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The ischemic penumbra is defined as the severely hypoperfused, functionally impaired,

at-risk but not yet infarcted tissue that will be progressively recruited into the infarct

core. Early reperfusion aims to save the ischemic penumbra by preventing infarct core

expansion and is themainstay of acute ischemic stroke therapy. Intravenous thrombolysis

and mechanical thrombectomy for selected patients with large vessel occlusion has

been shown to improve functional outcome. Given the varying speed of infarct core

progression among individuals, a therapeutic window tailored to each patient has

recently been proposed. Recent studies have demonstrated that reperfusion therapies

are beneficial in patients with a persistent ischemic penumbra, beyond conventional time

windows. As a result, mapping the penumbra has become crucial in emergency settings

for guiding personalized therapy. The penumbra was first characterized as an area

with a reduced cerebral blood flow, increased oxygen extraction fraction and preserved

cerebral metabolic rate of oxygen using positron emission tomography (PET) with

radiolabeled O2. Because this imaging method is not feasible in an acute clinical setting,

the magnetic resonance imaging (MRI) mismatch between perfusion-weighted imaging

and diffusion-weighted imaging, as well as computed tomography perfusion have been

proposed as surrogate markers to identify the penumbra in acute ischemic stroke

patients. Transversal studies comparing PET and MRI or using longitudinal assessment

of a limited sample of patients have been used to define perfusion thresholds. However,

in the era of mechanical thrombectomy, these thresholds are debatable. Using various

MRI methods, the original penumbra definition has recently gained a significant interest.

The aim of this review is to provide an overview of the evolution of the ischemic penumbra

imaging methods, including their respective strengths and limitations, as well as to

map the current intellectual structure of the field using bibliometric analysis and explore

future directions.

Keywords: cerebral metabolic rate of oxygen, MRI, PET, ischemic thresholds, penumbra, thrombolysis,

thrombectomy
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1. INTRODUCTION

Stroke is the second most common cause of death and a leading
cause of disability in occidental countries, and the 20- to 30-year
projection forecasts around 20–30% increase of its burden (1, 2).

In case of acute ischemic stroke (AIS), occlusion of a
cerebral blood vessel causes a variable decrease of blood flow
in the downstream parenchyma. Three major zones have been
identified: (i) the irreversibly damaged ischemic core; (ii) the
ischemic penumbra, defined as the severely hypoperfused,
electrically silent, at risk brain tissue; and (iii) the oligemia,
a mildly hypoperfused area with preserved neuronal function
(3, 4). As time elapses, the core progresses within the ischemic
penumbra, but this area can be salvaged if perfusion is
restored (5).

Therefore, the primary target of AIS treatment is to
restore brain perfusion as soon as possible in order to
preserve the ischemic penumbra. Reperfusion therapies, such
as intravenous (IV) thrombolysis with recombinant tissue
plasminogen activator (rt-PA) and mechanical thrombectomy
(MT) for selected patients with large vessel occlusion (LVO),
have been shown to improve functional outcome within a time
window of 4.5 and 6 h, respectively (6–8).

Strict time windows, however, have been questioned as the
infarct core progresses at different rates across individuals.
The primary pathophysiological variable distinguishing “fast
progressors” from “slow progressors” is the collateral status, and
particularly the functionality of the leptomeningeal anastomoses
(9). Therefore, a growing paradigm has been the shift
from a “time-based” to a “tissue-based” approach, thus
using a therapeutic window tailored to each patient’s unique
pathophysiology. Recent clinical trials that included penumbral
imaging in their eligibility criteria demonstrated the benefit
of reperfusion therapy beyond conventional time windows of
up to 9 h for IV thrombolysis and up to 24 h for MT (10).
Mapping the ischemic penumbra has therefore become critical
when managing AIS patients in order to identify those who are
the most amenable to reperfusion strategies beyond conventional
time windows (11, 12).

The aim of this review is to provide an overview of
the ischemic penumbra imaging methods from positron
emission tomography (PET) imaging, the historical one,

Abbreviations: ADC, apparent diffusion coefficient; AHA, american stroke

association; AIS, acute ischemic stroke; APT, amide proton transfer; ASPECTS,

alberta stroke program early CT score; BOLD, blood oxygen level dependent;

CBF, cerebral blood flow; CBV, cerebral blood volume; CCR, contralateral control

region; CEST, chemical exchange saturation transfer; CMRO2, cerebral metabolic

rate of oxygen; CT, computed tomography; CTP, CT perfusion; DSC, dynamic

susceptibility contrast; DWI, diffusion weighted imaging; FMZ, 11C-flumazenil;

