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� Reduced ER-mitochondria interactions and calcium exchange is an
early event in diet-induced obese mice.

� Disrupting ER-mitochondria communication is sufficient to induce
hepatic insulin resistance and steatosis.

� Reinforcing ER-mitochondria interactions prevents diet-induced
glucose intolerance.

� Switching on a healthy diet concomitantly reverses ER-mitochondria
miscommunication and improves hepatic insulin sensitivity.

� ER-mitochondria miscommunication was confirmed in the liver of
patients with MAFLD and type 2 diabetes.
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Endoplasmic reticulum-mitochondria miscommunication is an
early and causal trigger of hepatic insulin resistance and steatosis
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Background & Aims: Hepatic insulin resistance in obesity and Conclusions: ER-mitochondria miscommunication is an early

type 2 diabetes was recently associated with endoplasmic re-
ticulum (ER)-mitochondria miscommunication. These contact
sites (mitochondria-associated membranes: MAMs) are highly
dynamic and involved in many functions; however, whether
MAM dysfunction plays a causal role in hepatic insulin resistance
and steatosis is not clear. Thus, we aimed to determine whether
and how organelle miscommunication plays a role in the onset
and progression of hepatic metabolic impairment.
Methods: We analyzed hepatic ER-mitochondria interactions
and calcium exchange in a time-dependent and reversible
manner in mice with diet-induced obesity. Additionally, we used
recombinant adenovirus to express a specific organelle spacer or
linker in mouse livers, to determine the causal impact of MAM
dysfunction on hepatic metabolic alterations.
Results: Disruption of ER-mitochondria interactions and calcium
exchange is an early event preceding hepatic insulin resistance
and steatosis in mice with diet-induced obesity. Interestingly, an
8-week reversal diet concomitantly reversed hepatic organelle
miscommunication and insulin resistance in obese mice. Mech-
anistically, disrupting structural and functional ER-mitochondria
interactions through the hepatic overexpression of the organelle
spacer FATE1 was sufficient to impair hepatic insulin action and
glucose homeostasis. In addition, FATE1-mediated organelle
miscommunication disrupted lipid-related mitochondrial
oxidative metabolism and induced hepatic steatosis. Conversely,
reinforcement of ER-mitochondria interactions through hepatic
expression of a synthetic linker prevented diet-induced glucose
intolerance after 4 weeks’ overnutrition. Importantly, ER-
mitochondria miscommunication was confirmed in the liver of
obese patients with type 2 diabetes, and correlated with glyce-
mia, HbA1c and HOMA-IR index.
words: hepatic insulin resistance; hepatic steatosis; mitochondria-associated
branes; calcium signaling; mitochondria oxidative metabolism; lipid oxidation.
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causal trigger of hepatic insulin resistance and steatosis, and can
be reversed by switching to a healthy diet. Thus, targeting MAMs
could help to restore metabolic homeostasis.
Lay summary: The literature suggests that interactions between
the endoplasmic reticulum and mitochondria could play a role in
hepatic insulin resistance and steatosis during chronic obesity. In
the present study, we reappraised the time-dependent regulation
of hepatic endoplasmic reticulum-mitochondria interactions and
calcium exchange, investigating reversibility and causality, in mice
with diet-induced obesity. We also assessed the relevance of our
findings to humans. We show that organelle miscommunication is
an early causal trigger of hepatic insulin resistance and steatosis
that can be improved by nutritional strategies.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European
Association for the Study of the Liver. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction
Obesity, type-2 diabetes (T2D) and metabolic dysfunction-
associated fatty liver disease (MAFLD) are important metabolic
disorders whose incidence is increasing. They are associated
with hepatic insulin resistance, which is a major contributor to
fasting and postprandial hyperglycemia, and with hepatic lipid
accumulation. Therefore, understanding the molecular mecha-
nisms of hepatic insulin resistance and steatosis is crucial for
developing new therapeutic strategies to improve whole-body
glucose and lipid homeostasis.

Intracellular organelle dysfunction, particularly endoplasmic
reticulum (ER) stress and mitochondria alterations, are central to
the pathophysiology of hepatic insulin resistance and steatosis.1 As
well as alterations in each organelle, miscommunication recently
emerged as a new mechanism of impaired hepatic insulin action1

