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Abstract  

Background: Monogenic and polygenic inheritance are evidenced for idiopathic 

pulmonary fibrosis (IPF). Pathogenic variations in surfactant-protein-related genes, 

telomere-related genes (TRG) and a single-nucleotide polymorphism in the promoter 

of MUC5B gene encoding Mucin 5B (rs35705950 T risk allele) are reported. This 

French-Greek collaborative study, Gen-Phen-Re-GreekS in inheritable (i)IPF, aimed 

to investigate genetic components and patients’ characteristics in the Greek national 

IPF cohort with suspected heritability.  

Patients and Methods: 150 patients with familial PF, personal-family extra-

pulmonary disease suggesting short telomere syndrome and/or young age IPF were 

analyzed.  

Results: MUC5B rs35705950 T risk allele was detected in 103 patients (90 

heterozygous, 13 homozygous, allelic frequency of 39%), monoallelic TRG 

pathogenic variations in 19 patients (8 TERT, 5 TERC, 2 RTEL1, 2 PARN, 1 NOP10 

and 1 NHP2) and biallelic ABCA3 pathogenic variations in 3. Overlapping MUC5B 

rs35705950 T risk allele and TRG pathogenic variations were shown in 11 patients (5 

TERT, 3 TERC, 1 PARN, 1 NOP10, 1 NHP2), MUC5B rs35705950 T risk allele and 

biallelic ABCA3 pathogenic variations in 2. In 38 patients neither MUC5B rs35705950 

T risk allele nor TRG pathogenic variations were detectable. Kaplan-Meier curves 

showed differences in time-to-death (p=0.025) where patients with MUC5B 

rs35705950 T risk allele alone or in combination with TRG pathogenic variations 

presented better prognosis. 

Conclusion: The Gen-Phen-Re-GreekS in iIPF identified multiple and overlapping 

genetic components including the rarest, underlying disease’s genetic “richesse”, 
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complexity and heterogeneity. Time-to-death differences may relate to diverse IPF 

pathogenetic mechanisms implicating “personalized” medical care driven by 

genotypes in the near future.  
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Introduction  

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic interstitial 

lung disease (ILD) of unknown pathogenesis, leading to irreversible respiratory 

failure and death [1]. No curative treatment is available. IPF was until recently 

considered a sporadic disease of the elderly, limited to the lungs [1]. This traditional 

approach has been challenged by the observation that PF may also be encountered in 

children and young adults, that it develops 10 times more often in members of 

families with an IPF patient, and that it may be a feature of a multisystem, inherited 

disease named telomeropathy where it coexists with bone marrow failure and/or liver 

disease [2, 3, 4]. The above refer to “heritability” and proved to be related mainly to 

pathogenic variations in telomere-related genes (TRG) or surfactant-protein-related 

genes (SPRGs) in monogenic inheritance and a single-nucleotide polymorphism in the 

promoter of the MUC5B gene encoding Mucin 5B (rs35705950 T risk allele) in 

polygenic inheritance [5, 6, 7, 8, 9]. The implicated genes influence biology of two 

distinct types of lung epithelial cells: the type 2 alveolar epithelial cell (AEC2) and 

the bronchial secretory cell. SPRG pathogenic variations disrupt AEC2 homeostasis 

by induction of endoplasmic reticulum stress (ER) leading to a significant increase in 

the expression of mesenchymal markers and profibrotic mediators and local 

dysregulation of immune responses [9]. TRG pathogenic variations are related to loss 

of telomerase complex activity or stability permitting telomere shortening and 

inducing activation of DNA-damage mechanisms, premature senescence and pro-

fibrotic remodeling. TRG pathogenic variations are also associated with the 

dysregulation of cells in tissues such as the bone marrow and the liver leading to 

“short-telomere syndrome” (STS) [4]. MUC5B rs35705950 T risk allele carriership 

has been found to increase the expression of the mucin5B in the distal lung causing 
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mucociliary dysfunction and ER stress triggering thus a vicious cycle of 

injury/repair/regeneration at the bronchoalveolar junction leading to fibrosis [9, 10].  

