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ABSTRACT  

Pathological fibrosis is a major hallmark of tissue insult in many chronic diseases. Although the 

amount of fibrosis is recognized as a direct indicator of disease extension, there is no consensus 

method for its quantification on tissue sections. Here, we tested “FIBER-ML,” a semi-automatic, 

free and open-source software, that uses a machine-learning approach to quantify fibrosis 

automatically after a short user-controlled learning phase. Fibrosis was quantified in Sirius Red-

stained tissue sections from two fibrogenic animal models: (i) acute stress-induced cardiomyopathy 

in rats (Takotsubo syndrome-like (TTS)) and (ii) Human Immunodeficiency Virus - induced 

nephropathy in mice (chronic kidney disease (CKD)). In TTS, FIBER-ML 1.0 was compared with 

ImageJ. In CKD, it was compared with the commercial inForm software. Intra-operator, inter-

operator, inter-software correlations and agreements were assessed. All correlations (r) were 

excellent (r > 0.95) in both datasets. The discriminatory power (d) between pathological and healthy 

groups were d<10-3 for TTS and d<10-4 for CKD data. Intra-operator agreements, assessed by 

intraclass coefficient correlation (ICC), were good (ICC > 0.8), while inter-operator and inter-

software agreements ranged from moderate to good (ICC > 0.7). FIBER-ML performed fast, user-

friendly, reproducible and consistent quantification of fibrosis in tissue sections. It offers an open-

source alternative to current software, including quality controls and file management. 
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INTRODUCTION 

Tissue fibrosis is defined by deposits of extracellular matrix (ECM) components, such as collagen. 

Although fibrosis is a natural response to tissue lesions and is essential for scar formation, diffuse 

interstitial and perivascular/periglomerular fibrosis are detrimental to tissue physiology and may 

lead to organ failure. Pathological fibrosis is induced by chronic inflammation states [1] triggered 

by a variety of mechanical and chemical stimuli [2] and results in the activation of a complex 

cascade of cellular and molecular pathways [3]. It is observed in most tissues and organs, where it 

leads to a progressive modification of tissue architecture and consequent tissue dysfunction [4]. 

Fibrosis is a well-recognized cause of morbidity and mortality [2] in heart and kidney. Interstitial 

myocardial fibrosis follows myocardial infarction [5]. Perivascular fibrosis is observed in a 

multitude of cardiac pathologies leading to changes in myocardial load or inflammation, such as 

hypertensive disease or diabetic hypertrophic cardiomyopathy [6–10]. In preclinical research, 

histological quantification of myocardial fibrosis is extensively used for the investigation of the 

molecular mechanisms underlying the fibrogenic processes and the search for potential therapeutic 

targets [11]. Renal interstitial fibrosis is one of the most important hallmarks of progressive renal 

diseases, including chronic kidney disease (CKD) [12], which is a major problem in public health 

[13]. The amount of renal fibrosis correlates with the progressive loss of kidney function [14], and is 

assessed for the prognosis of kidney diseases and for the evaluation of new therapies [15–17].  

While new tools as blood biomarkers and in vivo imaging are emerging for the evaluation of 

fibrosis in the kidney and heart [18–22], the histological assessment of fibrosis in kidney biopsies 

[16] and in post mortem cardiac tissue remains a gold standard. For clinical [23,24] as well as 

preclinical studies [25,26], fibrosis is usually estimated by analysis of tissue sections  after Sirius 

Red staining, one of the most used stains because of its ability to selectively highlight collagen 

networks [27]. Using digital scanners, an increasing number of digital images can be recorded with 

color and illumination normalization [28], offering a large number of high quality images, which are 
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ideal for improved analysis and efficient quantification [29,30]. Software analysis saves time and 

decreases intra- and inter-operator variability for large volumes of data [31,32], and automation is 

therefore a holy grail. However, apart from highly normalized cases, over-automation can induce 

significant artifacts, either because the acquisition conditions were not foreseen by the software 

designer, or because the quantification process must rely on decisions made by the experimenter. 