FMISO, (18)F-misonidazole; FLAIR, fluid-attenuated inversion recovery; IV,

intravenous; LVO, large vessel occlusion; mqBOLD, multiparametric qBOLD;

MRI, magnetic resonance imaging; MRF, MR fingerprinting; MT, mechanical

thrombectomy; MTT, mean transit time; OEF, oxygen extraction fraction; PET,

positron emission tomography; PWI, perfusion weighted imaging; qBOLD,

quantitative BOLD; QSM, quantitative susceptibility mapping; rt-PA, recombinant

tissue plasminogen activator; SNR, signal to noise ratio; SPECT, single photon

emission computed tomography; SVD, singular value decomposition; SWI,

susceptibility weighted imaging; Tmax, time to maximum of residual function;

TTP, time to peak.

to multiparametric magnetic resonance imaging (MRI) and
computed tomography (CT) that can be used as operational
surrogate in AIS to guide therapeutic decisions. Using co-citation
analysis, a bibliometric analysis of the field was carried out
to observe the emergence of these methods. Additionally, the
bibliographic coupling focusing on the MT era sketches the
current state of research in order to position future contributions
to the field.

2. [15O]-PET: THE GOLD STANDARD OF
ISCHEMIC PENUMBRA IMAGING

Initially, the ischemic penumbra was identified in baboons as
severely hypoperfused and electrically silent tissue but without
massive release of extracellular potassium. This definition relies
on the measured electrical response as well as pH and potassium
variation throughout the occlusion time (13, 14). [15O]-PET
imaging on baboons validated the existence of the ischemic
penumbra withmetabolic parameters (3, 15). The transition from
electrical activity to imaging parameters established a first shift of
paradigm in the field (16).

The existence of the ischemic penumbra in humans was
demonstrated using PET imaging 40 years ago and confirmed
the data obtained in baboons (17). The mapping of cerebral
blood flow (CBF) and O2 metabolism biomarkers such as the
oxygen extraction fraction (OEF) and the cerebral metabolic
rate of oxygen (CMRO2) is obtained through a series of PET
acquisitions following inhalation and injection of molecules
labeled with 15O radioactive tracer. The steady state method
was first implemented, and consists in maintaining the tracer’s
concentration in the blood to a constant level throughout the
acquisition period. This method was replaced by a bolus injection
and inhalation method that drastically reduced the radioactive
doses required for image acquisition (18). Two acquisitions
are required in the imaging pipeline to obtain the CMRO2

parameter map (19). The injection of a labeled water ([15O]H2O)
bolus provides CBF mapping. The time activity curve following
the injection enables the numerical calculation of the image-
derived arterial input function (IDIF) and may prevent invasive
procedures to obtain the arterial blood curves (20). The second
bolus acquisition is performed with an inhaled [15O]O2 tracer.
Oxygen extraction from capillaries to cerebral tissues is modeled
as a single-tissue compartment kinetic model providing CMRO2

mapping (21). These acquisitions are then combined to compute
the OEF mapping as described mathematically by Kudomi
et al. (20). The post-processing pipeline for metabolic penumbra
imaging with [15O]-PET is described in Figure 1 (22).

The relevance of the cerebral oxygen metabolism in
predicting tissue outcome in ischemic stroke patients
was demonstrated using [15O]-PET imaging (23). CBF
distinguished penumbra (CBF 8-20 mL/100g/min) from
ischemic core (CBF < 8 mL/100g/min) and oligemia (CBF
20-50 mL/100g/min) (24, 25). Although the OEF was identified
as a key factor in evaluating the transition from ischemic
to infarcted tissues (26), CMRO2 was found to be the most
accurate predictive parameter (27). Infarcted regions had
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FIGURE 1 | Oxygen metabolism [15O]-Positron Emission Tomography (PET) imaging pipeline. PET images published in JNM. Heiss WD. Radionuclide imaging in

ischemic stroke. J Nucl Med. (2014) 55:1831–41. © SNMMI. CMRO2, cerebral metabolic rate of oxygen; IDIF, image-derived input function; CaO2, arterial blood

oxygen content; VOI, volume of interest; CBF, cerebral blood flow; OEF, oxygen extraction fraction; K1, tracer delivery rate.

a significant drop of CMRO2 below the threshold of 1.4
mL/100g/min whereas viable tissues were characterized by a
maintained oxygen metabolism level above that threshold.
The ischemic penumbra PET imaging pattern, initially
called “misery perfusion”, is therefore characterized as
a hypoperfused region (CBF 8–20 mL/100g/min) with
increased OEF and relatively preserved CMRO2 (CMRO2

≥ 1.4 mL/100g/min) (28). These thresholds were established

through longitudinal studies in AIS patients prior to any
reperfusion therapy. Few data are available in the setting of IV
thrombolysis (29).