The SPRGs which pathogenic variations predispose to the development of PF include 

those encoding surfactant proteins A1 (SFTPA1), A2 (SFTPA2), C (SFTPC), the 

ATP-binding cassette-type family A member 3 transporter (ABCA3) and the NK2 

homeobox 1 (NKX2-1) transcription factor [5, 11, 12, 13]. The TRG pathogenic 

variations, major monogenic cause of PF, included initially only heterozygous 

mutations in telomerase reverse transcriptase (TERT) and the RNA component of the 

telomerase complex (TERC), but in a few years embraced more than eight new genes 

mutations: RTEL1, PARN, NAF1, DKC1, TINF2, NOP10, NHP2 and ZCCHC8 [14, 

15, 16, 17, 18]. Finally, MUC5B rs35705950 T risk allele carriership is the strongest 

polygenic risk factor for the development of IPF in the overall population [8].  

Known genetic causes may explain circa 30% of inheritable (i)PF cases as report 

studies from the USA and Northern Europe [19, 20]. Few data exist regarding the rest 

of the world, although scientific evidence underscores the genetic complexity and 

heterogeneity of iIPF [9]. This French-Greek collaborative study, Gen-Phen-Re-

GreekS in (i)IPF, aimed to investigate genetic components in the Greek national IPF 

cohort with suspected heritability and define patients’ characteristics.  

 

Methods  

This is a retrospective, observational, non-interventional, collaborative French-Greek 

study including all patients from the Greek national cohort with suspected iIPF. The 

study took place from January 2015 to January 2020 and patients were included if 

they presented at least one of the following: a) familial PF (FPF), that is a family 
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history of two or more relatives with fibrotic ILD (f)-ILD, b) IPF at a younger age 

(<55 years old), c) personal/-family extra-pulmonary disease suggesting STS such as 

a history of bone marrow failure, thrombocytopenia or myelodysplasia, early hair 

graying or cryptogenic liver cirrhosis [19]. Classic cutaneous triad reported in 

dyskeratosis congenita (DC) was not present in our patients. Patients were referred for 

evaluation from specialized referral centers and dedicated private practices from all 

over Greece to the 2
nd

 Pulmonary Medicine Department, General University Hospital 

“Attikon” (Athens, Greece). Genetic analysis was performed in France, specifically at 

the genetic laboratory of Bichat Hospital (Paris, France), for TRG and MUC5B 

rs35705950 T risk allele testing, and at the molecular genetics’ laboratory of Armand 

Trousseau Hospital (Paris, France) for SPRGs testing. Both are reference academic 

facilities belonging to the Respifil network including adult and pediatric centers with 

a special expertise in rare lung diseases (www.respifil.fr). Lung fibrosis diagnosis was 

based on a multidisciplinary team discussion (MDD) including clinical data, lung high 

resolution computed tomography (HRCT) and pathological evaluation according to 

ATS/ERS/JRS/ALAT official guidelines [1]. Clinical information was collected in a 

standardized manner (See online Patients and Methods Supplement). Treating 

physicians performed clinical work-up and management. Pulmonary function tests 

(PFTs) were recorded at diagnosis. Death data were recorded until January 15
th

 2020, 

except for cases lost to follow-up. Seven patients of the cohort have been already 

reported in the literature [16, 21, 22]. All patients signed written informed consent and 

the study was approved by the Medical Ethics Committee of General University 

Hospital “Attikon”, Athens, Greece (ΕΒΔ 585/13-1-15).  