The qualities expected from a quantification software are multiple. On the one hand, it is necessary 

to allow the operator to control the data processing workflow, and on the other hand it is necessary 

to limit the outcome variability by minimizing and simplifying the human intervention. The 

optimization of the operator's intervention in the workflow is critical in order to provide a 

qualitative input and a quality control within the analysis of large volumes of data. In all cases, the 

risks of loss of control of the analysis must be taken into consideration [33,34]. The software should 

help the operator to adjust the algorithm according to the numerous factors that affect the quality of 

histological staining [30,33] and provide feedbacks to the operator to control the relevance of the 

quantitative outcomes.   

Some commercial software integrates supervised machine learning techniques. Open-source 

software, such as ImageJ [35,36], uses older techniques such as manual color thresholding [37] but 

can also integrate more recent machine learning techniques [38,39]. Many biology laboratories still 

use older approaches, possibly reflecting a lack of access to newer techniques. Open-source 

software solutions are usually less user-friendly and provide few tools, if any, to facilitate data 

management and quality controls. Professional programs are not available in many laboratories and 

their algorithms are often opaque and hard to adjust.  

We have designed a new software for fibrosis quantification named “FIBER-ML”, based on a 

parsimonious machine learning process. FIBER-ML aims at accelerating, facilitating and providing 

better control of the analysis by biologists, and has been tested in research paradigms [40–42] using 

various staining methods. Here, we describe the methodology supporting FIBER-ML, define its 



5 

 

intra- and inter-operator reproducibility and its consistency with other software solutions for the 

quantification of fibrosis. FIBER-ML was compared to an open-source ImageJ plugin, generated 

from a rat model of Takotsubo Syndrome (TTS) [43] and to the commercial software inForm, from 

a murine model of Human Immunodeficiency Virus (HIV) associated chronic kidney disease 

(CKD) [44], for cardiac and renal fibrosis, respectively. As a companion tool to the present article, 

FIBER-ML is made available to the community both in executable and open-source formats. 

 

MATERIAL AND METHODS 

 

FIBER-ML 1.0 Software 

 

FIBER-ML 1.0 was developed with Matlab (Mathworks, Natick, MA) to segment/classify 

histologic images in a simple and efficient way and count the number of pixels of each class. The 

core of FIBER-ML 1.0 consists in a learning interface and an automatic segmentation module. 

Learning is performed by clicking on pixels in images. The classification of the pixels is based on a 

low complexity classifier using the Discriminant Analysis method. FIBER-ML includes a study 

management module, allowing the tracing and reuse of data generated during the process, and a 

quality control interface. FIBER-ML can be used either via its standalone executable version or in 

its interpreted version, which can be run and amended using the Matlab version 2019.b or later, 

with adapted Image Processing and Statistics and Machine Learning toolboxes and parsed with any 

text editor. 

 

Data  

FIBER-ML was tested on two data sets were obtained from two studies. 
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Myocardial fibrosis was measured in a rat model of stress-induced cardiomyopathy (Takotsubo 

Syndrome - TTS) [43], inducing delayed interstitial and diffuse perivascular fibrosis in the 

myocardium [43,45]. Heart-stained slices were scanned with 20x mode (15 mm × 15 mm) in a 

NanoZoomer S210 system (Hamamatsu). The scan resolution at 20x was 0.46 μm/pixel. The 

accompanying software NDPview 2 allows the user to navigate through the captured Whole Slide 

Image (WSI) at any given digital zoom up to 40x. It resulted in a total of 42 Tiff WSI, or 14 

individuals in triplicates (7 pathological, 7 controls). 

Kidney fibrosis was quantified in a murine model of Human Immunodeficiency Virus (HIV) 

associated nephropathy [44].  HIV-associated nephropathy involves a progressive renal failure often 

accompanied by tubular atrophy and interstitial fibrosis [46], resulting in a chronic kidney disease 

(CKD). Kidney images were scanned with a Vectra microscope (Akoya Biosciences, MA, USA) at 

10x magnification with a resolution of 1 μm per pixel. The selection of fields of view (FOV) from 

the whole slice was manually performed using the Vectra software (Phenochart 1.0.4) and images 

were generated with 20x magnification (0,5 μm per pixel). In one kidney section, 10 FOV were 

selected resulting in a total of 210 (sub-) Tiff images for the CKD data, for 21 individuals (8 

pathological, 13 controls). 

Heart and kidney tissues were fixed 24 hours in 4% formalin, transferred to 70% EtOH and paraffin 

embedded. Sections 4µm thick were deparaffinized, rehydrated and stained using Red Picrosirius in 

the automaton ST5020 (Leica Microsystems GmbH, Germany).  