and of hepatic lipid accumulation.2 ER and mitochondria interact
at contact sites known as mitochondria-associated membranes
(MAMs) or mitochondria-ER contacts, where they exchange phos-
pholipids and calcium (Ca2+), thus modulating key signaling path-
ways and regulating cellular homeostasis.3 Notably, we recently
identifiedMAMs as key hubs of nutrient and hormonal signaling in
liver,4,5 skeletal muscle6 and pancreatic b cells.7 Importantly, ER-
022 vol. 77 j 710–722
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mitochondria communication was impaired in these tissues in
variousmousemodels of obesityandT2D,4,6 aswell as inpancreatic
b cells in patients with T2D.8 In addition, other authors recently
demonstrated a strong link between MAM dynamics and lipid ho-
meostasis,9,10 and that mitofusin 2-related ER-mitochondria
miscommunication is associated with hepatic steatosis.9 Howev-
er, some authors also found that MAM reinforcement, rather than
disruption, was associated with both hepatic11 and muscular12 in-
sulin resistance. The reasons for these differences remain unclear,
but could be related to the fact i) that MAMs are highly dynamic
structures that can be acutely modulated by numerous physiolog-
ical signals1 and were shown to be influenced by several physio-
logical and environmental parameters in vivo, ii) that MAMs are
heterogeneous structures with different thicknesses, each charac-
terized by a specific function,13 and iii) that MAM proteins are not
specific to this interface and may also have other functions outside
ofMAMs. Therefore, further studies are needed to clearly define the
roleofMAMs in the control of cellularmetabolism, andespecially to
address the temporal relationship between MAMs and metabolic
impairment, to establish MAM structure-function relationships,
and to modulate MAMs independently of endogenous proteins, as
pointed out in a recent review.14

We therefore undertook to reappraise this important issue by
combining different mouse models: i) to perform a time-
dependent follow-up of the onset of metabolic disorder in a
diet-induced mouse model of obesity and MAFLD; ii) to assess
the reversibility of the phenotype, using a reversal diet; and iii)
to assess in vivomodulation of MAMs, using a non-endogenously
expressed spacer and linker in the liver of healthy mice and mice
with diet-induced obesity. Finally, ER-mitochondria interactions
were investigated for the first time in hepatic biopsies from
obese patients without or with T2D. This set of approaches led to
the conclusion that ER-mitochondria miscommunication
observed in mice and humans is an early causal trigger of hepatic
insulin resistance and steatosis.

Materials and methods
All material and methods are detailed in the supplementary
materials and methods.

Mouse experiments
Mouse studies were performed in accordance with the French
Guide for the Care and Use of Laboratory Animals and were
approved by the institutional animal research committee of the
PBES (ENS, Lyon) and/or the French Ministry (#12658-
2017112816023176, 21767-2019082214036668). Nutritional
protocols with standard diet (SD) or high-fat high-sucrose diet
(HFHSD) and adenoviral infection are described in the
supplementary materials and methods. Primary mouse hepato-
cytes (PMHs) were isolated by 2-step collagenase perfusion via
the portal vein.

Human samples
Liver biopsies were obtained during bariatric surgery in obese
patients with or without T2D.

ER-mitochondria interactions
ER-mitochondria interactions were analyzed either by in situ
proximity ligation assay (PLA) or by transmission electronic
microscopy (TEM).
Journal of Hepatology 2
Calcium imaging
Measurements of Ca2+ were performed at 37�C, using a wide-
field Leica DMI6000B microscope equipped with a 40x lens
and an ORCA-Flash4.0 digital camera (HAMAMATSU).

Histology
Histologic quantification of hepatic steatosis, inflammation and
fibrosis was performed on liver slides.

Insulin signaling and glucose production
Insulin signaling and action were assessed by measuring insulin-
stimulated phosphorylation of protein kinase B (PKB) and/or
insulin receptor (IR), as well as hepatic glucose production.

Expression analysis
RNA isolation from mouse liver, cDNA synthesis, real-time PCR
and protein analysis were performed using standard protocols.

Mitochondrial respiration
Mitochondrial oxygen consumption was measured on either
intact or permeabilized PMH (500,000 hepatocytes) using the
OROBOROS analyzer at 25�C.

Flow cytometry analysis
Mitochondrial membrane potential and mitochondrial reactive
oxygen species (ROS) production were quantified by cytometry.

Statistical analysis
Data are expressed as mean ± SEM. Statistical analyses were
performed using GraphPad Prism software and are detailed in
the figure legends.