Genetic analysis 
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Molecular explorations were performed by Sanger sequencing, capture-based next 

generation sequencing panels (Haloplex / Agilent or Nimblegen / Roche) or whole 

exome sequencing (WES), as previously described [12, 19]. Germline variants were 

interpreted according to the American College of Genetics and Genomics guidelines 

and the European Society for Human Genetics recommendations [23]. Only variants 

classified as clearly pathogenic (class 4 or 5) or suspected to be pathogenic as defined 

in [19] by VUSD (variant of unknown significance with a working diagnosis of 

damaging) are reported in this manuscript.  A few results were also discussed in MDD 

dedicated to suspected monogenic pulmonary fibrosis [24]. Most of the patients 

recruited for family history, relatively young age (<55 years old) or extra pulmonary 

signs were explored for telomere disease (N=148), excluding very young patients (< 

20 years old) suspected to surfactant disease and revealed to be carrier of a mutation 

in surfactant pathway (N=2). A total of 9 patients were tested for surfactant pathway 

mutations due to early onset pulmonary fibrosis presentation (age <40 years old) or 

associated personal or familial lung cancer.   

Statistical analysis 

Categorical variables are presented as n (%), whereas numerical variables are 

presented as mean±standard deviation (SD) or median (interquartile ranges) for 

normally distributed and skewed data, respectively. Normality of distributions was 

checked with Kolmogorov-Smirnov test. Comparisons between patients with and 

without pathogenic mutations were performed using chi-square tests for categorical 

data, as well as unpaired t-tests and one-way ANOVA or Mann-Whitney U-tests and 

Kruskal–Wallis H test for normally distributed or skewed numerical data, 

respectively. For analyzing the specific sample pairs for stochastic dominance, Dunn's 

test was used. Cox regression univariate and multivariate analyses were performed in 
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order to evaluate the influence of factors known to be associated with outcomes in 

mortality. Kaplan-Meier survival curves were also performed in order to estimate the 

difference of time to death in months between different genotypes. Statistical 

significance was calculated by log rank test. Data were analyzed using SPSS 18.0 for 

Windows (SPSS Inc, Chicago, IL, USA) and Graph Pad prism 6 (La Jolla CA, USA). 

p-values <0.05 were considered statistically significant. 

Results  

Patients  

During the study period we identified 150 probands from 150 non-related families 

from all over Greece presenting with iIPF (Table 1). Only one proband per family was 

included in the analysis. Males were 73% with a median (IQR) age-at-diagnosis of 

67.5 (55.0-74.2) year-old, 62.7% ever-smokers, 75% with a definite/probable UIP or 

CPFE pattern on HRCT of the chest. Histology was available in 26 (17.3%) patients. 

Presenting symptoms were either cough, or dyspnea or both in 93% of patients and 

fibrogenic exposure could be identified in 57 (38%). Median values (IQR) for 

FVC%pred, TLC%pred and DLCO%pred upon inclusion in the study were 75.5 

(59.9-93.2), 65 (52.4-77.8) and 48.8 (36.0-62.0) respectively. Combined estimation of 

Gender, Age, Predicted FVC and DLCO (GAP) score for IPF mortality was median 

(IQR) value of 2 (1.0, 2.0) for GAP stage. Median values of hematological parameters 

were within normal limits.  

Genetics  

Genetic analyses were performed due to FPF in 95 (63.3%) patients, for young age in 

23 (15.3%), and personal and/or family extra-pulmonary disease suggestive of STS in 

22 (14.7%) and 10 (6.7%) patients respectively; 32 (21.3%) patients were tested for 
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more than 1 indication (Table 1 supplement). Median (IQR) numbers of affected 

members in a family and of generations with affected members were 2 (2.0, 3) and 1 

(1.0, 2) respectively. Parameters suggestive of personal or familial STS such as 

anemia, macrocytosis, thrombocytopenia and liver cirrhosis were encountered in 

24.3%, 12.5%, 14% and 18.7% of patients respectively. Further characteristics related 

to what led to suspicion of a mutation such as the number of affected members in a 

family, the number of generations with affected members and parameters suggestive 

of STS are also shown in Table 1 supplement. Allele frequency for MUC5B 

rs35705950 T risk allele was 39% corresponding to 103 patients (90 in heterozygous 

and 13 in homozygous state); Monoallelic TRG pathogenic variations were detected 

in 19 patients (8 TERT, 5 TERC, 2 RTEL1, 2 PARN, 1 NOP10 and 1 NHP2) (Table 2 

supplement); surfactant protein-related genes pathogenic variations were detected in 3 

patients (biallelic ABCA3 rare pathogenic variations). SFTPA1 or SFTPA2 rare 

variants were not detected in those patients tested. Combined genotypes such as co-

existent MUC5B rs35705950 T risk allele with TRG pathogenic variations (5 TERT, 3 