The presence of diffuse fibrosis in TTS and CKD was expected. Models with moderate fibrosis 

were chosen to place the software in challenging experimental settings where quantification is truly 

contributory. The software must therefore be sufficiently discriminating to identify moderate 

fibrosis rates, but also sufficiently stable to establish this identification in different use cases. 
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Comparison with ImageJ and inForm 

Quantification of fibrosis rate obtained with FIBER-ML were compared with those obtained using 

of two other digital solutions: ImageJ1.8.0 (https://imagej.nih.gov/ij/ , last date access December 01 

2021) for cardiac data and inForm2.2 (Akoya Biosciences, MA, USA) for renal data.  

ImageJ is a free software widely used by biologists [35,36] that allows the user to record 

procedures, or “macros” via a graphical interface. The macro used as a reference here was described 

by Hadi et al. in 2011 [37] and is currently used by biologists in research laboratories. A class, such 

as “fibrosis”, is defined by a region in the trichromatic space, defined by the ranges of hue, 

saturation and lightness, which are calculated from pixel red, green, and blue channels. These 

ranges were established manually using sliders on a training population of images. 

 InForm is a commercial software. InForm projects can be tailored to enable biomarker analysis in 

solid tissues and handle a variety of stains (H&E, multiplexed IHC, and multiplexed 

immunofluorescence). This software using trainable and automated algorithms enables detection, 

cell segmentation, tissue segmentation and identification of multiple markers within a sample. As 

well as FIBER-ML, it is based on a machine learning process [47]. The operator trains the algorithm 

by selecting classes in small regions of the images. It is generally sold as a complement to an 

acquisition device and, as far as we know, can only be run on proprietary format data. 

 

All three software programs allowed to segment the fibrotic (f) tissue and the non-fibrotic (nf) 

tissue in order to deduce the fibrosis rate, defined as the ratio between the number of pixels of 

fibrosis (Nf) and the total number of tissue pixels, the sum of fibrosis and non-fibrosis (Nf + Nnf). 

FIBER-ML results were compared with those from inForm for the renal data. Two operators 

(operator 1 and operator 2) performed two analyses each, one week apart on FIBER-ML, 

separately. One unique analysis was also performed by an independent user with inForm (operator 

3).  
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FIBER-ML results were compared with those from ImageJ for the cardiac data. Concerning ImageJ, 

two operators performed the analyses (operator 1 and operator 2). With FIBER-ML, three operators 

(operators 1, 4 and 5) performed two analyses each one week apart, separately. Two operators 

(operators 4 and 5) were juniors, unfamiliar with histology.  

Evaluation Criteria 

 

Several metrics were used for intra-reader, inter-reader and inter-software comparisons: (a) the 

Pearson correlation coefficient r ; (b) the usual linear regression as a first approximation to the 

Passing Bablok regression [48,49]; (c) the Intraclass Correlation Coefficient (ICC) [49–51] which is 

a measure of agreement between two ratings and the discriminatory power (d), calculated as the p-

value of the Mann-Whitney statistical test between healthy and pathological groups. To avoid 

overestimating the statistical power of the tests, the replicates were averaged in order to obtain a 

fibrosis rate value per animal, with a significance criterion of p < 0.05. ICCs were quoted according 

to Koo et al.  [51]. 0 – 0.5: Poor; 0.5 – 0.75: Moderate; 0.75 – 0.9: Good; 0.9 – 1: Excellent. 

Criteria were calculated for the different pairs of analyses. The whole analysis was summarized in a 

synthetic table, with minimum, maximum and average values. Comparisons of pairs of analyses 

were also represented graphically for illustrative purposes. 

The time spent by the operator working actively with the software (supervised phase) and the total 

time spent by the software (including unsupervised phase) to provide the results were determined.  
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RESULTS 

FIBER-ML   

Process 

The analysis process, illustrated in Fig.1, includes the following steps: (A) workspace definition and 

the identification of folders including the histological images; (B) learning/training of the algorithm, 

where the operator assigns a set of pixels to user-defined classes/categories (such as “fibrosis”); (C) 

application of the trained algorithm to all the images of a given study; (D) quality control including 

an evaluation form; (E) saving the summary of analysis and the evaluation form. 

