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INTRODUCTION 

Nitric oxide (NO) is a gaseous signalling molecule 
involved in a variety of physiological functions 
throughout the body [1]. The first pathway for NO 
production is endogenous via the citrulline-arginine-NO 
pathway requiring the activity of the nitric oxide 
synthase (NOS) enzymes. The second pathway is 
partially exogenous since it uses nitrate and nitrite 
brought by water and food to produce NO based on the 
simple one-electron reduction of nitrite. Systemic NO 
bioavailability can be enhanced by NO precursor 
supplementation such as arginine [2] and nitrate [3]. 
Interestingly,  it  has been shown that oral citrulline sup- 

 

plementation increases the circulating [4,5] and tissue 
[6] arginine concentration more efficiently than an
equivalent dose of arginine, suggesting that exogenous
citrulline administration might represent an interesting
option to increase the amount of arginine to be
converted by NOS in NO.

In the peripheral vessels, NO regulates vascular tone by 
activating soluble guanylate cyclase in the vascular 
smooth muscle. During physical activity, NO bio-
availability is important to match blood flow to oxygen 
demand in the brain and contracting muscles. During 
intermittent handgrip exercise for instance, NOS 
inhibition via NG-monomethyl-Arginine reduces muscle 
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ABSTRACT 

Increased nitric oxide (NO) bioavailability may improve exercise performance and vascular function. It remains 
unclear whether older adults who experience a decreased NO bioavailability may benefit from chronic NO 
precursor supplementation. This randomised, double-blind, trial aims to assess the effect of chronic NO 
precursor intake on vascular function and exercise performance in older adults (60-70 years old). Twenty-four 
healthy older adults (12 females) performed vascular function assessment and both local (knee extensions) and 
whole-body (incremental cycling) exercise tests to exhaustion before and after one month of daily intake of a 
placebo (PLA) or a nitrate-rich salad and citrulline (N+C, 520mg nitrate and 6g citrulline) drink. Arterial blood 
pressure (BP) and stiffness, post-ischemic, hypercapnic and hypoxic vascular responses were evaluated. 
Prefrontal cortex and quadriceps oxygenation was monitored by near-infrared spectroscopy. N+C 
supplementation reduced mean BP (-3.3mmHg; p=0.047) without altering other parameters of vascular 
function and oxygenation kinetics. N+C supplementation reduced heart rate and oxygen consumption during 
submaximal cycling and increased maximal power output by 5.2% (p<0.05), but had no effect on knee extension 
exercise performance. These results suggest that chronic NO precursor supplementation in healthy older 
individuals can reduce resting BP and increase cycling performance by improving cardiorespiratory responses. 
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blood flow [7] and total vasodilator responses to muscle 
contraction [8]. NO is also an important neuro-
transmitter and neuromodulator (chemical messenger, 
[9]). It is involved in cerebral blood flow auto-
regulation [10] and neurovascular coupling [11,12]. 
 
A reduction in NO bioavailability has been singled out 
as the main cause of endothelial dysfunction [13]. The 
latter is recognized as an important predictive factor for 
several cardiovascular disorders and has been 
implicated in the pathogenesis of hypertension, 
atherosclerosis, arterial thrombosis [14–16]. Advanced 
age is associated with endothelium dysfunction due to 
impairments in NO signalling pathways. Several 
possible mechanisms may underlie this impairment in 
NO metabolism, including limited substrate (arginine, 
[17]) and cofactor bioavailability (e.g. tetrahydro-
biopterin, [18]) and reduced abundance or activity of 
NOS. In addition to vascular function, cardiorespiratory 
exercise responses are also considered as a reliable 
predictive factor for cardiovascular diseases [19,20]. 
Hence, some recent studies investigated the potential 
benefits of NO precursor supplementation on vascular 
function and exercise performance in the older 
population. Contrasting effects of chronic NO precursor 
(i.e. arginine, citrulline, nitrate) intake on exercise 
performances have been reported in older adults [for a 
review, see [21,22]]. While some studies found a positive 
effect of nitrate intake on exercise time to exhaustion 
[23,24] and oxygen consumption (VO2) response time 
[25], other authors showed no significant effect on 
exercise performance [26]. Some studies have also 
shown positive vascular effects in older adults 
following acute and chronic nitrate intake, including 
reduced blood pressure (BP) [27,28], improved regional 
brain perfusion [29] and improvements in several 
parameters of vascular function [30]. However, Miller 
et al. [31] showed no effect of nitrate supplementation 
on blood pressure (BP) despite increased plasma nitrate 
and nitrite. Regarding citrulline intake, while chronic 
supple-mentation has been shown to reduce BP [32], 
acute ingestion showed no effect on vascular function in 
older adults with heart failure [33]. These contrasting 
results may be due to different types of supplementation 
(i.e. NOS-independent or NOS-dependent sup-
plementation), dosage or duration of supplementation, 
and health status of participants, making the potential 
interest and optimal strategy for NO precursor supple-
mentation in older individuals still unclear.  
 
Thus, this study aims to assess the effect of chronic NO 
precursor supplementation on vascular function, muscle 
and cerebral oxygenation and performance during both 
local and whole-body exercise in healthy older adults. 
To enhance NO bioavailability, nitrate and citrulline 
supplementation (N+C) were used in order to sup- 

plement both NOS-independent and NOS-dependent 
pathways, since ageing may impair NO bioavailability 
due to both an impairment in NOS activity and a lack of 
NOS substrate. We hypothesized that chronic NO 
precursor intake would improve vascular function and 
cerebral and muscular responses to exercise, leading to 
increased exercise performances. 
 