Results
Reduced ER-mitochondria interactions and Ca2+ exchange in
livers of HFHSD-fed mice precede hepatic insulin resistance
and steatosis
We performed a kinetic analysis of MAM structure and function
in the liver of mice following 1, 4 ,8, 12 and 16 weeks of SD or
HFHSD. Compared to SD mice, HFHSD mice gained more weight
(Fig. 1A) and became glucose intolerant (Fig. 1B, Fig. S1A-1E)
after as little as 1 week, whereas they developed systemic
reduced insulin sensitivity (Fig. 1C-1E, Fig. S1F-1I) and fatty liver
(Fig. 1F,G) only after 12 weeks of HFHSD. In situ PLA targeting the
VDAC1-IP3R1 complex15 showed that VDAC1-IP3R1 proximity
was reduced as early as 1 week after HFHSD, and this reduction
was maintained throughout the HFHSD feeding period (Fig. 1H
and Fig. S2A-E). We also used TEM to analyze the proportion of
mitochondrial membranes in close contact (<50 nm) with the ER,
as well as the rate of contacts according to gap width, in liver
sections of SD and HFHSD mice after 1 and 16 weeks’ diet. We
found that an early reduction in organelle interactions after 1
week of HFHSD affected only the closest contacts (0-10 nm)
(Fig. 1I, Fig. S3A), whereas all the contacts, ranging from 0 to 50
nm in width, were significantly reduced by 16 weeks’ HFHSD
(Fig. 1J, Fig. S3B), illustrating progressive worsening of the
phenotype during overnutrition. Likewise, the number of con-
tacts per mitochondrion was significantly decreased only after 16
weeks’ HFHSD (Fig. S3C). Importantly, diet-induced ER-mito-
chondria miscommunication was not associated with ER stress in
the liver of HFHSD-fed mice (Tables S1 and S2), but mRNA levels
of inflammatory and pre-fibrosis markers were increased at the
022 vol. 77 j 710–722 711
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Fig. 1. Disruption of MAMs in the liver of HFHSD-fed mice precedes diet-induced hepatic insulin resistance and steatosis. (A-G) Body weight (A), GTT (B), ITT
(C), slope of glucose curves during 0-30 minute ITT (D), HOMA-IR index (E), liver weight (F), and hepatic TG levels (G) in SD- and HFHSD-fed mice from 1 to 16
weeks (n = 3-6 mice/group). H) VDAC1-IP3R1 interactions measured by in situ PLA in SD- and HFHSD-fed mouse liver (n = 32-39 images in n = 3 mice/group). (I-J)
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Research Article Experimental and Translational Hepatology
late stage of HFHSD feeding (Table S1). Taken together, these data
demonstrate that structural ER-mitochondria interactions are
disrupted early and progressively during diet-induced obesity,
long before the onset of insulin resistance and liver steatosis.

Next, we analyzed whether HFHSD-mediated ER-mitochondria
miscommunication resulted inMAMdysfunction. AsMAMsare key
platforms for ER-mitochondria Ca2+ exchange,16 we imaged IP3R-
mediated mitochondrial Ca2+ accumulation7 using the FRET-
based 4mtD3CPV mitochondrial Ca2+ sensor,17 in SD and HFHSD
PMHs. Importantly, we confirmed that HFHSD16W hepatocytes
conserved the alterations in both insulin-stimulated PKB
712 Journal of Hepatology 2
phosphorylation (Fig. S4C) and glucose production (Fig. S4F) once
isolated and cultured, whereas no alterationwas found as expected
after 1 and 4 weeks of HFHSD (Figs S4A,B and S4D,E, respectively).
As illustrated in Fig. 2A,1 week’s HFHSD significantly reduced ATP-
stimulated mitochondrial Ca2+ accumulation (at both delta-peak
and area under the curve levels: Figs 2C and 2D respectively),
whereas basal mitochondrial level was not modified (Fig. 2B). The
reduction in ER-mitochondria Ca2+ exchange persisted after 4
weeks’ HFHSD (Fig. 2E-2H), with no alteration in basal mitochon-
drial Ca2+ levels (Fig. 2F). Consequently, short diet-induced
disruption of organelle interactions is associated with reduced
022 vol. 77 j 710–722
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organelle Ca2+ exchange, confirming early ER-mitochondria
miscommunication during diet-induced obesity. Surprisingly, af-
ter 16 weeks’ HFHSD (Fig. 2I), there was a significant increase in
mitochondrial Ca2+ levels both at the basal level (Fig. 2J) and
following ATP stimulation (Fig. 2K,L). This observation led us to
postulate that either MAM function is regulated differently from
structure after 16 weeks’ HFHSD, or that the increase in organelle
Ca2+ exchange in obese hepatocytes reflects an adaptation process.
To address this hypothesis, wemeasured physical ER-mitochondria
interactions by in situ PLA in infected hepatocytes of SD16W and
HFHSD16W mice, to mimic the conditions of Ca2+ measurement. As
shown in Fig. S4G, VDAC1-IP3R1 proximity was significantly
greater in infected HFHSD16W hepatocytes than in SD16W hepato-
cytes, suggesting that hepatocyte infectionwith the mitochondrial
Ca2+ sensor impaired the MAM phenotype observed in situ in the
mouse liver. Taken together, these results demonstrate that dis-
rupted ER-mitochondria interactions and Ca2+ transfer are an early
defect, present after as little as 1 and 4 weeks of overnutrition, and
precede diet-induced hepatic insulin resistance and steatosis.
Journal of Hepatology 2
Disruption of ER-mitochondria interactions and calcium
exchange is sufficient to alter hepatic insulin sensitivity and
induce hepatic steatosis
To experimentally disruptMAMs inmouse liver, we expressed the
organelle spacer FATE1 (fetal and adult testis-expressed 1)18 using
an adenovirus (Ad-FATE1), as previously performed in skeletal
muscle.6 FATE1 efficacy was first validated in cultured PMHs.
FATE1 expression reduced VDAC1-IP3R1 proximity, measured by
in situ PLA, in 36-hour-infected hepatocytes (Fig. 3A). In agree-
ment, ATP-stimulated mitochondrial Ca2+ accumulation was
significantly reduced in Ad-FATE1 hepatocytes compared to Ad-
mCherry hepatocytes (Fig. 3B-3E), confirming FATE1-mediated
organelle miscommunication. Surprisingly, basal mitochondrial
Ca2+ level was increased by acute FATE1 expression (Fig. 3C),
suggesting early adaptation of the mitochondrial Ca2+ concentra-
tion toovercome the acute reducedER-mitochondriaCa2+ transfer.
Importantly, this reduction in organelle communication was
associated with a reduction in insulin signaling (insulin-stimu-
lated IR and PKB phosphorylation, Fig. 3F-3H) and action
022 vol. 77 j 710–722 713
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(inhibitory effect of insulin on glucose production, Fig. 3J), sug-
gesting that acute FATE1-related MAM disruption could alter he-
patic insulin sensitivity.