A representative sample of images must be chosen to define the learning dataset (Fig.1A). During 

the learning phase (Fig.1B), images are loaded one by one and the list of categories or “classes” (i.e. 

"Fibrosis," "Tissue" or "Background") are created, or loaded from another study. The operator 

selects the active class and chooses pixels corresponding to this class in the image by mouse clicks. 

Each mouse click enriches the learning list or "labeled dataset." The learning operation is iterated 

for each class and repeated on several images. For each click, the pixel intensity (red, green and 

blue) is associated with the class chosen by the operator. The graphical representation of the 

learning list is provided in a dedicated panel which shows a 3D trichromatic graph (Fig.1B), helping 

the operator to identify areas where he has not provided enough information to the software. A 

preview of the predicted classification map is available in fields of view (FOV) of the active image, 

allowing the operator to test and amend the learning list in an iterative way (Fig. 1B). Finally, the 

operator saves the learning list. 

The classification model chosen for the fibrosis analysis was the discriminant analysis (DA) defined 

in the color space [52]. It is a fast and parsimonious statistical learning model (classifier) that 

assumes that the pixels of each class are roughly distributed as scattered ellipses (Gaussian mixture 

hypothesis). The DA algorithm establishes the parameters of the statistical model which fit the best 
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the learning list. The model then associates each pixel value (red, green, blue) with a class in line 

with the learning list (Fig. 1C). This association is performed point-to-point for all the pixels of all 

the images of the study. Of note, regions of interest (ROIs) in the images can be drawn to focus the 

analysis only on specific areas of the tissues. 

The resulting class maps, or segmented images, are used for visual quality control, consisting in a 

comparative analysis between native and classified images on a visual interface (Fig. 1D). For each 

classification map, the operator can assign quality scores and a free comment that are to be saved in 

an Excel or CSV file. 

The classification maps, the number of pixels of each class and the quality control scores are saved 

in a table (in Excel or CSV format) which summarizes the results of the calculated data (Fig. 1E). 

Reproducibility 

Intra- and inter-operator correlation (r) was high for both renal (CKD) and cardiac (TTS) data, with 

an overall mean of 0.98 (p < 10-4) (Table1). Likewise, “excellent” [51] intra-operator agreements 

(ICC) were found, close to 0.95 for both CKD and TTS (p < 10-4) (mean values in Table 1, 

illustration of pairs Fig.2A-B). “Good” values were observed for inter-operator ICCs, with a mean 

value of 0.76 (p ≤ 10-3) (Fig.2C-D), but with variabilities between pairs of analyses (Table 1). For 

renal data, it can be noted that operator 2 overestimates the fibrosis rate compared to the operator 1, 

resulting in a decrease in ICC (Fig.2B, 2D).  

SOFTWARE COMPARISON 

Fibrosis quantification of kidney data using FIBER-ML and inForm were highly correlated: r = 0.96 

(p< 10-4) (Table 1). Moderate to good agreements were observed between software programs: 

ICC>0.72 for FIBER-ML 1.0 vs. ImageJ and ICC>0.8 for FIBER-ML vs. inForm. Moreover, 

similar software discrimination capabilities were observed. As shown in Table 2, pathological CDK 

and TTS groups were statistically detected vs. healthy groups, whatever the program used, and, 

regardless of the software program used, the same orders of magnitude for the Discriminant values 
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were found: 10-3 for the cardiac data and 10-4 for the renal data (Table 2). Quantification of fibrosis 

rates produced significantly higher values with ImageJ than with FIBER-ML both in control and 

TTS group (Figure 3A). This difference did not have an impact on the discriminatory power.  

 

FIBER-ML analyzed the dataset twice as fast as inForm for the kidney dataset, n=180 fields: 1.5 s 

vs. 3 s per image for FIBER-ML and inForm, respectively; and 4-5 times faster than ImageJ for the 

heart dataset, n=42 whole organ slices: 17s and 75 s per image for FIBER-ML and ImageJ 

respectively. During this process, FIBER-ML provided both individual segmentation maps (image 

by image) and a counting of the pixels of each class while ImageJ provided only the counting. 

ImageJ did not save classification maps or metadata. InForm saved metadata. FIBER-ML provided 

time-stamped traces of its calculations and metadata of the calculation parameters.  