TERC, 1 PARN, 1 NOP10, 1 NHP2) were shown in 11 patients, MUC5B rs35705950 

T risk allele and biallelic ABCA3 pathogenic mutations in 2 patients. In 38 patients 

neither MUC5B rs35705950 T risk allele nor TRG pathogenic mutations was 

detectable (Table 2) (Figure 1).  

Factors associated with outcome of the entire cohort  

Median (IQR) age at death for all was 75 (64.2, 82.0) years. Median (IQR) survival of 

the cohort was 3 (1, 6) years. Forty-two patients (28%) deceased during the study 

period. In univariate analysis, older age at diagnosis, higher GAP index and stage, 

lower values of FVC%pred, TLC%pred, and DLCO%pred, higher FEV1/FVCx100 at 

diagnosis, increased monocyte count and thrombocytopenia were associated with an 



14 
 

increased risk of death whereas MUC5B rs35705950 T risk allele carriership and 

antifibrotic treatment with a decreased risk of death (Table 3). In multivariate analysis 

remained independent predictors of mortality associated significantly with increased 

risk of death the higher age at diagnosis, lower values of FVC%pred, higher values of 

FEV1/FVCx100 at diagnosis, presence of thrombocytopenia and increased monocytes 

count (Table 3).  

Distribution of HRCT and histology patterns among the genotypes  

In 90 patients (60.0%) with MUC5B rs35705950 T risk allele (either homozygous or 

heterozygous) without a monogenic cause presented on HRCT definite UIP 46 

patients (51.1%) and probable UIP 15 patients (16.7%) (Table 4). Histopathology data 

of lung biopsy were available in 12 patients (13.3%) and UIP observable in 9 patients 

(75%). In 8 patients (5.3%) with TRG pathogenic variations alone, the prevalent 

HRCT pattern was indeterminate and observed in 3 patients (37.5%). Histopathology 

data were available in 4 patients (50%) and UIP, or UIP mixed was observed in 3 

(75%). In 11 patients (7.3%) with combined TRG pathogenic variations and MUC5B 

rs35705950 T risk allele, the HRCT pattern was definite/probable UIP alone or 

combined emphysema. Histopathology data in 4 patients (36.4%) confirmed UIP. In 

38 patients (25.3%) with neither MUC5B rs35705950 T risk allele nor TRG 

pathogenic variations, all HRCT patterns were observed with definite UIP shown in 

16 patients (42.1%). Histopathology features available for 4 patients (10.5%) 

confirmed UIP in 2 patients and NSIP in 1 patient (and 1 missing report). At post hoc 

analysis, carriers of TRG pathogenic variations alone were younger at diagnosis in 

comparison to MUC5B rs35705950 T risk allele carriers alone and were submitted 

more frequently to lung biopsy (50%) (Table 4). Finally, regarding the 3 patients (2%) 

with ABCA3 pathogenic variations, HRCT revealed only indeterminate or alternative 
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ILD patterns and histopathology available in 2 patients showed overlapping features 

of nonspecific interstitial pneumonia (NSIP), desquamative interstitial pneumonia 

(DIP) and organizing pneumonia (OP) (Table 3 supplement).  

Distribution of patients’ main parameters among genotypes  

Classifying patients according to their genetic background, no significant differences 

were detected concerning fibrogenic exposure, symptoms, functional status, 

extrapulmonary manifestations such as anemia, thrombocytopenia and liver disease, 

GAP scores and antifibrotic treatment (Table 5). Upon initial evaluation of patients, 

younger age at diagnosis, coexistence of multiple traits of heritability including 

macrocytosis and multigenerational families favors a genetic predisposition related to 

TRG pathogenic variations (Table 6). 