RESULTS 
 
Vascular function 
 
Resting vascular function parameters are provided in 
Table 1. There were no significant difference between 
groups for baseline systolic (SBP), diastolic (DBP), and 
mean (MBP) blood pressure (all p > 0.05). After one 
month of supplementation, systolic (SBP) and diastolic 
(DBP) blood pressure did not change significantly 
although the PRE-POST difference in SBP tended to be 
larger in the N+C group compared to placebo (PLA) 
(N+C versus PLA t-test p value = 0.058, Cohen’s d = 
0.660). As shown in Figure 1, the N+C group showed a 
significantly greater reduction in MBP compared to 
PLA (p = 0.047, d = 0.71). 
 
PRE-POST changes in PWV did not differ significantly 
between groups (all p > 0.05). Similarly, there was no 
significant difference between groups for post-ischemia 
∆max/min HbO2 and ∆max/min HbTot (all p > 0.05).  
 
Hypercapnic and hypoxic responses  
 
As shown in Table 2, there was no significant difference 
between groups at baseline and no effect of NO precursor 
on hypercapnic responses at rest (all p > 0.05). As shown 
in Table 3, there was also no significant difference 
between groups at baseline and no effect of NO precursor 
supplementation on hypoxic responses, neither at rest nor 
during submaximal cycling exercise (all p > 0.05). 
 
Knee extension exercise performance 
 
There was no significant difference between groups for 
TSI (Table 4) and all other NIRS parameters (results not 
shown; all p > 0.05) during knee extensions. There was 
also no significant difference between groups regarding 
PRE-POST changes in MVC and total number of 
contractions during the knee extension exercise test (p > 
0.05, Table 5). 
 
Incremental cycling exercise test 
 
There was no significant difference between groups for 
baseline maximal power output and VO2 (all p > 0.05). 
The increase in maximal power output between PRE 
and POST was significantly larger in the N+C group 
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compared to PLA (p < 0.05, Table 5 and Figure 3). 
Figure 2 shows heart rate and VO2 kinetics during the 
cycling exercise. There was a significant ANOVA main 
group effect on PRE-POST changes for heart rate and 
VO2 during cycling (at 25%, 50%, 75%, and 100% of 
the first test duration, i.e. at isowatt). The reduction in 
heart rate and VO2 was significantly larger in the N+C g 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

group compared to PLA. However, there was no effect 
on maximal heart rate and maximal VO2 (all p > 0.05; 
Figure 2, Table 5) nor on submaximal and maximal 
minute ventilation (results not shown; all p > 0.05). 
There was no significant difference between groups for 
TSI (Table 4) and all other NIRS parameters (results not 
shown; all p > 0.05) during cycling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Vascular function before and after one month of NO precursor supplementation. 

    PRE POST ∆PRE/POST p∆ d∆  

SBP (mmHg) 
N+C 123.2 ± 13.9 115.7 ± 12.3 -7.5 ± 6.5 

0.058 0.660 
PLA 117.8 ± 7.2 114.3 ± 8.9 -3.4 ± 5.7 

DBP (mmHg) 
N+C 78.2 ± 6.5 71.9 ± 5.8 -6.2 ± 5.1 

0.130 0.460 
PLA 76.0 ± 9.8 72.1 ± 6.9 -3.9 ± 4.6 

PWV (m·s-1) 
N+C 9.2 ± 5.9 7.0 ± 2.8 -2.2 ± 5.3 

0.220 0.550 
PLA 6.7 ± 2.7 6.7 ± 3.1 0.0 ± 2.1 

Reperfusion (mmol 
of HbO2) 

N+C 15.9 ± 11.2 14.4 ± 10.3 -1.5 ± 3.1 
0.250 0.200 

PLA 12.7 ± 6.7 12.6 ± 5.3 -0.7 ± 4.9 

Reperfusion (mmol 
of Hbtot) 

N+C 10.8 ± 4.2 10.5 ± 6.3 -0.2 ± 2.9 
0.710 0.130 

PLA 9.2 ± 4.9 8.4 ± 2.3 -0.7 ± 4.3 

Data are presented as mean ± SD, n = 24. SBP, systolic blood pressure; DBP, diastolic blood pressure; PWV, 
carotid-femoral pulse wave velocity; Reperfusion, difference between the value reached at the end of the 
ischemic phase and the maximal value reached during the reperfusion phase in the ischemia-reperfusion 
test; HbO2, oxyhaemoglobin; HbTot, total haemoglobin. PRE, measure before the supplementation period; 
POST, measure after the supplementation period. N+C, nitrate + citrulline, PLA, placebo; ∆PRE/POST, 
difference between PRE and POST measures; p∆, p value for ∆PRE/POST group comparison; d∆, Cohen’s d 
effect size of N+C supplementation on ∆PRE/POST. 
 

 

Figure 1. Individual and group mean changes in mean arterial blood pressure before and after one month of 
placebo or nitrate and citrulline intake in older adults. N+C, nitrate + citrulline; PLA, placebo; PRE, measure before the 
supplementation period; POST, measure after the supplementation period; * significant difference between PRE and POST; n=24. 
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DISCUSSION 
 
The main results of the present study are that, chronic 
NO precursor ingestion in healthy older adults i) 
decreased mean arterial BP but had no effect on arterial 
stiffness, post-ischemic vasodilation, and cardiovascular 
and cerebrovascular responses to hypercapnia and 
hypoxia, ii) had no effect on muscle and cerebral 
oxygenation during exercise, iii) had no effect on 
muscle strength and endurance during isometric knee 
extensions, and iv) increased maximal power output and 
decreased submaximal heart rate and VO2 during 
cycling. Taken together, our findings suggest that, in 
healthy older adults, a one-month supplementation of 
both NOS-independent and NOS-dependent pathways 
can improve arterial BP and increase maximal cycling 
capacity possibly due to a reduction in the O2 cost of 
cycling. 
 
