and perivascular fibrosis [START_REF] Hou | Identification of epigenetic factor KAT2B gene variants for possible roles in congenital heart diseases[END_REF]. Ecklonia stolonifera Okamura extract, an algae traditionally used in Japanese foods, inhibits PE-induced hypertrophy in neonatal rat cardiomyocytes and restores fractional shortening and reduced cardiac hypertrophy and fibrosis by oral administration one week after myocardial infarction in rats [START_REF] Qiu | Downregulation of P300/CBP-Associated Factor Attenuates Myocardial Ischemia-Reperfusion Injury Via Inhibiting Autophagy[END_REF]. Oral administration of curcumin (50 mg/kg/day) acts also as a P300 inhibitor and decreases posterior wall thickness, cardiac hypertrophy and perivascular fibrosis induced by hypertension [START_REF] Yuan | SIRT2 regulates microtubule stabilization in diabetic cardiomyopathy[END_REF]. Finally, metformin, that directly inhibits P300-mediated acetylation of H3K9, blocks PE-induced cardiomyocytes hypertrophy [START_REF] Turdi | Catalase alleviates cardiomyocyte dysfunction in diabetes: Role of Akt, Forkhead transcriptional factor and silent information regulator 2[END_REF].

Based on the cardioprotective effects of SIRT3, it seems essential to develop new therapeutic strategy to increase its expression or activity. Recent reviews have well described these molecules [START_REF] Cao | Sirtuin 3: Emerging therapeutic target for cardiovascular diseases[END_REF][START_REF] Chen | SIRT3 as a potential therapeutic target for heart failure[END_REF]. For example, exogenous NAD is able to inhibit hypertrophy induced by PE in cardiomyocytes or by angiotensin II in mice [START_REF] Pillai | Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway[END_REF]. Resveratrol, an activator of both SIRT1 and SIRT3, is also described to be cardioprotective [START_REF] Chen | Resveratrol ameliorates myocardial fibrosis by regulating Sirt1/Smad3 deacetylation pathway in rat model with dilated cardiomyopathy[END_REF].

Conclusions

Despite available therapies, cardiovascular diseases, and particularly ischemic diseases, still remain the first cause of mortality and morbidity in the world. Obesity and type 2 diabetes are some of the major risk factors of cardiovascular diseases. Acetylation is an essential mechanism involved in several processes contributing to cardiac diseases such as cell metabolism, gene transcription or enzymatic activity. In this context, targeting enzymes responsible of acetylation/deacetylation could be beneficial and is a very promising research area, as demonstrated by the development of inhibitor targeting P300 [START_REF] Rai | Acetyltransferase p300 inhibitor reverses hypertensioninduced cardiac fibrosis[END_REF], modulators of SIRT6 [START_REF] Saiyang | Sirtuin 6: A potential therapeutic target for cardiovascular diseases[END_REF] or agonists of SIRT3 [START_REF] Cao | Sirtuin 3: Emerging therapeutic target for cardiovascular diseases[END_REF][START_REF] Chen | SIRT3 as a potential therapeutic target for heart failure[END_REF] to treat cardiac dysfunctions.
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 1 Figure 1. Subcellular localization of cardiac KATs and KDACs. This figure summarizes the subcellular localization of the most common lysine acetyltransferases (KATs, blue) and lysine deacetylases (KDAC, orange) and their cardiac targets. Ac: acetylated form; HDAC: histone deacetylase; SIRT: sirtuins; β-MHC: beta-myosin heavy chain; TnI: Troponin I; prx1: peroxiredoxin 1; LCAD: long chain acyl CoA dehydrogenase; SCAD: short chain acyl CoA dehydrogenase; β-HAD: L-3-hydroxy acyl-CoA dehydrogenase; SOD2: superoxide dismutase 2; CypD: Cyclophilin D; OPA1: optic atrophic 1; TBX5: T-Box transcription factor 5; VGLL4: vestigial-like 4; GATA4:
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 2 Figure 2. Physiological roles of cardiac acetylation. Ac: acetylated form; KATs: lysine acetyltransferases; KDACs: lysine deacetylase; ROS: reactive oxygen species.
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Table 1 .

 1 Most common proteins modified by cardiac acetylation in cardiovascular and metabolic diseases.

	Class	Name	KAT	KDAC	Function of Acetylation in the Heart	References
		LCAD/SCAD	GCN5L1	SIRT3	Increased activity and modulated fatty acid oxidation	[5,10-13]
	Mitochondrial proteins	β-HAD OPA1	GCN5L1 Unknown	SIRT3 SIRT3	Increased activity and modulated fatty acid oxidation Decreases its activity	[5,12,14] [15]
		PGC1α	Unknown	SIRT1	Increases its expression	[16]
		Cyclophilin D	GCN5L1	SIRT3	Induces mPTP opening	[17]
		TBX5	KAT2A, KAT2B	HDAC4 HDAC5	Increases transcriptional activity	[18,19]
	Transcription factors	VGLL4 GATA4 MEF2A	P300 P300 P300 KAT2B	Unknown SIRT7 HDAC5	Negatively regulates its binding to TEAD1 Activates its DNA binding activity Increased hypertrophy	[20] [21,22] [23,24]
		MEF2C	KAT2B	HDAC5	Increased hypertrophy	[24,25]
		SOD2	Unknown		Decreases SOD2 activity Increased mitochondrial oxidative	[26]
	Anti-oxidant proteins	Prx1	Unknown	SIRT3 HDAC6	stress and hypertrophy Increased peroxide-reduction activity	[27] [28]
		Nrf2	Unknown	SIRT1	Decreases its activity	[29]
		eNOS	Unknown	SIRT1	Inactive form	[30]
		β-MHC	Unknown	HDAC6	Impact myosin head positioning	[31,32]
	Contractile	Titin	Unknown	HDAC6	Cardiac contraction	[33]
	proteins	CapZβ1	Unknown	HDAC3/6	Cardiac contraction	[34]
		TnI	Unknown	HDAC6	Cardiac contraction	[35]
		LKB1	Unknown	SIRT2 SIRT3	Induces its activation by phosphorylation	[36,37]
	Signaling pathway	Akt	Unknown	SIRT1	Inhibition of Akt phosphorylation and activation	[38]
		SMAD2	KAT2B	SIRT1	Induced fibrosis	[39,40]
		SMAD3	Unknown	SIRT1	Induced fibrosis	[40-42]

KAT: lysine acetyltransferase; KDAC: lysine deacetylase; LCAD: long chain acyl CoA dehydrogenase; SCAD: short chain acyl CoA dehydrogenase; β-HAD: L-3-hydroxy acyl-CoA dehydrogenase; OPA1: optic atrophic 1; PGC-1α: peroxisome proliferator-activated receptor-gamma coactivator; TBX5: T-Box transcription factor 5; VGLL4: vestigial-like 4; TEAD1: TEA Domain Transcription Factor 1; GATA4: GATA-binding factor 4; MEF: myocyte enhancer factor; SOD2: superoxide dismutase 2; Prx1: peroxiredoxin 1; Nrf2: nuclear factor erythroid-2-related factor 2; eNOS: endothelial nitric oxide synthase; β-MHC: beta-myosin heavy chain; TnI: troponin I; LKB1: liver kinase B1; GCN5L1: general control of amino acid synthesis 5 like-1; SIRT: sirtuins; HDAC: histone deacetylase; mPTP: mitochondrial permeability transition pore.

Table 2 .

 2 Modulation of KATs and KDACs expression in heart failure and metabolic diseases.

	KATs
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