Survival between genotypes  

Kaplan-Meier curves revealed a significant difference to the time to death between 

genotypes (p=0.025). Patients with TRG pathogenic variations alone or with neither 

MUC5B rs35705950 T risk allele nor TRG pathogenic variations presented the worst 

prognosis while those with MUC5B rs35705950 T risk allele either with or without 

TRG pathogenic variation presented better prognosis (Figure 2). 

Discussion  

This French-Greek collaborative study, Gen-Phen-Re-GreekS in iIPF, identified 

multiple and overlapping genetic components including extremely rare ones among 

patients with iIPF in the Greek national cohort. In detail frequency for MUC5B 

rs35705950 T risk allele was 39% corresponding to 103 patients (90 heterozygous, 13 

homozygous), monoallelic TRG pathogenic variations were detected in 19 patients (8 
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TERT, 5 TERC, 2 RTEL1, 2 PARN, 1 NOP10 and 1 NHP2) and biallelic ABCA3 

pathogenic variations in 3. Overlapping MUC5B rs35705950 T risk allele and TRG 

pathogenic variations (5 TERT, 3 TERC, 1 PARN, 1 NOP10, 1 NHP2) were shown in 

11 patients, and MUC5B rs35705950 T risk allele and biallelic ABCA3 pathogenic 

variations in 2. In 38 patients neither MUC5B rs35705950 T risk allele nor TRG 

pathogenic variations were detectable.  

Every patient was genotyped for MUC5B rs35705950 T risk allele. In 90 patients, the 

MUC5B rs35705950 T risk allele was found alone, in 13 in combination with 

monogenic pathogenic variations. The reported frequency for MUC5B rs35705950 T 

risk allele of 39% is higher than the 3.8% in historic Greek controls, 3.4% of Asian 

IPF populations but comparable to the 25% to 40% reported in North European, 

Mexican and the USA IPF cohorts [8, 19, 25, 26, 27, 28, 29]. Carriers of MUC5B 

rs35705950 T risk allele alone were found to have strong familial traits like 2 or more 

affected members in family in 81% of cases, multigenerational affected families in 

40% and signs of STS in 15%. Phenotypically in comparison to the other genotypes, 

they were characterized by female gender prevalence, older age at diagnosis and UIP 

imaging and histology patterns. Our findings are in agreement with both the studies of 

Seibold M and co-workers and van der Vis JJ and co-workers who recognized 

MUC5B rs35705950 T risk allele as the strongest genetic risk factor for the 

development of FPF [8, 27] and confirm the observations of Chung JH and co-

workers and of Juge PA and coworkers that MUC5B rs35705950 T risk allele 

carriership is related to UIP HRCT pattern [25, 26]. All the above support the 

elaboration of distinctive MUB5B rs35705950 T risk allele driven phenotypic 

characteristics in iPF. Interactions with other unidentifiable genetic or environmental 
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factors should be further evaluated although the present study did not reveal 

significant influence of smoking and fibrogenic exposures.  

TRG pathogenic variations carriers represented 13% of the Greek cohort and included 

classical TERT and TERC mutations, rare PARN and RTEL1, ultra-rare NHP2 

mutation and the first ever reported heterozygous NOP10 mutation in a context of 

FPF. TRG pathogenic variations are implicated in up to 20% of FPF cases. There are 

numerous components in the telomerase complex including TERT, TERC, PARN, 

RTEL1, NAF1, DKC1 and TINF2 which are essential for normal function and new 

genetic variants are continually being identified. NOP10 along with DKC1, NHP2 

and GAR1 are essential for TERC stability and telomere maintenance. Our 

observation that the NOP10 firstly described mutation and NHP2 are novel causes of 