Vascular function 
 
Results from meta-analysis showed that in healthy 
subjects, acute and chronic (1 to 6 weeks) nitrate 
supplementation induces a mean SBP reduction of ∼4 
mmHg [34,35]. In older adults, previous studies 
reported an improvement [23,36,37] or no change 
[38,39] in BP. Regarding citrulline, recent reviews 
reported that chronic intake has little or no effect on 
resting BP in healthy subjects [40] while in hyper-
tensive   patients  it   improves  significantly  endothelial 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dysfunction [22]. In the present study, 4 weeks of daily 
nitrate and citrulline intake induced a 7.5 and 6.8 
mmHg reduction in SBP and MBP in older adults 
respectively, confirming the beneficial effect of NO 
precursor supplementation on resting BP. Based on the 
current knowledge regarding the impact of ageing on 
the endothelium function and NO metabolism [41], this 
beneficial effect could be due to both improved NOS-
independent (i.e. enhanced nitrite reduction to NO) 
and/or NOS-dependant (i.e. increased NO production by 
NOS due to enhanced citrulline-arginine availability) 
NO production pathways. 
 
This positive effect of NO precursors on BP was 
however not associated with an improvement in PWV 
and post-ischemic vasodilation. Arterial stiffness as 
assessed by PWV results from two distinct components 
in the arterial media: a structural and a dynamic 
component. The structural component is represented by 
the collagen and elastin fibers as well as other 
connecting molecules. The dynamic component is 
represented by the tone of smooth muscle cells, 
especially in the more muscular arteries, which is 
dependent on released of vasoactive substances such as 
NO [42]. Previous studies have shown an improvement 
[43,44] or no change [45,46] in PWV following chronic 
nitrate or citrulline intake in healthy subjects. Regional 
heterogeneity in arterial stiffening has been reported 
with advancing age [47,48]. There is a marked increase 
in aortic stiffness due to wall damage with ageing, while  

Table 2. Cardiorespiratory, cerebral and muscle responses to hypercapnia before and after one 
month of NO precursor supplementation. 

      PRE POST ∆PRE/POST p∆ d∆ 

∆HR (bpm) 
N+C 4.9 ± 3.2 2.6 ± 5.2 -2.3 ± 4.3 

0.390 0.120 
PLA 2.7 ± 3.7 1.0 ± 5.3 -1.7 ± 6.0 

∆VE (l·min-1) 
N+C 18.3 ± 9.6 22.3 ± 13.9 4.0 ± 8.2 

0.240 0.290 
PLA 15.8 ± 9.2 17.5 ± 7.2 1.7 ± 7.5 

∆T
SI

%
 Cerebral 

N+C 2.7 ± 4.7 4.3 ± 1.9 0.4 ± 5.2 
0.121 0.710 

PLA 6.0 ± 3.0 3.5 ± 3.6 -2.5 ± 2.3 

Muscle 
N+C 0.9 ± 3.4 -0.2 ± 3.3 -0.7 ± 3.2 

0.739 0.296 
PLA 1.3 ± 4.5 0.0 ± 1.7 -1.3 ± 4.4 

Data are presented as mean ± SD, n = 24 (n = 23 for TSI). Hypercapnia corresponded to a CO2 end tidal 
partial pressure of +10 mmHg above normoxic level; ∆HR, Heart rate difference between normoxia and 
hypercapnia; ∆VE, minute ventilation difference between normoxia and hypercapnia; ∆TSI, tissue 
saturation index difference between normoxia and hypercapnia; N+C, nitrate + citrulline; PLA, placebo; PRE, 
measure before the supplementation period; POST, measure after the supplementation period. 
∆PRE/POST, difference between PRE and POST measures; p∆, p value for ∆PRE/POST group comparison; 
d∆, Cohen’s d effect size of N+C supplementation on ∆PRE/POST. 
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peripheral arterial stiffness is generally preserved in 
individuals >50 years. Since NO could lower vascular 
smooth muscle tone especially in more muscular 
arteries, NO precursor intake could reduce brachial BP 
without altering stiffness in larger elastic arteries, as 
observed in the present study.  
 
Previous studies reported an improvement in post-
ischemic vasodilation following both acute and chronic 
nitrate supplementation in patients [49], healthy adults 
[50] as well as in older adults [51]. Since the nitrate-
nitrite-NO pathway contributes to NO production 
especially under hypoxic conditions [52], ischemic 
conditions may be particularly prone  to show  the  posi- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tive effect of nitrate supplementation. A recent meta-
analysis has shown that nitrate intake increases post-
ischemic vasodilation to a greater extent in patients with 
impaired cardiovascular status compared with healthy 
subjects [53], suggesting that individuals with impaired 
endothelial function are more prone to benefit from 
nitrate intake. Conversely, improvement in endothelial 
function has not been reported following acute or 
chronic (~7 days) intake of citrulline in healthy subjects 
[4,33,54]. While a reduction in arterial oxygen pressure 
could lead to NOS-activity alteration, the previous and 
present results suggest that arginine bioavailability may 
not to be a limiting factor during post-ischemic 
vasodilation. One possible explanation for the lack of 

Table 3. Cardiorespiratory, cerebral and muscle responses to hypoxia at rest and during 
cycling exercise before and after one month of NO precursor supplementation. 