Subsequently, the effect of FATE1 was investigated in vivo,
after infection of 12-week-old male C57BL/6 mice with either
Ad-mCherry (as control) or Ad-FATE1. Two weeks later, around
50% of hepatocytes were infected in infected mice (Fig. S5A).
FATE1 expression was specific to the liver, as it was not found in
either skeletal muscle or adipose tissue (Fig. S5B). Liver subcel-
lular fractionation confirmed that FATE1 was well targeted to the
ER and present in MAM fractions, whereas it was not found in
pure mitochondria fractions (Fig. S5C). Importantly, FATE1
expression resulted in reduced VDAC1-IP3R1 proximity (Fig. 4A)
and in a reduced proportion of mitochondrial membranes in
close contact with ER (0-10 and 10-20 nm, Fig. 4B), without
changing ER or mitochondria contacts with lipid droplets (LDs)
(Fig. S5D-5E). Hepatocytes from Ad-mCherry and Ad-FATE1 mice
were isolated to measure mitochondrial Ca2+ levels. As illus-
trated in Fig. 4C, chronic FATE1 expression significantly reduced
both basal (Fig. 4D) and ATP-stimulated (Fig. 4E-4F) mitochon-
drial Ca2+ accumulation. Taken together, these data demonstrate
714 Journal of Hepatology 2
that, as expected, in vivo FATE1 overexpression disrupted both
organelle interactions and Ca2+ exchange in the mouse liver.

Next, we investigated repercussions on metabolic homeo-
stasis. Ad-FATE1 mice had similar body weight (25.2±0.57 g vs.
23.9±0.52 g, n = 10 mice/group, n.s.) and liver weight (1.26±0.07 g
vs. 1.5±0.11 g, n = 10 mice/group, ns) to Ad-mCherry mice. Ad-
FATE1 mice showed significant hyperglycemia after 6 hours’
fasting (Fig. 5A), and glucose intolerance on glucose tolerance
test (Fig. 5B,C), while systemic insulin sensitivity during the in-
sulin tolerance test was not modified by hepatic overexpression
of FATE1 (Fig. 5D-G). However, analysis of hepatic insulin
sensitivity revealed reduced insulin-stimulated phosphorylation
of both IR and PKB in the liver of Ad-FATE1 mice (Fig. 5H,I).
Additionally, insulin-mediated inhibition of glucose production
was dampened in chronic Ad-FATE1 vs. Ad-mCherry PMHs
(Fig. 5J). Lastly, investigation of hepatic injury found no effect of
FATE1 expression on hepatic ER stress (Tables S3-4), inflamma-
tion (Fig. S6A,B) or fibrosis (Fig. S6A,C). However, chronic FATE1
expression induced hepatic steatosis, with a significant increase
in both LD content and size (Fig. 5K-M), corresponding to
microsteatosis, as the majority of LDs (30%) are around 0.5-1 lm2
022 vol. 77 j 710–722
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and the nucleus is centrally located (Fig. S6D). In addition, tri-
glyceride levels were also increased in Ad-FATE1 liver (Fig. 5N),
without modification of mRNA levels of key genes of lipid
metabolism (Fig. S6E). Taken together, these data demonstrate
that FATE1-mediated organelle miscommunication alters hepatic
insulin sensitivity and glucose homeostasis and induces hepat-
ic steatosis.

