Absence of NLRP3 somatic mutations and VEXAS-related UBA1 mutations in a large cohort of patients with Schnitzler syndrome
Camille Louvrier, Fawaz Awad, Serge Amselem, Dan Lipsker, Irina Giurgea

To cite this version:
Camille Louvrier, Fawaz Awad, Serge Amselem, Dan Lipsker, Irina Giurgea. Absence of NLRP3 somatic mutations and VEXAS-related UBA1 mutations in a large cohort of patients with Schnitzler syndrome. Allergy, 2022, Online ahead of print. 10.1111/all.15411. inserm-03775119

HAL Id: inserm-03775119
https://inserm.hal.science/inserm-03775119
Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Predicting probability of tolerating discrete amounts of peanut protein in allergic children using epitope-specific IgE antibody profiling

Maria Sperunj | Paul Kearney | Clive Hayward | Heather Butler | Robert Cotts | Scott H. Sicherer | Paul J. Turner
Dianne E. Campbell | Hugh A. Sampson

ARTICLE SUMMARY

- Existing diagnostic testing is not predictive of severity or the threshold dose of clinical reactivity, and many patients still require an Oral Food Challenge (OFC). While OFCs are very useful for making an allergy diagnosis and determining clinical reactivity, they often cause anaphylaxis, which can increase patient anxiety, and are time and resource intensive.¹

- An extensive validation was performed across 5 cohorts (all with confirmed oral food challenge results) across six different countries. Cohorts used: BOPI, OPIA, CAFETERIA, CoFAR6, and PEPTES with specimens from Australia, UK, US, Ireland, and Germany.

- This paper reports the first validated algorithm using two key peanut specific IgE epitopes to predict probabilities of reaction to different amounts of peanut in allergic subjects and may provide a useful clinical substitute for peanut oral food challenges.

- Using the algorithm, subjects were assigned into "high", "moderate", or "low" dose reactivity groups. On average, subjects in the "high" group were 4 times more likely to tolerate a specific dose, compared to the "low" group.¹ For example, 88% of patients in the high dose reactivity group were able to tolerate > 144 mg of peanut protein whereas only 29% were able to tolerate the same amount in the low dose reactivity group.¹ ²

CLINICAL CONSIDERATIONS

- The new epitope test offers more granular information to help clinicians stratify treatment and peanut avoidance plans for their patients.

- See below for summary of clinical considerations based on threshold reactivity level.¹

<table>
<thead>
<tr>
<th>allergenis peanut diagnostic result</th>
<th>clinical considerations¹</th>
</tr>
</thead>
</table>
| likely allergic – low dose reactor | • inform or avoid oral food challenge to reduce risk of anaphylaxis
• confirm strict avoidance of peanut
• consider immunotherapy to reduce risk of reaction |
| likely allergic – moderate dose reactor | • consider a single oral food challenge (30 to 100 mg) to reduce anxiety and improve quality of life
• less stringent avoidance of peanut regime
• consider inclusions of precautionary labeled foods such as "May contain peanut"
• consider immunotherapy to reduce risk of reaction |
| likely allergic – high dose reactor | • consider a single oral food challenge (100 to 300 mg) to reduce anxiety and improve quality of life
• less stringent avoidance of peanut regime
• consider inclusions of precautionary labeled foods such as "May contain peanut"
• consider starting immunotherapy at higher doses to shorten time to maintenance dose |
| unlikely allergic | • oral food challenge to rule out the diagnosis of peanut allergy |

HOW TO ORDER TESTING

- Visit allergenis.com and complete the account set up form
- Choose your phlebotomy preference (in-office or mobile phlebotomy)
- Place your order through our online platform
- Receive the results

ATTEND A WEBINAR

Upcoming webinars to learn more about the clinical utility of the thresholds.

Clinical Utility of Thresholds in Patient Management
Dr. Hugh Sampson from the Icahn School of Medicine at Mount Sinai

November 21, 2022 @ 2 pm EST

Scan to register.