 

    PRE POST ∆PRE/POST p∆ d∆ 
R

es
t 

∆HR (bpm) 
N+C 6.6 ± 6.5 4.6 ± 2.9 -2.6 ± 5.9 

0.225 0.321 
PLA 5.3 ± 4.2 4.8 ± 5.2 -0.6 ± 6.4 

∆VE (l·min-1) 
N+C -2.0 ± 1.2 -1.5 ± 1.4 0.4 ± 1.8 

0.130 0.470 
PLA -1.1 ± 1.7 -1.6 ± 2.1 -0.5 ± 2.0 

∆SpO2 (%) 
N+C 86.6 ± 4.4 86.7 ± 4.4 -0.5 ± 4.7 

0.400 0.110 
PLA 83.9 ± 7.9 83.6 ± 4.4 0.3 ± 9.5 

∆T
SI

%
 Cerebral 

N+C -4.3 ± 7.6 -3.7 ± 1.9 -1.5 ± 7.5 0.440 0.768 
PLA -4.4 ± 3.2 -3.9 ± 2.3 0.5 ± 3.1 

Muscle 
N+C -0.8 ± 2.0 0.2 ± 4.3 0.7 ± 4.7 0.260 0.959 
PLA -0.3 ± 1.0 -1.4 ± 1.7 -1.1 ± 1.4 

C
yc

lin
g 

∆HR (bpm) 
N+C 10.9 ± 9.9 14.3 ± 7.6 3.4 ± 8.9 

0.280 0.240 
PLA 14.8 ± 13.8 14.8 ± 11.5 -0.1 ± 17.4 

∆VE (l·min-1) 
N+C 4.2 ± 9.3 6.5 ± 6.9 2.4 ± 11.2 

0.230 0.310 
PLA 5.9 ± 9.5 5.2 ± 7.2 -0.7 ± 8.4 

∆SpO2 (%) 
N+C 76.1 ± 6.2 77.8 ± 9.1 1.7 ± 6.7 

0.350 0.150 
PLA 73.7 ± 9.7 73.9 ± 10.5 0.3 ± 11.5 

∆T
SI

%
 Cerebral 

N+C -13.6 ± 27.4 -7.6 ± 3.3 -1.4 ± 10.1 0.198 0.737 
PLA -8.7 ± 6.8 -5.4 ± 4.8 3.3 ± 4.4 

Muscle 
N+C -0.6 ± 5.3 0.4 ± 10.5 -3.1 ± 5.1 

0.788 0.393 
PLA -0.9 ± 2.9 -3.5 ± 1.9 -2.6 ± 3.4 

Data are presented as mean ± SD, n = 24 (n = 23 for TSI). Hypoxia corresponded to an inspiratory oxygen 
fraction of 11%. ∆HR, heart rate difference between normoxia and hypoxia; ∆VE, minute ventilation 
difference between normoxia and hypoxia; ∆SpO2, pulse oxygen saturation difference between normoxia 
and hypoxia; ∆TSI, tissue saturation index difference between normoxia and hypoxia; PRE, measure before 
the supplementation period; POST, measure after the supplementation period; N+C, nitrate + citrulline; 
PLA, placebo; ∆PRE/POST, difference between PRE and POST measures; p∆, p value for ∆PRE/POST group 
comparison; d∆, Cohen’s d effect size of N+C supplementation on ∆PRE/POST. 
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nitrate effect in the present study compared to previous 
studies mentioned above is that vascular dysfunction in 
older adults might be explained by other factor than NO 
bioavailability, e.g. by smooth muscle cell structure 
alteration [55]. While vascular alteration in patients is 
often characterised by low arginine/asymmetric 
dimethyl-arginine ratio, indicating a reduction of NO 
synthesis by NOS, in older adults this  ratio  is  close  to  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

young healthy subject level [17]. Another aspect to 
consider is that post-ischemic vasodilatation has been 
assessed by Doppler ultrasound in the previous studies 
cited above while NIRS was used in the present study as 
an indirect, semi-quantitative measure of microvascular 
blood flow. We assessed microvascular function by 
NIRS since it may be more sensitive to the cardio-
vascular risk [56].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Tissue saturation index during the cycling test and knee extension test before and after 
one month of NO precursor supplementation. 

    PRE POST 
        50% Exhaustion 50% Exhaustion 

C
yc

lin
g 

 Cerebral 
N+C 1.9 ± 4.8 -4.2 ± 3.5 -1.6 ± 1.5 -5.3 ± 4.9 
PLA -0.1 ± 7.5 0.1 ± 8.4 -2.3 ± 2.5 -5.3 ± 3.7 

Muscle 
N+C -0.9 ± 0.5 -1.0 ± 2.0 0.9 ± 7.8 -1.1 ± 3.5 
PLA -1.5 ± 0.7 -2.7 ± -3.5 -2.2 ± 1.5 3.4 ± 1.5 

K
ne

e 
ex

te
ns

io
n 

Cerebral 
N+C 1.5 ± 4.2 -1.9 ± 3.7 0.9 ± 4.2 -2.1 ± 4.2 
PLA -0.6 ± 5.0 -3.0 ± 4.8 -0.6 ± 3.7 -1.8 ± 5.7 

Muscle 
N+C -9.5 ± 8.3 -8.3 ± 11.6 -9.4 ± 6.4 -8.0 ± 9.0 
PLA -11.2 ± 4.9 -12.5 ± 7.4 -12.4 ± 7.2 -12.0 ± 9.4 

Data are presented as mean ± SD changes of tissue saturation index in % from the initial workload (70 W for 
males and 50 W for females), n = 23. N+C, nitrate + citrulline; PLA, placebo; PRE, measure before the 
supplementation period; POST, measure after the supplementation period; 50%, 50% of the duration of the 
PRE test (i.e. isowatt for cycling exercise and isoKg for knee extension exercise). No interaction effect N+C/PLA 
group × PRE/POST session, all p > 0.05; all Partial eta square < 0.07. 
 