Hepatic steatosis in Ad-FATE1 mice could be linked to reduced
mitochondrial lipid oxidation secondary to organelle miscommu-
nication. Therefore, we measured palmitate-linked mitochondrial
oxygen consumption in intact hepatocytes of Ad-mCherry and Ad-
FATE1 mice (Fig. S7A). As shown in Fig. 5O, FATE1 overexpression
significantly reduced both basal and maximal FCCP (carbon-
ylcyanide-4-trifluoromethoxyphenylhydrazone)-induced mito-
chondrial respiration under palmitate. Incubation of hepatocytes
with etomoxir, an inhibitor of lipid oxidation, prevented FCCP-
induced mitochondrial respiration in both Ad-mCherry and Ad-
FATE1 PMHs. However, both basal and maximal respiration were
still lower in the presence of etomoxir in Ad-FATE1 PMHs (Fig. 5P),
suggesting potential additional intrinsic mitochondrial dysfunc-
tion. Therefore, we measured mitochondrial respiration in per-
meabilized hepatocytes in the presence of complex substrates
(Fig. S7B). As shown in Fig. S7C, basal mitochondria oxygen con-
sumption was not modified by FATE1 expression, but maximal
respiration in response to complex II and IV activation was
significantly lower in Ad-FATE1 permeabilized hepatocytes,
whereas the reduction was not significant in complex I substrates.
These effects were independent of change in mitochondrial den-
sity (Fig. S7D), mitochondrial membrane potential (Fig. S7E) and
Journal of Hepatology 2
mitochondrial ROS production (Fig. S7F). Taken together, these
data suggest that FATE1-mediated hepatic steatosis could be linked
to both reduced mitochondrial lipid oxidation and intrinsic mito-
chondrial dysfunction.

Reinforcement of MAMs prevents HFHSD-induced glucose
intolerance in mice
To reinforce organelle communication, we used a previously
developed organelle linker19 after validation in PMHs. As
shown in Fig. 6A, 36 hours’ adenovirus-mediated expression of
the linker (Ad-Linker) increased ATP-stimulated mitochondrial
Ca2+ accumulation (Fig. 6C-D), without modifying basal mito-
chondrial Ca2+ levels (Fig. 6B). Interestingly, the Ad-linker effect
was associated with improvement in the palmitate-induced
alterations of insulin-stimulated PKB phosphorylation
(Fig. 6E), suggesting that reinforcing ER-mitochondria
communication improves hepatic insulin sensitivity. To assess
this effect in vivo, we infected mice by retro-orbital injection of
Ad-Ctrl/Ad-linker and consecutively challenged them with
HFHSD for 4 weeks. HFHSD duration in this preventive protocol
was chosen to maintain hepatic overexpression of the linker
and because 4 weeks’ HFHSD was sufficient to disrupt organelle
communication (Fig. 1). We confirmed that hepatocyte infec-
tion persisted after 1 month’s feeding with adenovirus
(Fig. S8A). Analysis of ER-mitochondria interactions by TEM
showed that the linker significantly increased physical con-
nections between organelles in both SD- and HFHSD-fed mice
(Fig. 6F, Fig. S8B), and even prevented HFHSD-induced organ-
elle miscommunication (Fig. 6F, Fig. S8B). As shown in Fig. 6G,
022 vol. 77 j 710–722 715
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linker expression in SD4W mice did not affect the glucose
tolerance test, but markedly improved HFHSD4W-induced
glucose intolerance. We further analyzed hepatic insulin
sensitivity (Fig. S8C), steatosis (Fig. S9A), inflammation
(Fig. S9B) and fibrosis (Fig. S9C) in infected mice. However, as 4
weeks’ HFHSD was not sufficient to alter insulin sensitivity and
induce hepatic injury, we did not find any beneficial effects of
the linker on these parameters.