[15O]-PET has been fundamental in demonstrating the
existence of the ischemic penumbra in humans, thus driving the
development of reperfusion therapies. However, it is impractical
in the emergency setting and exposes patients to high doses of
radioactivity (18).
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FIGURE 2 | Definitions of perfusion and metabolic penumbra from the gold standard [15O]-Positron Emission Tomography (PET) to the widely distributed Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI) perfusion imaging. PET images published in JNM. Heiss WD. Radionuclide imaging in ischemic stroke. J

Nucl Med. (2014) 55:1831–41. © SNMMI.; CT and MRI images from Olea Medical. CBF, cerebral blood flow; CMRO2, cerebral metabolic rate of oxygen; OEF, oxygen

extraction fraction; ADC, apparent diffusion coefficient; Tmax, time to maximum of residual function.

Notably, two other PET radiotracers have also been proposed
as markers of neuronal integrity: (i) 11C-flumazenil (FMZ) a
ligand selective for the central benzodiazepine receptor, whose
binding is reduced in irreversible tissue damage (30, 31); (ii)
(18)F-misonidazole (FMISO) which is trapped within hypoxic
cells but is not specific to the penumbra (32). Although they are
both straightforward PET radiotracers compared to 15O, their use
is not extended to the AIS emergency setting.

Alternatively, single photon emission computed
tomography (SPECT) using 99mTc-HMPAO (99m-Technetium
hexamethylpropyleneamineoxime) or ECD (99mTc-ethyl-
cysteinate-dimer) also provides data on perfusion in brain
tissue. Although relative thresholds of CBF reduction have been
proposed, the combination of SPECT and diffusion-weighted
MRI seems more accurate to distinguish the core from the
penumbra (33–36). However, SPECT can not be used in clinical
emergency setting.

3. EVOLUTION OF PENUMBRA IMAGING
IN CLINICAL EMERGENCY SETTINGS

Reperfusion therapies, such as IV thrombolysis with
recombinant tissue plasminogen activator (rt-PA) and
mechanical thrombectomy (MT) for selected patients with
large vessel occlusion (LVO), have been shown to improve
clinical outcome in AIS patients. While penumbra imaging is not
formally required for patient’s eligibility in early time windows,
it has been proposed for the selection of patients who are the
most amenable to reperfusion strategies in later time windows.

Operational penumbra imaging methods, that are feasible in
emergency setting, are required for this purpose. In this context,
CT and MRI modalities have been introduced to estimate the
penumbra in clinical routine (37, 38).

Hemodynamic parameters maps can be computed using
CT or MR perfusion imaging. Perfusion data processing
requires the manual or automatic selection of an arterial input
function, which is used for the deconvolution of each voxel’s
concentration time curve. Deconvolution can be done using
a variety of techniques, ranging from the classical singular
value decomposition (SVD)-based algorithms (39) to more
advanced Bayesian approaches (40). Perfusion parameters such
as the cerebral blood flow (CBF), cerebral blood volume
(CBV), mean transit time (MTT), time to peak (TTP), time
to maximum (Tmax), or the arterial delay can be used to
distinguish tissue with a perfusion deficit from the infarct core
and the normal tissue. Furthermore, the apparent diffusion
coefficient (ADC) parameter derived from diffusion weighted
MRI (DWI) is an excellent surrogate for detecting the infarct
core (41, 42). A new definition based on the mismatch
between infarct core and the tissue with a perfusion deficit
provides the perfusion penumbra as opposed to the originally
definedmetabolic penumbra obtained with [15O]-PET. A parallel
between these two penumbra can be found on Figure 2

(22).
To differentiate the penumbra from the oligemia, perfusion

thresholds were initially defined using relative CBF and CBV
parameters opposed to the contralateral control region (CCR)
(38, 43). With the development of deconvolution methods, a
longitudinal study conducted in a small sample of patients treated
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with IV thrombolysis has shown that a Tmax > 6s provides an
accurate estimate of critically hypoperfused tissue in MRI (44);
the same threshold was later approved for CT. This threshold is
commonly used to obtain the perfusion penumbra by subtracting
the lesion core. This definition has been used as a criteria for
selecting patients in clinical trials using the RAPID software
(iSchemaView Inc., Menlo Park, CA) for image processing (11).

The lesion core definition, on the other hand, differs between
the two imaging modalities. In MRI, the DWI-derived ADC
parameter distinguishes the core with a threshold of ADC <

0.62× 10−3mm2\s (45). However, methods to identify the lesion
core on ADC maps may vary and semi-automated as well as
manual methods are still favored in clinical settings. In contrast,
with CT imaging, the CBF parameter derived from perfusion
acquisition defines the core in opposition to the CCR (CBF <

30% of CCR) (46). Figure 3 summarizes the pipeline of both
modalities.