Table 5. Performances during the cycling test and the knee extension test before and after one 
month of NO precursor supplementation. 

    PRE POST ∆PRE/POST p∆ D∆ 

Maximal power 
output (W) 

N+C 180.9 ± 44.3 190.3 ± 47.5 9.4 ± 11.1 
0.021 0.411 

PLA 206.0 ± 54.5 207.4 ± 53.9 1.3 ± 7.2 

VO2 max             

 (ml·kg-1·min-1) 
N+C 39.6 ± 7.3 40.6 ± 6.5 1.2 ± 3.8 

0.920 0.040 
PLA 45.4 ± 7.7 46.6 ± 7.9 1.4 ± 2.8 

MVC (Kg) 
N+C 63.1 ± 14.0 65.6 ± 18.0 2.5 ± 7.6 

0.350 0.340 
PLA 67.3 ± 9.6 65.5 ± 12.3 0.2 ± 5.5 

Number of 
contractions 

N+C 149.0 ± 44.0 153.0 ± 46.0 4.1 ± 35.1 
0.650 0.020 

PLA 161.0 ± 33.0 165.0 ± 48.0 5.0 ± 33.2 

Data are presented as mean ± SD, n = 24. MVC, maximal voluntary contraction; VO2max, maximal oxygen 
consumption; N+C, nitrate + citrulline, PLA, placebo; PRE, measure before the supplementation period; POST, 
measure after the supplementation period; ∆PRE/POST, difference between PRE and POST measures; p∆, p 
value for ∆PRE/POST group comparison; d∆, Cohen’s d effect size of N+C supplementation on ∆PRE/POST. 
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Hypercapnic and hypoxic responses 
 
NO has been shown to play a significant role in the 
regulation of blood flow under hypercapnic [57] and 
hypoxic [58] conditions. To our knowledge, this is the 
first study assessing the effect of NO precursor intake 
on hypercapnic cardiorespiratory and cerebral res-
ponses. The lack of effect of NO precursors on cerebro-
vascular response to hypercapnia may due to the multi-
factorial regulation of CO2 responses, not only 
involving NO. For instance, cerebral autoregulation is 
known to rely on mechanisms involving adenosine, 
prostaglandins and anaerobic neuronal metabolism [59].  
Since NOS-independent NO synthesis is facilitated by 
the presence of deoxyhaemoglobin [60,61], it has been 
postulated that an upregulation of  the nitrate-nitrite-NO  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pathway could increase blood flow where O2 supply is 
limited [52]. There are limited and contrasted available 
data on the effect of NO precursor intake on hypoxic 
physiological responses in young healthy adults, and no 
study in older adults. While Shannon et al. [62] have 
shown that acute and chronic nitrate intake increased 
arterial oxygen saturation and cerebral but not muscle 
oxygenation during exercise at 4300 m, Masschelein et 
al. [63] have shown that chronic nitrate intake increased 
muscle but no cerebral oxygenation during exercise at 
5000 m. In the present study, cerebral and muscle 
oxygenation measured by NIRS showed that both 
nitrate and citrulline chronic intake had no effect on 
hypoxic responses at rest as well as during submaximal 
exercise in healthy older individuals. Hence, despite the 
potential down  regulation  associated  with  hypoxia  on 

Figure 2. Heart rate and oxygen consumption during the cycling incremental test before and after one 
month of placebo or nitrate and citrulline intake in older adults. HR, heart rate; VO2, oxygen consumption; 
N+C, nitrate + citrulline; PLA, placebo; PRE, measure before the supplementation period; POST, measure after the 
supplementation period; 25%; 50%; 75%; 100%, 25%, 50%, 75% and 100%, of the duration of the PRE test (i.e. isowatt). 
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NO production by the NOS dependent pathway, 
supplementing NOS with citrulline as well as the NOS-
independent pathway with nitrate may not improve 
hypoxic responses. As recently emphasized in the 
review by Shannon et al. [64], further studies 
specifically focusing on the effect of NO precursors on 
hypoxic responses are however required.  
 
Incremental knee extension test 
 
The unchanged knee extensor MVC following chronic 
NO precursor intake in older individuals is consistent 
with the literature regarding NO precursor effects on 
maximal force production in healthy adults [65–69]. In 
addition, the present study showed for the first time in 
older individuals no effect of NO precursors on isolated 
muscle endurance (i.e. total number of knee extensions), 
which is in contrast to previous results obtained in 
healthy young adults [65,67,68]. The lack of NO 
precursor effect on knee extension performance is 
consistent with the similar muscle and cerebral 
oxygenation measured by NIRS during exercise. Hence, 
in older adult, NO bioavailability may not be the 
limiting factor for muscle and cerebral oxygen delivery 
during isolated muscle exercise and as a consequence 
chronic NO precursor intake did not improve knee 
extension performance. 
 