We further analyzed the effects of the linker on lipid-related
mitochondrial respiration. Linker expression tended to increase
both basal and maximal FCCP-induced mitochondrial respiration
under palmitate, in both SD4W and HFHSD4W hepatocytes
compared to Ad-Ctrl cells (Fig. 6H). However, HFHSD4W did not
alter palmitate-related mitochondrial respiration compared to
SD4W. Interestingly, linker expression reduced the number of LDs
in both SD4W and HFHSD4W hepatocytes, becoming significant
only after HFHSD feeding (Fig. 6I).
716 Journal of Hepatology 2
Switching to a healthy diet reverses ER-mitochondria
miscommunication and improves hepatic insulin sensitivity
and steatosis
As MAMs control glucose homeostasis, we then tested the
reversibility of the phenotype by switching the HFHSD16W mice
to SD for either 4 or 8 additional weeks (HFHSD16W+RD4W/8W),
whereas a group of control mice were kept on either SD or
HFSHD (SD20W/24W and HFSHD20W/24W, respectively). Four
weeks’ reversal diet (RD4W) was sufficient to partially improve
body weight, fasting glycemia, glucose intolerance and hepatic
steatosis compared to HFHSD20W mice (Fig. 7A-7D). However,
neither systemic nor hepatic insulin resistance were significantly
improved by RD4W (Fig. 7E and 7F). Importantly, a longer reversal
diet (RD8W) maintained the phenotype (Fig. 7H-K), and further
improved systemic (Fig. 7L, Fig. S10A,B) and hepatic (Fig. 7M)
insulin sensitivity. Likewise, the inhibitory effect of insulin on
glucose production by PMHs was also improved by RD8W
022 vol. 77 j 710–722
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(Fig. S10C), confirming that longer RD efficiently improved he-
patic insulin sensitivity. Then, we analyzed hepatic ER-
mitochondria interactions in all mouse groups by in situ PLA.
We confirmed reduced VDAC1-IP3R1 proximity in both
HFHSD20W and HFHSD24W mice compared to their respective SD
mice (Fig. 7G and 7N). Importantly, only RD8W restored ER-
Journal of Hepatology 2
mitochondria communication in the liver (Fig. 7N), confirming
the tight relationship between organelle interactions and hepatic
insulin sensitivity. Taken together, these data demonstrate that
HFHSD-induced organelle miscommunication can be reversed by
a normal diet and is regulated mirror-wise to systemic and he-
patic insulin sensitivity.
022 vol. 77 j 710–722 717
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Reduced ER-mitochondria interactions in the liver of patients
with T2D
To evaluate the relevance of MAMs in human pathology, we next
examined the relationship between hepatic ER-mitochondria in-
teractions and insulin resistance in human liver biopsies from
obese patients. Patients were dichotomized based on the presence
or absence of T2D (Fig. 8A). Hepatic steatosis grade on histology did
not differ between the 2 groups (Fig. 8A). Importantly, hepatic
VDAC1-IP3R1 interactions quantified by in situ PLA were signifi-
cantly lower in obese patients with than without T2D (Fig. 8B). In
addition, organelle communication correlated negatively with
fasting glycemia (Fig. 8C), HbA1c levels (Fig. 8D) and HOMA-IR
index (Fig. 8E), indicating that ER-mitochondria communication
could be a marker of insulin sensitivity in humans.

Discussion
The dynamic nature of MAMs and the lack of kinetic studies
probably contributed to some controversial interpretations
regarding the link between ER-mitochondria miscommunication
and hepatic insulin resistance in mouse models of chronic
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obesity and T2D.4,11 The novelty of the present study was to
better understand time-dependent MAM regulation during diet-
induced obesity and insulin resistance and its reversibility, and
to determine the causal impact of MAM dysfunction on hepatic
metabolic alterations by expressing specific organelle spacers or
linkers in mouse livers, using recombinant adenovirus. Taken
together, our data clearly demonstrated that the reduction in
both ER-mitochondria interactions and Ca2+ exchange in mouse
liver is an early, causal and reversible trigger of hepatic insulin
resistance and steatosis. Importantly, MAM disruption was
demonstrated for the first time in liver biopsies of obese patients
with T2D.

We performed a substantial and careful analysis, combining
several complementary imaging and metabolic approaches in
PMHs and mouse liver, in order to decipher the regulation of
MAM structure and function in relation to diet-induced hepatic
insulin resistance and steatosis. Combining a kinetic study and
reverse diet protocol enabled extensive analysis of organelle
communication from 1 to 24 weeks’ HFHSD feeding. Whereas
obesity and glucose intolerance appeared early under HFHSD,
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reduced systemic and hepatic insulin sensitivity, as well as he-
patic injuries (steatosis, inflammation and pre-fibrosis) were
observed only after 12 weeks’ overnutrition. Surprisingly, hepatic
ER stress was not present in this nutritional model of MAFLD,
likely as a consequence of the HFHSD (only 35% of lipids pro-
vided by soybean oil, mostly composed of polyunsaturated fatty
acids) or the nutritional status of the mice (sacrifice after over-
night fasting, which could have dampened ER stress). Never-
theless, all our data in this model clearly highlighted the
occurrence of ER-mitochondria miscommunication ahead of
gradual diet-induced metabolic alterations. Using in situ PLA
and/or TEM, we found that ER-mitochondria contact sites were
consistently reduced in situ in the liver of HFHSD-fed mice after
as little as 1 week and up to 24 weeks’ HFHSD feeding. Notably,
PLA and TEM analyses showed different amplitudes of ER-
mitochondria miscommunication under HFHSD, because i) they
provided different information (number of contacts with TEM,
and proximity between 2 partners of the functional channeling
calcium complex with PLA), ii) they were calculated differently
(normalization by mitochondria in TEM, and not in PLA), and iii)
they are differentially impacted by the increased cell size in fatty
liver (PLA being more strongly impacted than TEM). Neverthe-
less, we confirmed our previous observations that ER-
mitochondria interactions are disrupted in PMHs of HFHSD16W