CT and MRI have been used in clinical trials to select patients
with persistent penumbra in order to assess the benefit of
reperfusion therapies in later time windows. These trials have
demonstrated that reperfusion therapies benefit these selected
patients for up to 9 h for intravenous (IV) thrombolysis
(10) and up to 16–24 h for MT (11, 12). The shift from
a “time-based” to a “tissue-based” approach has significantly
improved stroke management by extending therapeutic windows
in patients with persistent penumbra, i.e. those with a good
collateral status (47, 48). CT and MRI are therefore used in
daily practice to guide therapy in patients managed beyond the
conventional time window. While clinical trials used RAPID
or Olea Sphere with above-mentioned thresholds for image
processing, other post-processing software (Philips, Siemens,
Vitrea) have been developed with alternative perfusion imaging
thresholds adapted to the deconvolution method. However
comparative studies have shown significant differences in their
predictive accuracy of final infarct volume in the setting of
MT (49, 50).

This historical association between imaging and AIS
management was followed by a fast evolution of therapeutic and
imaging methods in the field of AIS care. Figure 4 illustrates the
timeline with the major evolutions and key-factors.

The scientific literature review of this field is a very challenging
task as there are over 1000 articles on penumbra imaging in
scientific databases, with about 50% of these articles published
since 2015, in the era of MT. Therefore, in terms of data quantity,
bibliometric analysis was a relevant approach to provide an
overview of the field and an insight into the knowledge of the
thrombectomy era. The bibliometric analysis was carried out in
accordance with the methodology recommendations of Donthu
et al. (51) and the material and methods used for this analysis can
be found in Supplementary Material.

The co-citation analysis is a bibliometric method that
calculates how frequently two articles are cited together. It
uncovers fundamental publications and enables a mapping of
the field’s foundation knowledge and evolutions. The analysis
included the 75 most co-cited documents. This threshold
increased the network’s legibility and highlighted the most
important contributions. The resulting network can be found in

Figure 5 where cluster denomination is based on predominance
of the topic.

The applied mapping method retraces the timeline developed
in Figure 4. Thus, the query defined for data collection (described
in Supplementary Material) is relevant as the fundamental
knowledge of the field obtained through co-citation analysis
is similar to the current understanding of the field. The
resulting clusters reveal the main research topics in the field
as well as their interdependence. These observations, along
with the geographical position (physical location within the
network) of the various network elements, provide additional
interpretation material.

While the majority of the articles in the red cluster relates
to MRI sequences to evaluate lesion core and perfusion delay
mismatch (16/27 articles), it also includes articles about threshold
and biomarkers of penumbral tissues using PET, CT, and MRI.
These articles represent 10/27 documents within this cluster. This
cluster also includes the first publication defining the ischemic
penumbra (3). The detailed exploration of the content enables
the following elaborations: this cluster contains all major articles
on penumbra definition from the theory to the first clinical
applications through new thresholds definitions and comparison
to [15O]-PET imaging. Several studies have compared MRI
to [15O]-PET back-to-back in ischemic stroke patients and
demonstrated that MRI overestimated the penumbra (52, 53).
Two major limitations for MRI definition of the penumbra
have been identified: (i) ADC reduction is considered to be a
reflection of the ischemic core but a part of the ADC lesion may
reverse (54); (ii) Distinguishing perfusion deficit from oligemia
is challenging and several thresholds have been proposed, as
previously demonstrated.

All of the articles in the green cluster are focused on CT
imaging. Perfusion CT and associated thresholds are covered
in 10/16 publications. 3 articles elaborate on other CT imaging
modalities [Dynamic CT perfusion (46) and CT angiography
(55)]. 2 publications relate to the ASPECTS clinical trial (56, 57).
Finally, one publication compares CT perfusion method to MRI
diffusion-perfusion mismatch (58). This cluster is centered on
CT imaging methods in AIS management from the universally
accepted scoring system to specific methods to evaluate ischemic
tissue perfusion. Because of its rapid feasibility and widespread
availability, CT has been the first-line imaging procedure in a
majority of countries worldwide. In the 16 major clinical trials
conducted since 2012, while 50% based their eligibility criteria
on either CT or MR imaging, 43.75% were focused only on CT
and 6.25% only on MRI (59, 60). This reflects the use of CT as
the primary imaging modality for AIS in most stroke units in
daily practice due to high availability, lack of contraindications,
and reduced scan-duration. However, MRI is highly feasible in
AIS setting, offers additional information regarding the tissue
state and prevents from radiation exposure without introducing
longer delay compared with the CT-selected patients and may
improve outcome despite the potential delays in workflow time
metrics (61–65).