REFERENCES

Absence of NLRP3 somatic mutations and VEXAS-related UBA1 mutations in a large cohort of patients with Schnitzler syndrome

Dear Editor,

Schnitzler’s syndrome (SchS) is an extremely rare systemic autoinflammatory disease (SAID) characterized by a late onset of urticarial rash, recurrent fever, bone pain, arthralgia, elevated acute-phase reactants, and a monoclonal gammopathy involving IgMκ chains (classical type) and rarely IgG (variant type). To date, about 300 cases have been reported worldwide.1 The diagnosis of SchS is currently based on a set of clinical criteria, that is, the Strasbourg diagnostic criteria.2 It is of prime importance to establish this diagnosis given the therapeutic efficacy of interleukin-1 antagonists.3 No genetic predisposition has been formally identified so far. Two myeloid lineage-restricted somatic NLRP3 mutations were reported in 2015 in two SchS patients with the IgGκ variant type.4 Nevertheless, no NLRP3 mutation was identified in subsequent studies involving 32 SchS patients.5,6 More recently, somatic mutations in exon 3 of UBA1 were reported in a syndrome affecting men with adult-onset SAID and named VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic).7 Notably, in this first VEXAS study, 20% of the patients presented multiple myeloma or monoclonal gammopathies of unknown significance (MGUS), thereby making UBA1 a potential candidate gene for SchS.

These data prompted us to assess the contribution of NLRP3 and UBA1 somatic mutations, as well as of the main genes so far involved in SAID patients with cutaneous lesions in SchS pathophysiology. To this end, we screened for mutations of all these genes in a disease phenotype associated with cutaneous signs, in the largest cohort of SchS patients constituted so far (40 unrelated cases) and at the origin of the validation of Strasbourg diagnostic criteria of SchS.5

In conclusion, no somatic or germline pathogenic variations have been identified in NLRP3, UBA1, and 18 other SAID genes involved in a disease phenotype associated with cutaneous signs, in the large cohort of 40 SchS patients at the origin of the validation of Strasbourg diagnostic criteria of SchS.

ACKNOWLEDGEMENT
Open access funding enabled and organized by ProjektDEAL.

FUNDING INFORMATION
Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University and the Société Française de Dermatologie.

None of the 40 SchS patients carried a somatic NLRP3 mutation. Notably, the two previously reported patients with a diagnosis of SchS and an NLRP3 mosaic mutation8 had a transient monoclonal IgG, an observation raising the possibility of a late-onset NLRP3-AID diagnosis. Indeed, late-onset urticarial lesions can represent the main clinical manifestation in patients with NLRP3 mosaic mutations.8

As for UBA1, the gene involved in VEXAS patients among whom 20% have multiple myeloma or MGUS,7 no somatic mosaic mutation was identified in the third exon of UBA1 in our cohort of 40 patients with SchS. These results, therefore, do not support the hypothesis of UBA1 somatic mutations in SchS pathophysiology.

The study of 18 other genes involved in a SAID phenotype associated with cutaneous manifestations identified no somatic mosaic mutations in the 40 SchS patients. We, however, identified 33 rare heterozygous germline variations (Table S1). According to the American College of Medical Genetics recommendations used to assess their pathogenicity, 24 variations were classified as likely benign and 9 as variations of unknown significance (VUS) (i.e., 4 in NLRP1, 2 in IL10RA, 1 in IL10RB, 1 in NOD2, and 1 in TNFRSF1A) (Table S1). Although 4 variations were found in NLRP1, it is important to underline that all of them have a CADD (Combined Annotation-Dependent Depletion score, https://cadd.gs.washington.edu/) score <15, a finding that argues against their pathogenicity.

In conclusion, no somatic or germline pathogenic variations have been identified in NLRP3, UBA1, and 18 other SAID genes involved in a disease phenotype associated with cutaneous signs, in the large cohort of 40 SchS patients at the origin of the validation of Strasbourg diagnostic criteria of SchS.

Dan Lipsker and Irina Giurgea contributed equally as co-last authors.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
CONFLICT OF INTERESTS
The authors have no conflict of interest to declare.

ETHICAL APPROVAL
Clinical features were collected through a standardized form. Written informed consents were obtained from all patients according to the French legislation and the principles of the Declaration of Helsinki. The study was approved by the research ethics committee from the Hôpitaux Universitaires de Strasbourg, France (N°ID RCB 2008-A01295-50).

Camille Louvrier¹
Fawaz Awad¹
Serge Amselem¹
Dan Lipsker²
Irina Giurgea¹ ID

¹ Sorbonne Université, Inserm, Childhood Genetic Disorders and Département de Génétique Médicale, Assistance Publique–Hôpitaux de Paris (APHP), Hôpital Armand-Trousseau, Paris, France
² Service de Dermatologie, Hôpitaux Universitaires de Strasbourg, Hôpital Civil, Strasbourg, France

Correspondence
Irina Giurgea, INSERM UMR_S933, Hôpital Armand Trousseau, 26 Avenue du Dr. Arnold Netter, 75012 Paris, France.
Email: irina.giurgea@inserm.fr

ORCID
Irina Giurgea https://orcid.org/0000-0002-5035-2958

REFERENCES

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.