Qualitatively, operators reported FIBER-ML to be more user-friendly than ImageJ and to allow a 

better quality control. FIBER-ML was considered as user-friendly as inForm for generating fibrosis 

rates. 

Visual Comparison  

Visually, great similarities were found between most of the image segmentations (classifications) 

obtained with the different software, as illustrated Fig. 4A for FIBER-ML and ImageJ in the heart 

and Fig. 4B for FIBER-ML and inForm in the kidney. Slight segmentation differences between 

several FIBER-ML and ImageJ maps were observed especially on images where a low diffuse red 

staining in the tissues seemed to lead to overestimations of fibrosis by ImageJ (Supplemental Fig. 

S1). The images provided by inForm included a low-pass spatial filter (blurring) not included in 

FIBER-ML. 
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DISCUSSION 

FIBER-ML allowed a robust, fast and user-friendly quantification of fibrosis rate in cardiac and 

renal tissue. The reproducibility of the FIBER-ML outcomes was assessed as well as their 

consistency with results obtained by two software often used by biologists and pathologists. High 

intra- and inter-operator correlations and high inter-software correlations were found in both heart 

and kidney datasets. All software solutions were sufficiently effective in detecting moderate fibrosis 

infiltrations in the order of 20% of the total tissue. The discrimination power between pathological 

and healthy groups were comparable between operators and software programs. Thus, FIBER-ML 

provided results similar to those available in ImageJ and inForm, but with a unique combination of 

ease of use, numerical efficiency and algorithmic transparency. Good intra-operator agreements 

were found. Inter-operator and inter-software agreements were moderate to good. The ranges of 

values obtained by different operators, or produced by different software, were comparable 

although this does not exclude possible slight biases. Comparison of fibrosis values between studies 

should be considered with relative caution and would require additional standardization steps based 

on operators consensus with respect to the classification of fibrosis. 

 

High correlations 

The r-correlation is a less restrictive metrics than ICC.  ICC measures a strict equivalence between 

sets of results (type y = x) while the r-correlation indicates the extent to which the results are 

equivalent only to an affine relationship (type y = a·x + b). Most statistical tests are invariant to this 

type of transformation, which ensures for example that a temperature test performed in °C remains 

valid in °F. Here, a high correlation (r) between two analyses indicated equivalent discriminant 

values (d) for the separation of disease and health groups, even if the ICC is not excellent. The 

discriminant values (d < 0.01) further confirmed that fibrosis rate measurements were effective 

enough to identify fibrosis rates in the 0% - 20% range. Correlation results are important since the 
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statistical differentiation between groups corresponds to the main use of quantification software. All 

the analyses were therefore consistent and statistically equivalent. Of note, this suggests that 

FIBER-ML can provide good results even when used by less experienced operators, after minimal 

training, although quality checks by a more experienced operator are strongly recommended.   

 

Moderate to Excellent ICC 

ICCs were calculated to evaluate agreements. (Table 1). Such a synthesis is not possible with visual 

Bland and Altman plots [50]. Overall, intra-operator ICCs were high. However, moderate ICCs 

generated by some operators were found (Fig. 2D), especially between experienced and novices 

with FIBER-ML. For the FIBER-ML vs. ImageJ comparison, ICCs, around 0.73 were considered 

moderate to good depending on whether the Cicchetti or Koo and Li assessment grid is used [53]. 

Generally, 0.75 is considered as the minimal value to define good agreements [51]. The ICCs were 

higher between FIBER-ML and inForm than with ImageJ. The orders of magnitude were globally 

preserved between analyses, notably between different operators and software. However, numerical 

values of fibrosis rates can slightly differ between analyses. Moderate differences are thus expected 

in particular between studies carried out by different teams. This suggests that for quantitative 

analyses of the fibrosis rate using a numerical software, it is necessary to design consensus meetings 

and supervision within teams, to share typical datasets and reference analyses between laboratories 

in order to improve normalization between teams. 