The blue cluster contains a majority of articles related to
thrombolytic therapies (7/12). Within this subcluster, 5 articles
are related to clinical trials that aimed to extend therapeutic
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FIGURE 3 | CT and MRI pipelines. In dark red: segmented infarct core. In yellow: segmented perfusion delay on Tmax. Images from Olea Medical. MRI, magnetic

resonance imaging; DWI, diffusion weighted imaging; PWI, perfusion weighted imaging; CTP, computed tomography perfusion; DSC, dynamic susceptibility contrast;

IV, intravenous bolus; CBF, cerebral blood flow; Tmax, time to maximum of residual function; ADC, apparent diffusion coefficient.
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FIGURE 4 | Summarized development timeline of the penumbra imaging field. Circles: the major contributions to the acute ischemic stroke research field. Arrows: the

clinical validation years for reperfusion therapies. Rectangles: the major clinical trials using advanced imaging to extend therapeutic windows. Red and green code for

mechanical thrombectomy and intravenous thrombolysis clinical trials, respectively. PET, positron emission tomography; MRI, magnetic resonance imaging; CT,

computed tomography.

FIGURE 5 | Co-citation network providing an overview of the acute ischemic stroke research field evolutions through its most contributing publications: Red cluster

[1981–2005]: MRI diffusion-perfusion mismatch; Green cluster [2000–2013]: perfusion CT; Blue cluster [2003–2012]: Eligibility for thrombolysis; Yellow cluster

[1995–2013]: Thrombolysis combined to endovascular therapies; Purple cluster [2015–2018]: Mechanical thrombectomy. MRI, magnetic resonance imaging; CT,

computed tomography.

time windows [DIAS (66), DIAS-2 (67) and EPITHET (68)] or
identifyingMRI findings of patients who are likely to benefit from
reperfusion therapies in later time window [DEFUSE (69, 70)].
In addition, 3 articles are focused on the post-processing MRI
sequences: (i) The reference article on SVD deconvolution for
MR perfusion (39); (ii) A retrospective analysis of the EPITHET
clinical trial aiming to define a standardized MRI procedure
for perfusion-diffusion mismatch (71); (iii) The RAPID solution
for automating the task (72). Notably, two publications aimed
to compare MRI and PET imaging of the ischemic penumbra
(73, 74). Thus, this cluster introduces reperfusion therapy along

with clinical trials aiming to increase therapeutic windows as well
as imaging methods for selecting patients.

The yellow cluster relates to reperfusion therapies and is
almost evenly split between IV thrombolysis (6/11) and MT
(4/11) as well as combined methods. Three publications are
related to IV thrombolysis clinical trials [PROACT II (75),
ECASS II (76), ATLANTIS, and NINDS (77)]. The 4 articles
related to MT refer to clinical trials for clot retriever devices (78–
80) and imaging eligibility criteria (81). This cluster demonstrates
the connection between the two treatments, frequently combined
in clinical settings (82).
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The last cluster, in purple, is centered on thrombectomy with
a majority of publications referring to the major clinical trials
demonstrating the benefit of MT and extending the therapeutic
window with two subclusters in 2015(5/9) and 2018(2/9). In
2015, MR CLEAN was the first to demonstrate that MT
outperformed IV thrombolysis alone in patients within 6 h of last
known normal with LVO (83). Five other clinical trials [EXTEND
IA (84), SWIFT PRIME (85), REVASCAT (86), ESCAPE (87),
THRACE (88)] published in 2015 and 2016 and conducted in
selected patients up to 12 h from stroke onset have confirmed
these results. Among these clinical trials, 4 (EXTEND IA, SWIFT
PRIME, REVASCAT, ESCAPE) included advanced imaging to
select patients with limited core or good collateral circulation.
In 2016, a meta-analysis of individual patient data enrolled in
the 5 first clinical trials showed that MT reduced disability at 3
months with a number needed to treat 5 to prevent 1 patient
from experiencing disability (8). Therefore, AHA guidelines, also
found in this cluster (89), recommended to treat AIS patients
with LVO and ASPECTS1≥6, although the role of additional
imaging-based eligibility criteria is not well-established (90). In
2018, DEFUSE 3 and DAWN extended the therapeutic window
to 16 and 24 h from time last known well, respectively, in highly
selected patients with persistent penumbra (11, 12). DEFUSE
3 defined the penumbra with advanced imaging, CT or MRI,
whereas DAWN defined the penumbra as a mismatch between
the severity of the clinical deficit and the infarct volume. This
last cluster highlights the key role of penumbra imaging in
recent clinical trials that improved AIS management. Moreover,
additional elaborations are possible knowing that 50% of the
articles in this field were published since 2015, it demonstrates
the major impact of these clinical trials on further research.