Incremental cycling exercise 
 
Previous studies in healthy subjects showed a positive 
effect of citrulline [70] or  nitrate  [71,72]  supplementa- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tion on exercise endurance performance. An 
improvement in O2 cost during exercise has also been 
reported [73], that could be a result of an increase in 
mitochondrial function and oxidative phosphorylation 
efficiency [74]. Regarding older adults, four out of five 
studies assessing exercise performance found positive 
effects of chronic nitrate supplementation on time to 
exhaustion during submaximal exercise [23,24,37] and 
in VO2 response time [25], while only one study 
showed no significant effect on maximal exercise 
performances [26]. In the present study, 4 weeks of 
nitrate and citrulline supplementation reduced sub-
maximal cycling exercise VO2 and heart rate. This 
effect was associated with a significant increase in 
maximal cycling power output of 5.2% in the N+C 
group. Taken together, these results suggest that chronic 
NO precursor intake reduces submaximal exercise heart 
rate and increases whole body exercise endurance 
performance by reducing the O2 cost of cycling. This 
might be due to an improvement in the ATP-O2 ratio 
and/or the ATP cost of muscle contraction following 
increased NO bioavailability [71]. These results suggest 
a potential interest of NO precursor supplementation to 
increase exercise tolerance and quality of life in patient, 
in particular in the context of physical rehabilitation 
[75]. The increase in cycling performance despite no 
difference in muscle and cerebral oxygenation patterns 
between groups suggests that this ergogenic effect of 
NO precursor intake in healthy older adults may not to 
be due to an improvement in muscle and cerebral 
perfusion and oxygen delivery.  

Figure 3. Individual and group mean changes in maximal cycling power output before and after one month of 
placebo or nitrate and citrulline intake in older adults. N+C, nitrate + citrulline; PLA, placebo; PRE, measure before the 
supplementation period; POST, measure after the supplementation period; * significant difference between PRE and POST; n=24. 
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Methodological consideration 
 
Blood concentrations of citrulline and nitrate were not 
assessed in the present study. Nevertheless, previous 
studies have reported significant increases in blood 
concentrations of NO metabolites or citrulline after 
similar nitrate or citrulline acute and chronic sup-
plementations [4,76]. In contrast to previous studies 
assessing subjects on average 2 to 3 h after the last 
nitrate or citrulline intake, in the present study all tests 
were performed at least 6 h after the last NO precursor 
intake to avoid the acute effect of the supplementation 
and, instead, to focus on the chronic, long-lasting effect 
of the supplementation. Pharmacokinetics studies have 
shown that blood nitrite and arginine concentrations 
reach a peak 2 to 3 h after nitrate or citrulline 
supplementation before progressively returning to 
baseline values 5 to 8 h after intake [77,78], these 
kinetics remaining identical even after chronic 
supplementation [4,77,79]. Hence, in the present study, 
NO bioavailability during the post-supplementation 
testing session (at least 6 h after the last intake) may 
have been lower than in previous studies having 
assessed the effect of chronic NO precursor 
supplementation within 2-3 h after the last intake. This 
could account for the absence of some significant 
effects in the present work (e.g. on arterial stiffness and 
endothelial function) compared to previous studies. 
Conversely, the significant improvements in BP and 
cycling exercise responses observed in the N+C group 
indicate that chronic nitrate and citrulline supple-
mentation in healthy older individuals induces positive 
outcomes due to mechanisms beyond those induced by 
acute NO precursor intake, e.g. a permanent increase in 
NO bioavailability and/or changes in muscle metabolic 
or contractile efficiency.  
 
At last, this study included both males and females and 
did not detect significant sex difference for any 
parameter investigated. However, further studies with 
larger sample size are required to evaluate potential 
differences regarding the effects of NO precursors 
between females and males since female hormonal 
variations are known to affect vascular function and 
ageing [80]. 
 
CONCLUSION 
 
The present study shows that chronic nitrate and 
citrulline intake significantly decreased arterial BP, 
submaximal VO2 and heart rate during cycling exercise, 
and increased maximal cycling power output in healthy 
older adults. This was associated with no change in 
arterial stiffness, vascular reactivity, cerebral and 
muscle oxygenation during exercise and isolated knee 
extensor muscle strength and endurance. Hence, this 

study suggests that chronic supplementation of NOS-
dependent and independent NO production pathways in 
older adults has positive effects on BP and whole body 
exercise performance which are important health-related 
physiological outcomes especially regarding ageing and 
cardiovascular risks.  
 
MATERIALS AND METHODS 
 
Subjects 
 
Twenty-four subjects (12 males, age 64 ± 2 years; body 
mass 73.5 ± 6.1 kg; height 178 ± 5 cm; 12 females, age 
62 ± 2 years; body mass 57.1 ± 4.2 kg; height 154 ± 4 
cm) were enrolled according to the following inclusion 
criteria: healthy, no more than 2 sessions of physical 
activity at low to moderate intensity per week, age 
between 60 and 70 years old, body mass index between 
18 and 30 kg·m-2, non-smokers and no medication 
(except hormonal treatment). All participants had to be 
free from any use of food supplements or particular diet. 
The study was approved by the local ethics committee 
(CPP Sud-Est V, 2014-A01876-41) and performed 
according to the Declaration of Helsinki. Subjects were 
fully informed of the procedure and risks involved and 
gave their written consent.  
 