mice compared to SD16W hepatocytes.4 The use of these 2 com-
plementary methods further suggests that early HFHSD-induced
disruption of MAMs is restricted to the closest contacts (0-10
nm) and is rather specific to VDAC1-IP3R1 calcium coupling,
whereas the structural alterations after longer overnutrition are
more generalized, affecting all gap widths between 0 and 50 nm.
Importantly, we demonstrated for the first time that ER-
mitochondria Ca2+ exchange was also reduced after as little as
1 and 4 weeks’ HFHSD, identifying MAM dysfunction as an early
alteration during HFHSD feeding. These data are in agreement
with our previous observations that altered Ca2+ transfer from ER
to mitochondria linked alterations of MAM integrity to hepatic
insulin resistance in cyclophilin D knockout mice.20 However, we
also found that ER-mitochondria Ca2+ exchange was increased in
HFHSD16W hepatocytes despite reduced contact in HFHSD16W

liver. The larger number of ER-mitochondria interactions in
HFHSD16W than SD16W hepatocytes following infection with the
mitochondrial Ca2+ probe, contrary to in situ findings in the liver
of obese mice, suggests that in vitro use of adenovirus may have
impacted organelle communication in HFHSD16W hepatocytes,
which are characterized by dysfunctional stressed mitochon-
dria,21 leading to elevated Ca2+. This experimental condition was
apparently without consequences for HFHSD1w or HFHSD4W

hepatocytes, likely because mitochondria are more functional in
early stages of overnutrition.22 However, it cannot be excluded
that increasing Ca2+ transfer with chronic obesity could be a
long-term adaptive process to compensate for the reduce num-
ber of organelle contact sites, as mitochondrial Ca2+ overload was
previously found in ob/ob hepatocytes compared to lean con-
trols.11 However, in that study, the authors analyzed MAMs in
adenovirus-infected lean and obese mice, and the observed
reinforcement of organelle contacts may have resulted from an
adenovirus-linked response, as observed in the present study.
We were therefore not able to draw any conclusions regarding
ER-mitochondria Ca2+ exchange in chronic obesity, due to these
inherent experimental limitations. Genetic mouse models
constitutionally overexpressing the mitochondrial Ca2+ probe
720 Journal of Hepatology 2
will be required to settle this question. Even so, our data clearly
demonstrated that reduced ER-mitochondria interactions and
Ca2+ exchange are early defects during overfeeding, preceding
altered hepatic insulin sensitivity and hepatic steatosis, thus
identifying ER-mitochondria miscommunication as a possible
cause of these metabolic alterations.

To confirm this assumption, we experimentally modulated
hepatic ER-mitochondria communication using an adenoviral
strategy. We took care to study lean mice, to overcome the
limitation of this experimental approach with obese mice
described above. Importantly, we chose to modulate organelle
communication using non-endogenously expressed spacer and
linker proteins, as endogenous MAM proteins can have pleio-
tropic effects outside of MAMs. Modulation of endogenous MAM
proteins led to different metabolic phenotypes in mice, as loss of
cyclophin D20 or mitofusin 223 induced hepatic insulin resistance
and steatosis, whereas downregulation of IP3R1 and PACS2
improved glucose intolerance in obese mice.11 Therefore, we
used FATE1, which has been reported to be an organelle spacer
protein.18 We previously confirmed that FATE1 expression in
mouse skeletal muscle reduced ER-mitochondria interactions
and altered insulin signaling.6 Here, we demonstrated that he-
patic FATE1 expression reduced ER-mitochondria interactions
and Ca2+ exchange and dampened hepatic insulin signaling and
action, leading to fasting hyperglycemia in lean mice. The effect
of FATE1 on membrane contact sites was rather specific to ER
and mitochondria, as their interactions with LDs were not
modified. However, it cannot be excluded that FATE1-mediated
ER-mitochondria miscommunication impaired the activity of
other organelles, as a consequence of mitochondria dysfunction.
Furthermore, the moderate reduction (20%) in ER-mitochondria
Ca2+ exchange induced by FATE1 was in agreement with the
reduction observed in the early stages of HFHSD, confirming that
a slight disruption of MAMs in the liver of lean mice is sufficient
to reduce hepatic insulin sensitivity and to alter glucose ho-
meostasis. Notably, these effects of FATE1 were independent of
hepatic ER stress and not associated with hepatic inflammation
or fibrosis. Interestingly, reinforcing organelle interactions and
Ca2+ exchange by expressing an artificial linker prevented
HFHSD4W-induced glucose intolerance, confirming that pre-
venting early diet-induced organelle miscommunication is suf-
ficient to prevent metabolic alterations. Although we
demonstrated a preventive effect of reinforcing MAMs on early-
stage diet-induced metabolic alterations, our results contrast
with those of another study showing that the linker worsens
insulin resistance when expressed in mice already under a high-
fat diet for several weeks.11