 

Software Processes 

 

FIBER-ML vs. ImageJ 

ImageJ is a free on-line software which has been a reference of biological quantification for over 25 

years [35]. In the present study, analyses were performed using an ImageJ plugin (a "macro") [37]. 
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ImageJ and its macro was substantially less user-friendly than FIBER-ML. Implementations in 

ImageJ can vary from one laboratory to another according to the experience that local actors have of 

programming. As a result, neither the file management nor the traceability are currently optimal, as 

well as the tools for supervising the procedures. For example, no interface is proposed to select the 

(training) data allowing to set the parameters of the calculations (sliders). Similarly, no traces of 

intermediate results are provided. However, the great advantage of ImageJ and its main extensions 

comes from the fact that it is an old and stable platform, still active and widely shared, which 

assures the operator access to tools with proven robustness in the biological community. Thus, the 

high similitude between FIBER-ML and ImageJ outcomes are reassuring for the new FIBER-ML 

software insofar as ImageJ is a reference tool. Conversely, this similarity indicates that the 

improvement introduced by machine learning was probably marginal in terms of fibrosis rates. 

Concerning the marginal differences, several qualitative arguments tend to show that the differences 

would rather indicate an improvement of the analysis by FIBER-ML. A certain lack of specificity 

was observed on several images with ImageJ (Supplemental Figure S1). Moreover, a higher rate of 

fibrosis was observed in the control group for which no fibrosis is expected. Moreover, by 

construction, ImageJ considers that a pixel is “fibrotic” if it belongs to a geometrical shape box in 

the color space. This rather rigid approach introduces difficult compromises between what should 

be included in the box (sensitivity) and what should be excluded (specificity).  

Moreover, FIBER-ML is easier to use than the ImageJ plugin, especially concerning the settings of 

calculations. With FIBER-ML, the decision is established step by step by a sequence of simple 

successive elementary decisions consisting in associating a pixel to a category. The ImageJ plugin 

requires to manage simultaneously six thresholds on colorimetric concepts that are not familiar to 

biologists. Moreover, with the ImageJ plugin, settings (learning), classification (production), and 

visual control are performed iteratively for each image of the study, while with FIBER-ML, 

learning, production and visual control are decoupled and the manual tasks can be performed 
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separately and split up to allow the operator to maintain attention. Hence, FIBER-ML can be used 

for the analysis of massive data, unlike the ImageJ plugin, since the plugin requires human 

resources in proportion to the volume of data to be processed. 

FIBER-ML vs. inForm 

The analysis process of FIBER-ML and inForm are comparable with a user-supervised learning 

phase followed by automatic classification of all images. InForm and FIBER-ML fibrosis rates were 

highly correlated and provided equivalent d-values. The comparison with inForm is interesting 

because inForm has reached a consensus among many pathologists. Kramer et al. showed high 

correlation between inForm and the evaluation of the pathologists (ground truth) in the 

measurement of areas of collagen deposition stained with Red Sirius in the hepatic tissue [47]. 

However, ICCs can vary from one operator to another, depending in particular on their experience 

of the interfaces of each software. The comparison of absolute values of fibrosis rates between 

software is therefore to be taken with caution. 

FIBER-ML and inForm can measure biomarkers both in specific regions of interest and in whole 

tissue sections. InForm is used to recognize specific morphometric characteristics (size, shapes, 

proximity of the labeled regions, circularity, inclusion in another region) and different cell-type 

phenotypes, such as immune cells [54]. In its present version (1.0), FIBER-ML does not include 

these post-processing phases. However, post-processing can be performed easily from the 

classification maps provided by FIBER-ML in Tiff format, for each image of the study. InForm, 

like other commercial software, is not available in most of academic laboratories. In the version 2.2 

of inForm, the source code is not accessible: only whole scans or fields with free dimensions can be 

used as input. Data must be in a proprietary format or to correspond to fields of pre-defined 

dimensions. In contrast, FIBER-ML is provided in two formats: a free executable format, and an 

open-source format that requires Matlab to run. FIBER-ML's algorithms are open-source and can be 

easily controlled and improved by the large Matlab community. 
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FIBER-ML Specificity 

Supervised machine learning algorithms are particularly appropriate to integrate automation and 

human intervention. However, machine learning can introduce a great technical complexity that can 

lead to a loss of understanding and control of the process by the biologist. Moreover, the complexity 

of classification models requires increased resources to avoid instability (overlearning). The 

recourse to additional learning data to improve model stability is not always available and calls for 

human resources. Complex classifier models involve also more processing resources. A general 

histology data classification software should be designed to segment both targeted staining such as 

Sirius Red and non-targeted staining such as hematoxylin and eosin. In the case of non-specific 

staining, the information in the pixel is generally not sufficient to classify it and the local 

information around the pixel must be taken into account as well. To integrate this additional 

information, the algorithm adds to the native images several derived channels, obtained through 

filtering or texture maps. The amplification in dimension generate complexity to the classifier. 