The detailed analysis of each cluster reveals a general trend
that is shared by all clusters: the interdependence of imaging
assessment, clinical trials and therapeutic solutions and windows.
The recurrent presence of PET comparison with other imaging
methods, on the other hand, is representative of the ongoing
reassessment of relevance for clinical alternatives to penumbra
imaging. The mapping obtained with the co-citation analysis
is representative of the intellectual structure of the field.
Furthermore, this analysis demonstrates the major publications
and fundamental knowledge that serve as foundation for research
in the thrombectomy era.

4. PENUMBRA IMAGING IN THE
THROMBECTOMY ERA

The impact of MT and associated clinical trials on research for
AIS management was compelling as in the course of 6 years
over 500 articles were published on the topic (query described in
Supplementary Material). The bibliographic coupling method
was chosen in order to review this large corpus of articles.

The bibliographic coupling is the process of associating
articles based on the number of references they share (91).
This analysis is based on the hypothesis that articles sharing a

1ASPECTS, Alberta Stroke Program Early CT Score.

large number of common references have similar content. The
aim for this technique is to provide an intellectual mapping
of the field by identifying thematic clusters. Applied to a
specific time frame, it uncovers niche themes as well as recent
development of the field (51). In the current review, all articles
published since 2015 that matched the query described in
Supplementary Material were included in the analysis. Figure 6
presents an annotated version of the network with cluster
nomination based on the predominance of a theme within the
cluster. The Supplementary Material contains the original figure
as well as the described calculation method.

The resulting figure is densely populated and therefore
interpretation of the bibliographic coupling is a challenging task.
Following guidelines described in Supplementary Material, the
most connected articles of each cluster were reviewed in order to
elaborate on their content.

The presence of collaterals and MT eligibility clusters shows
the emergence of tissue based patient selection criteria and a
more personalized medicine. It also appears in imaging method
clusters where tissue characterization is more and more present
throughout time.

The majority of articles in the collaterals thematic cluster
explore the relation between collateral circulation and infarct
core growth (92–94). Other publications use MRI and CT
imaging to identify markers of collateral status (95, 96).

The MT eligibility thematic cluster contains a selection
of articles assessing the relevance of computed tomography
perfusion (CTP) and MRI in patient selection, either with a
comparison of the two methods (59, 97), or with the expression
of a need for alternative imaging methods (98). This is consistent
with the publications promoting tissue-based eligibility criteria
over the conventional time windows (99–101). This cluster also
includes guidelines intended to personalize AIS management
through advanced imaging assessment (102, 103).

The cluster’s thematic predominance and time frame also
highlighted a change of course in the CTP research field in 2019.
A detailed analysis of these clusters revealed the evolution of CTP
imaging considerations in AIS management. The first cluster
ranging from 2015 to 2019 contains a majority of publications
aimed at validating perfusion thresholds and determining reliable
eligibility parameters from this imaging modality (104–107).
It also shows the emergence of studies to evaluate core and
perfusion penumbra volumes as well as their relationship to
collateral circulation (32, 108). The second cluster ranging from
2019 to 2021 includes publications retrospectively analyzing
CTP data from the major clinical trials concomitant with the
development of MT, confirming the growing interest in imaging-
based patients selection for reperfusion therapies (109–111). This
time frame also shows an emergence of automated CTP imaging
post-processing to provide target mismatch volume as well as
infarct growth prediction (112–116).

Publications aiming to automate post-processing of imaging
modalities are also largely represented in the MRI cluster
with articles describing numerous methods based on machine
learning (117–119). This tendency is encouraged by the need
for fast identification of penumbral tissue. Additionally, this
group contains a subcluster focused on the validation of MRI
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FIGURE 6 | Bibliographic coupling network in the era of mechanical thrombectomy [2015–2021] with labeled clusters based on predominance of themes within the

clusters. MRI, magnetic resonance imaging; CTP, computed tomography perfusion; MT, mechanical thrombectomy; APT, amide proton transfer; CEST, chemical

exchange saturation transfer.

for MT eligible patient selection, including comparisons with
PET imaging (120, 121). If the majority of the articles validating
MRI are focused on PWI-DWI mismatch, however, MRI
modalities and sequences providing additional parameters such
as hypoperfusion with DWI-susceptibility weighted imaging
(SWI) mismatch are also present in this cluster (122, 123).