FPF and STS amplify the role of TRG pathogenic variations in iPF highlighting some 

unique aspects of telomere biology [16, 30]. Patients were examined divided in those 

with TRG pathogenic variations alone (5.3%) and those with the combination of TRG 

pathogenic variations and MUC5B rs35705950 T risk allele (7.4%). Patients with 

TRG pathogenic variations alone were characterized by younger age at diagnosis (55 

years old) and multiple signs of heritability such as personal/-familial STS and 

multigenerational families. All these features remained identifiable in the TRG 

pathogenic variation and MUC5B rs35705950 T risk allele combination group, except 

from the age at diagnosis that was much older. In lung biopsy, the TRG pathogenic 

variation alone group presented NSIP features in one quarter of patients whereas the 

combination group was characterized by UIP only. Our findings confirm that TRG 

pathogenic variations are the major monogenic cause in suspected IPF and reveal that 

the combination with MUC5B rs35705950 T risk allele in 58% of patients leads to 

phenotypic changes that could be attributed to additional effects. In this study very 
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rare variants in TERC, PARN, RTEL1, NOP10 and NHP2 predominate TERT ones 

underlying the originality of our population. Phenotypic characteristics of the Greek 

patients on the other hand were very similar to the French and American cohorts 

including younger age at diagnosis and STS [19, 20]. The limited number of rare TRG 

pathogenic variations precludes further comparisons [15, 16, 17, 18]. In the only 

combined analysis of rare and common variants in 1510 patients with sporadic IPF, 

Dressen A and co-workers demonstrated that 3% of carriers of MUC5B rs35705950 T 

risk allele carried a rare variant of TERT compared to 7% in the non-risk allele group, 

speculating that the presence of TRG pathogenic variations excludes that of MUC5B 

rs35705950 T risk allele [31]; not the case from the Greek cohort. Dressen and co-

workers retained variants restricted to exonic SNPs with a minor allele frequency 

under 1% in the general population. Missense Variants included in the rare variant 

analysis were high impact variants (e.g stop gain, stop loss, frameshift) or missense 

variants with a PolyPhen score predicted as damaging (≥ 0.5). The variants retained as 

pathogenic in our study are more rare (allelic frequency = 0.001). 

Three patients out of 9 that were tested represented the genotype group of SPRGs 

mutations. Biallelic ABCA3 pathogenic variations were exclusively identified whereas 

monoallelic SFTPA1 or SFTPA2 rare variants were not detected probably due to the 

limited number of patients tested. Besides the very small number of patients, 

distinctive characteristics were recognized such as early onset ILD, in childhood, in 

early adulthood and at 35 years old. All presented finger clubbing, low DLCO in the 

absence of smoking or fibrogenic exposures. Indeterminate or alternate HRCT 

patterns corresponded to biopsy-proven NSIP, OP and DIP. The patient with a history 

of FPF presented also homozygous for MUC5C rs35705950 T risk allele. During the 

study period, no deaths were reported. This study underlines the genotype-phenotype 
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diversity associated with biallelic ABCA3 pathogenic variations [13, 32, 33, 34] and 

shows that biallelic ABCA3 pathogenic variation related ILD patients surviving from 

childhood to adulthood are extremely rare but do exist especially when mild 

mutations allowing a more progressive and benign course are identified [22].  The 

potential clinical impact of combination with MUC5B rs35705950 T risk allele 

remains to be defined [35].  

In one quarter of our patients, no identifiable monogenic or polygenic genetic 

component was found eliciting a lot of questions about underlying inheritable biology. 

Those patients were diagnosed at an older age, had the highest rate of smoking and 

fibrogenic exposures compared to the other genotypes, presented all the range of 

HRCT and histology patterns with a modest predilection for UIP and had less often 

multigenerational families. Exome or genome sequencing could increase the 

possibility to identify novel genes helping to overcome the challenges of unexplained 

heritability [9]. In that perspective the detailed phenotypic characterization of patients 

as undertaken in the present study could be of significant help.  