Generalist software such as inForm, Genie or Ilastik [39,55] must therefore either use a complex 

classification model, even in simple cases of targeted staining, or ask the operator to dimension the 

complexity of the concern, which may be complex for a biologist. The increasing complexity of 

quantification algorithms for histology is often challenging to biologists and requires extensive 

software developments using resources that are essentially available in large-scale laboratories or 

companies. By narrowing the scope to specific staining, such as Sirius-Red, and being easy to use, 

FIBER-ML 1.0 can overcome these issues and offer a simple algorithm that is parsimonious in 

terms of human and machine resources. Moreover, operator’s control and a reduction of the settings 

that can influence the final results of the process have been favored, according to recommendations 

of use [33]. In addition, generalist software, especially commercial ones, include complete 

workflows for targeted application sets. They can therefore integrate image preparation modules 
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(pre-processing) and shape and position analysis modules (post-processing), allowing for example 

to distinguish diffuse fibrosis from perivascular fibrosis [56]. However, predicting the main types of 

research applications which is not necessarily limited to fibrosis, is an overwhelming task. 

Therefore, FIBER-ML 1.0 has been designed as a modular open-access tool that manages the 

classification task only and can interface upstream and downstream with pre- and post-processing 

tools via TIFF inputs and outputs. This approach has the advantage to be freely modifiable by the 

community of users and developers in order to build a complete workflow and stable application 

library online. 

Scope and limits 

 

Presently on its present version, FIBER-ML supports targeted staining only. As with any supervised 

analysis algorithm, learning allows the classifier to be adapted to a specific context [57]. In the case 

of variable contexts within a study (staining quality, slice thickness), it is possible to normalize the 

data, perform separate trainings, exclude images, or try to use a consensus training. These important 

issues are outside the scope of this study, although the visual control module plays a key role to 

guide the choices of the operator. The evaluation of FIBER-ML was based on the analysis of data 

from two diffuse fibrosis models for which we had a high degree of control, and compared to two 

reference software. As for any software, the quality of analyses using FIBER-ML depends on the 

quality of the input data, and cannot be warranted when working on degraded data, e.g., low or 

inhomogeneous staining, or low-quality images, e.g., uncontrolled jpeg-type compression. 

Therefore, future users of FIBER-ML are strongly encouraged to use and abuse of the visual quality 

control for their own samples, as this is essential for the accuracy of the quantitative analysis. 

Future users are also encouraged to report results, difficulties, limitations, and to suggest 

improvements and modifications as indicated by clicking on the "about" button and on the public 

repository site. The openness of the software should favor more advanced analysis including scar 

fibrosis models, larger volumes of data, and comparisons with other reference software. Here, we 
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have shown the reliability of FIBER-ML for a particular application: Pricrosirius Red staining for 

fibrosis rate assessment.  The fibrosis rate can be assessed with other targeted stainings. As the pixel 

classes can be defined by the operator in the learning process, it is possible to use FIBER-ML with 

these other staining, in brightfied or fluorescence imaging. FIBER-ML 1.0 is presently tested in 

other staining including immune-histo-chemistry [40,42].  

 

Conclusion 

 

FIBER-ML 1.0 was able to distinguish healthy tissue from fibrotic one in the kidney and 

myocardium. The fibrosis quantification was comparable to two of the major software used in the 

biological research community, but combining user-friendly, open-source, parsimony and rapid 

execution. Thanks to the decoupling of operator time and on-the-fly calculations, FIBER-ML 

provides access to calculations on large volumes of data which should become an advantage in 

terms of reproducibility and statistical power. 

Perspectives 

The next objectives of FIBER-ML 1.0 are: (1) to reinforce the controls on the use of the software 

(help to detect atypical staining, include a test step between learning and production); (2) to 

facilitate the interfacing with the slide scanners (accept manufacturer format, management of large 

images usually causing memory overflow) and more importantly (3) to develop a community of 

users and contributors.  