These imaging modality-focused clusters are representative of
the central position of imaging in AIS care. The most frequent
eligibility criteria for clinical trials on reperfusion therapies are
CTP target mismatch and MRI DWI-PWI mismatch. However,
because they differ in defining the lesion core, the accuracy of
those methods is often compared. While these two methods
are widespread, other imaging modalities, not relying on
perfusion imaging, have been proposed. The DWI-FLAIR (Fluid-
Attenuated Inversion Recovery) mismatch is a surrogate marker
of lesions within 4.5 h of symptom onset used as selection criteria
in the WAKE-UP trial that assessed the benefit of IV rt-PA in
patients with unknown time of onset of stroke (124). Regarding
CT, multiphase CT angiography (CTA) provides information
on collateral status and has been used to select patients in the
ESCAPE-NA1 trial that tested the efficacy and safety of nerinetide
in AIS patients treated with MT within a 12 h window (125, 126).
Of interest, patients included in the latter trial (control arm) had
similar outcome than patients included in DAWN and DEFUSE-
3 trials despite having larger lesion volume.

The thematic predominance of each cluster in relation to their
physical position within the network also provides elaboration
material. While the five groups on the left represent generic
concepts, the isolated cluster on the right is focused on the
specific amid proton transfer modality of chemical exchange
saturation transfer imaging (APT-CEST). Additionally, the MRI

cluster is closer and marginally connected to the APT-CEST
cluster as the latter is an imaging modality of the former. In
the context of ischemic stroke, APT-CEST provides pH-weighted
imaging, a marker of tissue micro-environment which variation
influences hemoglobin affinity for O2 (127, 128). The presence
of this cluster is an evidence of the growing need for imaging
parameters representative of tissue activity and metabolism
rather than perfusion delay markers.

5. FUTURE DIRECTIONS

As initially demonstrated with PET imaging, penumbral tissues
are described by a relatively preserved O2 metabolism within
a region with perfusion deficit. With the change of paradigm
operating and promoting tissue based eligibility criteria for
reperfusion therapies, there is a need for an operational imaging
parameter to evaluate the metabolic state of the tissues. The
current knowledge of the field raises legitimate concerns about
other imaging modalities providing metabolic parameters.

An additional exploration of the bibliometric coupling
network was carried out in order to further investigate the
location of oxygen metabolism imaging methods. The method of
investigation is described in Supplementary Material.

The detailed exploration of the clusters has shown that
oxygen metabolism related biomarkers (OEF and CMRO2)
imaging methods are split into 2 clusters. Three articles are
contained within the MRI cluster and relate to MRI based
modalities. The CTP [2019–2021] cluster contains 3 articles
related to these biomarkers, however, 2/3 methods in this group
are based on MRI modalities. Regarding the methods developed,
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TABLE 1 | Overview of MRI metabolic penumbra imaging methods.

MRI Method Description Advantages Limits Imaging parameters References

17O

Similar concept to 15O-PET.

Two methods:

- Direct method with MR

spectroscopy at high field

- Indirect method with proton

MRI of metabolized 17O into [17OH2O]

- Oxygen-17 naturally occurring,

chemically stable, non-radioactive

isotope

- MR visible and detectable directly

using MR spectroscopic techniques

and indirectly with proton MRI methods

- Limited availability of 17O marker

- Low signal on clinical scanners and

limited availability of high field MRI

- Requires specialized coils to generate

images using direct detection techniques

CMRO2

OEF
(138)

(139)

qBOLD

Initial method using BOLD effect

and from which originated mqBOLD and

streamlined qBOLD

- Non-invasive

- Single sequence

- Requires very high SNR

- Not available in clinical settings

- Multiple parameters estimation

brings measurement uncertainties

Blood oxygen saturation (SO2)

CBV
(140)

mqBOLD
Figure 7 provides a detailed description

of the method

- Better fitting of the parameters

compared to qBOLD

- Requires multiple sequences

- Estimations uncertainties in white matter

SO2

CBV
(141)

(142)

Streamlined

qBOLD

Figure 7 provides a detailed description

of the method

- Non invasive method

- Enables mapping of CMRO2 parameter

Estimating [deoxyhemoglobin] negates the

requirement for an assumed or measured

haematocrit, which is required in order

to estimate OEF

CBF

CMRO2

(131)

QSM

- QSM is a postprocessing technique that

quantifies local tissue magnetic properties

through the solution of the field-to-source

problem

- Based on the magnetic susceptibility of

deoxyhemoglobin in cortical veins

- Acquisition simplicity and reasonable

time requirements

- Easy calibration to absolute OEF

- OEF measurements extrapolated from

shift of susceptibility between water and

venous blood

- OEF ratio between hemisphere

enabled but no mapping obtained.