Our study further showed that ER-mitochondria miscom-
munication is not only causal but also reversible, since switching
to SD for 8 weeks improved both organelle communication and
hepatic insulin signaling and action in obese mouse liver. It is
well known that food restriction is an effective strategy to
improve glycemia in patients with T2D.24 The present data
showed that the improvement in systemic and hepatic insulin
sensitivity required 8 weeks’ RD, since improvement of obesity
and glucose intolerance was observed only after 4 weeks.
Interestingly, only RD8W improved hepatic ER-mitochondria in-
teractions (at least at structural levels, as we were not able to
unequivocally assess MAM function in obese hepatocytes), again
demonstrating that MAM structure is improved concomitantly
with hepatic insulin sensitivity. However, these are merely
022 vol. 77 j 710–722



correlations, and it remains unclear whether improvement in
MAMs contributes to or is a consequence of metabolic
improvement. To investigate this, we expressed FATE1 in
HFHSD16W mice before implementing RD8W, in order to deter-
mine whether the beneficial effect of RD was linked to the
improvement in ER-mitochondria interactions. Unfortunately,
however, almost all the HFSHD16W mice infected with Ad-FATE1
(8/10) died a few days after the infection, whereas no mice
infected with Ad-mCherry died (data not shown), and this pre-
vented analysis of causality. These data highlight the detrimental
effects of dampening ER-mitochondria interactions in a context
of metabolic disease with liver injury.

Hepatic insulin resistance and steatosis are intimately con-
nected in diet-induced obesity, and it is currently unknown
which precedes and triggers the other.25 Interestingly, mito-
fusin 2-related organelle miscommunication was recently
associated with hepatic steatosis in non-alcoholic fatty liver
disease.9 Herein, we found that ER-mitochondria miscommu-
nication preceded hepatic steatosis in mice with diet-induced
obesity, and that FATE1-related disruption of ER-mitochondria
interactions and Ca2+ exchange was sufficient to induce he-
patic microsteatosis in lean mice, without hepatic inflamma-
tion and fibrosis. FATE1-related microsteatosis mainly
implicates reduced mitochondrial oxidative capacity, involving
both reduced mitochondrial lipid oxidation and alterations in
mitochondrial bioenergetics. These mitochondrial alterations
are likely linked to deficient ER-mitochondria calcium coupling,
as both mitochondrial membrane potential and ROS production
were not modified. In contrast, reinforcement of MAMs with
the linker tended to increase lipid-related respiration and
reduced the density of hepatic LDs, supporting a close rela-
tionship between MAM-related mitochondrial oxidative meta-
bolism and hepatic lipid accumulation. Likewise, previous
findings showed that ER-mitochondria coupling controlled
mitochondrial respiration26 and that autophagy-regulated fatty
acid availability for oxidative phosphorylation involved
MAMs.27 Importantly, RD improved hepatic steatosis before
organelle communication was reinforced and hepatic insulin
sensitivity was improved, suggesting that this improvement is
independent of MAMs and hepatic insulin sensitivity. It may
also suggest that some intracellular lipids could influence
organelle communication, impacting hepatic insulin sensitivity,
and future lipidomic studies will be required to address this
question. Importantly, an inverse relationship was on average
observed between hepatic ER-mitochondria miscommunica-
tion and insulin sensitivity in obese patients with moderate
hepatic steatosis. Despite the small size of the cohort, ER-
mitochondria communication tended to decrease with stea-
tosis severity (p = 0.07) only in diabetic patients (4 patients
with mild steatosis (S1) vs. 7 with moderate or severe steatosis
(S2-S3); data not shown). Therefore, additional studies with a
larger number of patients are required to determine the link
between MAMs and the severity of hepatic steatosis
and MAFLD.

As ER-mitochondria miscommunication was also associated
with skeletal muscle,6 adipose tissue28 and heart29 insulin
resistance, and with glucotoxicity-mediated b-cell dysfunction,7

the present observations confirm the crucial role of MAMs in
the control of glucose homeostasis and suggest that targeting
MAMs may be a novel and effective strategy to improve whole-
body metabolic homeostasis in MAFLD.
Journal of Hepatology 2
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