The median survival of our cohort was 3 years; very similar to the survival reported 

for the American cohorts with TRG pathogenic variations related PF [20, 36]. In the 

French cohort, the survival was found much longer (7.3 years) but as the authors state 

this could be attributed to the fact that half of the patients presented ILD diagnoses 

with better prognosis other than IPF [19]. The evaluation of predictors of mortality 

identified novel independent parameters such as the monocytes count indicating that 

the ominous impact of increased monocytes in patients with sporadic IPF associated 

to their differentiation to pro-fibrotic macrophages and fibroblasts could also apply to 

inheritable disease [37].  
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A significant difference in the time-to-death was shown in Kaplan-Meier analysis. 

Patients with TRG pathogenic variations alone or patients with neither MUC5B 

rs35705950 T risk allele nor TRG pathogenic variations presenting worst prognosis. 

The observed differences in the MUC5B rs35705950 T risk allele alone and the 

combination TRG pathogenic variations groups could be explained by the effect of 

the MUC5B rs35705950 T risk allele on survival based on the existing but recently 

disputed evidence that this variant associates in an allele-dose dependent manner with 

better survival in IPF patients, especially in those with familial traits [26, 27, 38, 39]. 

The dismal prognosis of the TRG pathogenic variations carriers on the other hand is 

already acknowledged and bears significant clinical implications regarding both 

transplantation and treatment decisions [39]. 

Among the limitations of our study are the absence of central reading of HRCT scans 

and histology. However, all patients were managed in specialized referral ILD centers 

minimizing the risk of significant inaccuracies. The measurement of telomere length, 

for obvious geographical reasons, was technically impossible in every patient with 

TRG pathogenic variations. However, in older patients with lung disease the 

shortening is less clear [4], suggesting that the measurement in our unexplained older 

IPF patients would not have been so helpful. Moreover, SRPGs pathogenic variations 

testing was selectively performed in patients with young age ILD slightly 

underestimating its true prevalence. Finally, other low risk alleles associated to the 

development of IPF have not been tested in the present study [40]. 

To the best of our knowledge, this is the first cohort study that defines characteristics 

of patients with iIPF related to all the range of major identifiable genetic components 

and attempts an analysis of patients with both isolated and combined genetic traits. It 

describes classical, rare, ultra-rare and novel TRG pathogenic variations broadening 
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the evidence about the importance of impaired telomere maintenance pathway in the 

pathogenesis of monogenic inheritable pulmonary fibrosis and provides evidence 

about rarely encountered patients with ABCA3 pathogenic variations who survive 

from childhood to adulthood. The role of MUC5B rs35705950 T risk allele found in 

the majority of patients is explored regarding the development of iPF and the 

elaboration of MUC5B rs35705950 T risk allele driven phenotypic characteristics, 

when this allele is alone or combined with a monogenic cause. 

In conclusion, the Gen-Phen-Re-GreekS in iIPF identified multiple and overlapping 

genetic components including the rarest, underlying disease’s genetic “richesse”, 

complexity and heterogeneity. Time-to-death differences may relate to diverse IPF 

pathogenetic mechanisms implicating “personalized” medical care driven by 

genotypes in the near future.  
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Figure legends 

 

Figure 1. Pie chart displaying the proportions of different genotype groups in the 

national Greek IPF cohort with suspected inheritable pulmonary fibrosis.  

Figure 2. Kaplan-Meier curves to the time-to-death among different genotype groups 

and more precisely between patients with telomere related gene (TRG) pathogenic 

variations alone, patients with TRG pathogenic variations and MUC5B rs35705950 T 

risk allele, patients with neither TRG pathogenic variations nor MUC5B rs35705950 

T risk allele and patients with MUC5B rs35705950 T risk allele alone (p=0.025). No 

death was reported in the ABCA3 pathogenic variation group and therefore these 

patients are not included in the analysis. Censoring is indicated by the cross marking. 

The p-value is derived by log-rank test. 
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