Quantitative susceptibility map (QSM)

Spatial profiles of OEF
(133)

(143)

QSM+qBOLD

This method combines the QSM and

qBOLD modalities for oxygen

metabolism mapping

This method is non-invasive

- A large number of acquisition is required

- The mapping of the parameter relies on

the clustering of voxels through the

hypothesis that similar voxel signals have

similar model parameter values

CMRO2

OEF
(132)

(144)

MRI, magnetic resonance imaging; CMRO2, cerebral metabolic rate of oxygen; OEF, oxygen extraction fraction; BOLD, blood oxygen level dependent; QSM, quantitative susceptibility mapping; qBOLD, quantitative BOLD; mqBOLD,

multiparametric qBOLD; DSC, dynamic susceptibility contrast; PET, positron emission tomography; SNR, signal to noise ratio.
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4/6 publications are based on variations of blood oxygen level
dependent (BOLD) functional MRI principles (129–132).
Another article provided OEF mapping through quantitative
susceptibility mapping MRI (133). Lastly, dynamic CTP
provided OEF and CMRO2 mapping based on extrapolated

data from perfusion acquisition; this method remains
theoretical (134).

In addition to the search for these specific biomarkers, the
bibliographic coupling also contains a selection of alternative
marker imaging based on hemodynamics. The MRI cluster

FIGURE 7 | Detailed principle and pipeline for OEF mapping with the multiparametric quantitative Blood Oxygen Level Dependent (mqBOLD) method and CMRO2

mapping with streamlined qBOLD. MRI, magnetic resonance imaging; DSC, dynamic susceptibility contrast; IV, intravenous bolus; CBV, cerebral blood volume; CBF,

cerebral blood flow.
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presents 3 articles for hemodynamic assessment as a marker of
tissue activity with MRI SWI (135, 136) and MRI T2⋆-weighted
imaging (137). Two articles relate to near infrared spectroscopy
for hemodynamic, side-bed, AIS patient monitoring. This
imaging modality, as well as photoacoustic, do not provide whole
brain imaging and are therefore not addressed in this review.

From 2015 to 2021, articles providing metabolic parameters
accounted for less than 2% of the corpus of scientific literature.
Their importance within this network is minor compared to
the imaging concepts that have been studied for the past two
decades. The widespread distribution of these articles throughout
the network indicates that the scientific community fails to
reach a consensus on oxygen metabolism marker imaging, but
MRI methodologies predominate. Table 1 provides an overview
of these MRI methods, the majority of which are based
on the quantification of the BOLD effect. An example of a
multiparametric qBOLD approach is described in Figure 7.

It seems that these methods have the potential to provide the
relevant markers of the ischemic penumbra. Yet, the current state
of research in this field has not reached clinical validation. The
methods described in Table 1 have been either validated for other
pathologies or validated on ischemic stroke preclinical-models.
Therefore, there are no known thresholds to qualify themetabolic
penumbra in AIS clinical context with these methods. Moreover,
technical issues still remain.

The original qBOLD method (140) is fast and non-invasive.
However, it requires a special MR sequence usually not accessible
in a clinical environment and the estimates are only valid if the
signal to noise ratio (SNR) is very high. The mqBOLD approach
(142) can be used with standard MR sequences but it requires
the injection of a contrast agent and the co-registration of the
maps is a challenging task due to the variations in resolution
and potential distortions within the sequences. Moreover, the
numerous parameters estimated for the calculations and the
corresponding models only allows an approximated mapping of
CMRO2 and OEF without considering tissue specificity (such
as white vs. gray matter). An exciting alternative consists in
the fusion of the qBOLD approach with a new MRI framework
called MR fingerprinting (MRF) where complex MR sequences
are directly linked to advanced numerical simulations (145). This
new perspective would enable to shorten acquisition time and
allow the quantification of several biomarkers simultaneously.
Initial studies using MRF to quantify brain oxygenation in both
humans and rodents (146, 147) have been very encouraging and
themethod is now under validation in preclinical AISmodels and
future intended contributions aim in defining thresholds for the
metabolic penumbra to extend it to clinical settings.

In the present review, MRI advances are vastly discussed,
but there are also developments for CTP, e.g. the calculation of
penumbra and core from multiphase CTA acquisitions (148).

6. CONCLUSION

Conducting a bibliometric analysis of the field enabled
to describe penumbra imaging over time and its close
parallel relationship with the change of paradigm operating in
AIS management. The key role of imaging was highlighted
as well as the necessity for biomarkers of the cerebral
tissue metabolic state in clinical emergency settings. Up to
date the scientific community fails to reach a consensus
on imaging and post processing modalities to meet these
new requirements. MR CMRO2 methods and MR vascular
fingerprinting for AIS models are particularly promising and
deserve further exploration.
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