Study design 
 
In this double blind, randomized study, after a 
familiarization session, each participant was tested 
before (2 experimental sessions) and after (2 expe-
rimental sessions) one month of daily NO precursors or 
placebo intake (Figure 4). A recovery period of at least 
two days separated each experimental session. All tests 
were performed at least 6 h after the last supple-
mentation to avoid the acute effect of NO precursors. 
The day before each testing session and on the testing 
days, subjects were instructed to adhere to their normal 
living and dietary routines, to avoid caffeine, 
dehydration or excessive hydration. During the sup-
plementation period, subjects were also instructed to 
refrain from using any kind of mouth wash. Nutrition 
and physical activity before and during the protocol 
were recorded on a diary and controlled by the 
investigators.  
 
During the first experimental session, resting arterial BP 
(Digital Blood Pressure Monitor, A&D Medical, 
Sydney, Australia) and arterial stiffness as pulse wave 
velocity (PWV; COMPLIOR device, ALAM Medical, 
Colson, Les Lilas, France) were measured three times. 
Then, subjects performed an ischemia-reperfusion test 
on the lower limb to evaluate the NO dependent 
vasodilation (see below). Following this evaluation, 
participants  sat  in  a  custom-built  chair,  with the right  
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knee flexed at 90º and the ankle fixed to a strain gauge 
(Meiri F2732, Celians, Montauban, France), and 
performed an incremental intermittent isometric knee 
extension test. After a standardized 5-min warm up 
phase, subjects performed four maximal voluntary 
contractions (MVC) with 1 min of rest in between and 
MVC was determined as the highest force peak among 
the four trials. Then, exercise started at a target force of 
35% MVC which was increased by 5% every 4 min. 
Subjects followed the instructions of a soundtrack to 
contract (5 s) and relax (4 s) the right quadriceps 
according to a visual signal displaying the target force 
level. Task failure was defined as the inability of the 
subject to perform three consecutive contractions 
adequately (i.e. if the contraction was not of 5-s 
duration or if the mean contraction torque was lower 
than the target torque for >2s). During the knee 
extension test, cerebral and muscle oxygenation was 
measured by near infrared spectroscopy (NIRS) (see 
below).  
 
During the second experimental session, subjects 
breathed through a face-mask and were blinded to the 
inhaled gas mixture composition delivered by an 
IsoCap-Altitrainer 200® (SMTEC, Nyon, Switzerland). 
During the initial phase,  subjects sat quietly  in  a semi- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
recumbent position and inhaled various gas mixtures in 
order to evaluate the cerebrovascular reactivity: first, 
subjects inhaled a normoxic gas mixture for 5 min 
(inspiratory oxygen fraction, FiO2 = 0.21; normoxia); 
then, they inhaled a normoxic hypercapnic gas mixture 
(FiCO2 = 0.04-0.07%) individually and continuously 
adjusted to induce for 5 min an end-tidal partial 
pressure of CO2 (PetCO2) 10 mmHg above the initial 
normoxic PetCO2; after another 5-min normoxic phase, 
subjects inhaled a hypoxic gas mixture (FiO2 = 0.12) for 
5 min. After these resting measurements, subjects 
continued to inhale the hypoxic gas mixture (FiO2 = 
0.12) and were installed on a cycle ergometer (Lode® 
CORIVAL, Groningen, The Netherlands) to start 
cycling at a constant-load of 70 W (males) or 50 W 
(females) for 10 min (hypoxic cycling), followed by 
another 10-min constant cycling phase at the same 
workload while inhaling a normoxic gas mixture 
(normoxic cycling). These two 10-min cycling phases 
allowed evaluating the cardiovascular exercise hypoxic 
responses [81]. Finally, starting from this initial 
workload, a maximal incremental cycling test was 
performed with an increment of 10 W every minute 
until volitional exhaustion. Throughout the test, cerebral 
and muscle oxygenation was measured by NIRS, 
arterial oxygen saturation was recorded by finger pulse 

Figure 4. Overview of the study design. 
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oximetry (Masimo Radical 7, Masimo Corp., Irvine, 
CA), BP was measured on the right arm with a digital 
pressure monitor system (Digital Blood Pressure 
Monitor A&D Medical, Sydney, Australia) and minute 
ventilation (VE) and gas exchanges (VO2, VCO2, 
PETCO2) were monitored breath-by-breath using a 
metabolic cart (MetaMax 3B, Cortex Biophysik GmbH, 
Leipzig, Germany). Gas analysers and volume 
transducers were calibrated prior to each test with a 3-L 
syringe and references gases, respectively, according to 
manufacturer's instructions.  
 
These two experimental sessions (PRE) were repeated 
identically after the one-month supplementation period 
(POST).  
 
NO precursor supplementation 
 
The NO precursor beverage (N+C) was composed of 
nitrate-rich natural dried salad extract and citrulline. It 
supplied 520 mg of nitrate (8.6 mmol) and 6 g of 
citrulline. These doses have been shown to respectively 
increase significantly plasma nitrite and arginine 
without causing any intestinal problems. The placebo 
beverage (PLA) was composed of nitrate-free cherry tail 
juice and was of similar colour and taste than the N+C 
beverage. The two supplements had the same 
carbohydrate profile. Both the experimenters and the 
subjects were blinded for the composition of the 
beverages. After the first initial evaluation visits, 
subjects were randomized into the N+C or the PLA 
groups and were asked to drink the beverage every 
morning.  
 