FIBER-ML 1.0 has been made freely at https://gitlab.com/balvayda/fiber-ml (last date access: 

January 11, 2022), under the GNU license.  
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FIGURES LEGENDS 
 

Figure 1. FIBER-ML 1.0 software overview. The FIBER-ML interface allows to launch the 

different stages of the analysis. (A) Selection or creation of a study (project) and loading of images 

into it. (B) Learning of the association between pixel colors and user-defined classes. (C) After a 

possible definition of regions of interest (ROIs), adjusting the classification model and applying it 

to the pixels of the study images to provide classification maps. (D) Visual inspection of data with 

optional completion of a quality form and (E) saving of the data summary. 

Figure 2. Example of comparison between pairs of FIBER-ML quantifications performed by 

two operators.  (A,C) Heart, (B,D) Kidney, (A,B) intra operator comparison (same operator, 

different readings), (C,D) inter user comparison (different operators, one reading). For each panel, 

the dots represent the mean value of all the sections for one mouse. Simple linear regression 

equation, correlation coefficient (r) and intraclass correlation coefficient (ICC) are shown.   

Figure 3. Groups discrimination using FIBER-ML and a reference software. (A) Group 

comparison between FIBER-ML and ImageJ in cardiac sections. (B) Group comparison between 

FIBER-ML and inForm in kidney sections. Each dot corresponds to mean of fibrosis quantified for 

one mouse. Control groups (CTRL in blue) and disease groups (Takotsubo: TTS or nephropathy: 

CKD, in red) had different fibrosis rates. Mean bars with SEM are shown for each group. ***p< 

0.001 and ****p< 0.0001 with Mann Whitney test between the control and disease groups for each 

software. Fibrosis rates are equivalent between FIBER-ML and inForm, but are higher using 

ImageJ compared to FIBER-ML. The difference of sensitivity in that case did not affect the 

statistical conclusions of the tests. 

Figure 4. Comparison of classification maps obtained by FIBER-ML and other software. A)  

complete slice of a myocardium (apex). Left, classification map provided by ImageJ, fibrosis in 

black. Center, native image. Right, classification map provided by FIBER-ML, fibrosis in pink, 

background in white. B) A field of kidney tissue. Left, classification map provided by inForm, 

fibrosis in red, background in blue. Center, native image, a glomerulus is present near the center of 

the image. Right, classification map provided by FIBER-ML, fibrosis in pink, background in white.  
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TABLES 

Correlation r r   p-value ICC ICC  p-value 

Intra-user -FIBER-ML - TTS 0.988 [0.92 0.983] < 10¯⁴ 0.969 [0.959 - 0.980] < 10¯⁴ 

Intra-user - FIBER-ML - CKD 0.979 [0.966 0.991] < 10 ¯⁴ 0.940 [0.966 - 0.991] < 10¯⁴ 

Inter-user - FIBER-ML - TTS 0.979 [0.944 0.998] < 10 ¯⁴ 0.829 [0.600 - 0.990] 0.001 

Inter-user - FIBER-ML - CKD 0.977 [0.970 0.983] < 10 ¯⁴ 0.683 [0.634 - 0.733] 0.0003 

     

FIBER-ML vs. ImageJ  - TTS 0.974 [0.960 0.974] < 10 ¯⁴ 0.728 [0.588 - 0.789] 0.001 

FIBER-ML vs. InForm - CKD 0.957 [0.917 0.978] < 10 ¯⁴ 0.837 [0.664 - 0.971]  < 10¯⁴ 

     

 

Table 1. Summary of the whole correlations analysis performed by multiple operators. Mean 

values of Pearson correlation coefficient (r), Intraclass Correlation Coefficient (ICC), ICC p-value 

are reported. Pearson correlation coefficient (r) and Intra-Class Correlations (ICC) are expressed as 

mean values [minimum maximum]. TTS: Takotsubo Syndrome, in heart; CKD:  chronic kidney 

disease. 
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  Takotsubo CKD 

FIBER-ML  2.7 [1.7 - 6.0] 10¯³ 1.8 [1.7 - 2.2] 10¯⁴ 

Image J 8.4 [1.7 - 25] 10¯³ n.a. 

InForm n.a.  3.9 [3.9 - 3.9] 10¯⁴ 

 

Table 2. Discriminant p-values (d-values). d-values are expressed as mean values [maximum 

minimum] among all quantification made; n.a. for not applicable. 

  