Pulse wave velocity  
 
PWV was analysed with a non-invasive automatic 
device (COMPLIOR device, ALAM Medical). Arterial 
stiffness measured by PWV has been shown to be 
acutely influenced by vascular tone and constitutively 
released NO [82]. The PWV measurement technique 
has been described previously elsewhere [83,84]. 
Briefly, common carotid artery and femoral artery 
pressure waveforms were recorded noninvasively. The 
pressure waveforms were digitized at the sample 
acquisition frequency of 500 Hz. A pre-processing 
system automatically analysed the gain in each 
waveform and adjusted it for equality of the 2 signals. 
When the operator observed a pulse waveform of 
sufficient quality on the computer screen, digitization 
was suspended and calculation of the time delay 
between the 2 pressure upstrokes was initiated. Mea-
surements were repeated over at least 5 different cardiac 
cycles, and the mean was used for the final analysis. 
The distance travelled by the pulse wave was measured 
over the body surface as the distance between the 2 

recording sites (D), whereas pulse transit time (t) was 
automatically determined by the Complior device; PWV 
was automatically calculated as PWV=D/t, and 80% of 
this distance defined the pulse wave travelled distance 
(common carotid artery-common femoral artery × 0.8).  
 
Ischemia-reperfusion test 
 
A pneumatic cuff (Santelec, Cestas, France) was 
positioned proximally on the right thigh. After 
completion of a 5-min baseline phase, a rapid arterial 
occlusion (<30 s) of the right leg was induced by 
manual inflation of the pneumatic cuff at 250 mmHg. 
The cuff remained inflated for 5 min. The arterial cuff 
was rapidly deflated in less than 5 sec to initiate the 
reperfusion phase. The reperfusion was monitored for 5 
min. During the reperfusion phase, kinetics of NIRS 
signals were recorded to evaluate post-ischemic 
vasodilation as previously described [85]. 
 
Near infrared spectroscopy (NIRS) 
 
Oxy[HbO2]-, deoxy[HHb]-, total[HbTot]-haemoglobin 
concentration and tissue saturation index (TSI) changes 
were estimated throughout testing sessions over 
multiple sites using a two-wavelength (780 and 850 nm) 
multichannel, continuous wave NIRS system (Oxymon 
MkIII, Artinis Medical Systems, the Netherlands). 
Quadriceps muscle hemodynamic was assessed from 
the right vastus lateralis using a 4-cm interoptodes 
distance. Probe holder was secured to the skin using 
double-sided tape and covered with a black sweatband 
to shield the optodes from ambient light. Left pre-
frontal cortex hemodynamic was assessed between Fp1 
and F3 locations according to the international 10–20 
EEG system with 3.5-cm interoptodes distance. The 
probe holders were secured to the skin with double-
sided tape and maintained with Velcro headbands. Data 
were recorded continuously at 10 Hz and filtered with a 
1-s width moving Gaussian smoothing algorithm before 
analysis. 
 
Data analysis  
 
Ischemia-reperfusion NIRS response was characterized 
by changes in HbTot concentration as a quantitative 
index of blood volume and by changes in HbO2 
concentrations as a qualitative index of tissue oxygen 
delivery during the post-ischemia phase. During the 
reperfusion phase, the difference between the value at 
the end of the ischemia phase and the maximal value 
reached during the reperfusion phase (∆max/min) 
represents the lower-limb post-ischemic vascular 
reactivity. Resting hypercapnic and hypoxic responses 
were characterized by changes in cardiovascular and 
cerebrovascular parameters between the initial 5-min 
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normoxic phase and the 5-min hypoxic or 5-min 
hypercapnic phases (the last 60 s of each phase were 
used for analysis). Exercise hypoxic responses were 
characterized by changes in cardiovascular and cerebro-
vascular parameters between the 10-min normoxic 
cycling phase and the 10-min hypoxic cycling phase 
(the last 60 s of each phase were used for analysis). 
 
Owing to the between-subject variability in time to task 
failure during knee extension exercise and incremental 
cycling test, all data were normalized as a percentage of 
endurance time [86]. Data from experimental sessions 
before and after the supplementation period were 
compared at different time points: i) at 25% (25%), ii) 
at 50% (50%), iii) 75% (75%), iv) 100% (100%) of the 
duration of the test performed before the supple-
mentation period, and iv) during the last 30 s of the 
knee extension exercise or incremental cycling test 
(exhaustion). 
 
Statistical analysis  
 
Power assessment for the primary outcome (exercise 
performance) was based on a minimum expected NO 
precursor effect of 10%. With an α level of 5% and 
power of 80%, 24 subjects were required. Statistical 
analysis were conducted with n = 24 for all evaluations 
except for TSI in pre-frontal cortex and quadriceps 
muscles (n = 23) due to technical issues. Data were 
analyzed with SPSS v.24 software (SPSS Inc, Chicago, 
United states). Data from PRE and POST supple-
mentation period in each group were compared using 
two-way (N+C/PLA group × PRE/POST session) 
ANOVA after establishing that data conformed to a 
normal distribution (Shapiro-Wilk test) and homo-
geneity of variance (Levene’s test). Least Squares 
Difference (LSD) post hoc analyses were performed 
when a significant ANOVA effect was identified. Partial 
eta square (pη2) values are reported as measures of 
effect size, with moderate and large effects considered 
for pη2 ≥ 0.07 and pη2 ≥ 0.14, respectively (Cohen, 
1988). Data were also analyzed as differences between 
PRE and POST supplementation period (PRE-POST 
changes). In this case, PRE-POST changes between the 
N+C and PLA groups were compared with unpaired t-
test and Cohen’s delta (d) determined the effect size and 
practical significance of N+C effect. Effect sizes were 
classified as small if d ≤ 0.2, medium if d ≈ 0.5, and large 
if d ≥ 0.8 [87]. For all statistical analyses, a two-tailed 
alpha level of 0.05 was used as the cut off for 
significance. All data are presented as mean values ± SD.  
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