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Geographic atrophy (GA), the late stage of age-related macular degeneration, is a major

cause of visual disability whose pathophysiology remains largely unknown. Modern

fundus imaging and histology revealed the complexity of the cellular changes that

accompanies atrophy. Documenting the activity of the disease in the margins of atrophy,

where the transition from health to disease occurs, would contribute to a better

understanding of the progression of GA. Time-lapse imaging facilitates the identification

of structural continuities in changing environments. In this retrospective pilot study,

we documented the long-term changes in atrophy margins by time-lapse imaging of

infrared scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT)

images in 6 cases of GA covering a mean period of 32.8 months (range, 18–72).

The mean interval between imaging sessions was 2.4 months (range, 1.4–3.8). By

viewing time-lapse sequences we observed extensive changes in the pattern of marginal

hyperreflective spots, which associated fragmentation, increase and/or disappearance.

Over the entire span of the follow-up, the most striking changes were those affecting

hyperreflective spots closest to margins of atrophy, on the non-atrophic side of the

retina; a continuum between the successive positions of some of the hyperreflective

spots was detected, both by SLO and OCT. This continuum in their successive positions

resulted in a subjective impression of a centrifugal motion of hyperreflective spots

ahead of atrophy progression. Such mobilization of hyperreflective spots was detected

up to several hundred microns away from atrophic borders. Such process is likely

to reflect the inflammatory and degenerative process underlying GA progression and

hence deserves further investigations. These results highlight the interest of multimodal

time-lapse imaging to document cell-scale dynamics during progression of GA.

Clinical Trial Registration: clinicaltrials.gov, identifier: NCT04128150

and NCT04129021.

Keywords: age-related macular degeneration, geographic atrophy, scanning laser ophthalmoscopy, optical

coherence tomography, time-lapse imaging
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INTRODUCTION

In western countries, dry age-related macular degeneration
(AMD) is a major cause of visual disability (1). In its late
stage, it progresses to a stage named geographic atrophy (GA),
which causes expanding zones of atrophy of the retinal pigment
epithelium (RPE). The inexorable expansion of atrophic lesions
may have a severe impact on quality of life, in particular
when the central zone of the retina, the fovea, is involved.
The risk of developing AMD results from an interplay of
age, genetic background and chronic inflammation (2–5). The
cellular mechanisms underlying the propagation of RPE and
photoreceptor atrophy is comparatively less known.

In the margins of GA, where the transition from health to
disease occurs, among the most conspicuous changes areas are
hypereflective spots, commonly termed pigment mottling. In
the early stages of AMD, that is, even before the occurrence
of GA, pigment mottling is a biomarker of the risk of
progression from early to late AMD (6–10). By histology,
several phenotypes and locations of pigment mottling have been
described (11–15), which can be intraretinal (therefore called
hyperreflective foci, HRF), subretinal or in the subepithelial
space. Along margins of atrophy, duplication of the RPE layer
has also been described (16), which may account for short
wavelength hyperautofluorescence seen clinically (17). Whether
this pigment mottling corresponds to detached RPE cells (14, 15)
transdifferentiated RPE cells (18, 19) or macrophages that have
phagocytozed RPE cells (20, 21) is still a matter of debate.

The mechanisms of atrophy expansion are difficult to
ascertain by histology because the latter provides only snapshots;
therefore it is likely that the in vivo dynamics are of interest to
further understand the mechanisms of progression. Time-lapse
imaging, which consists of viewing a series of images registered
using predefined landmarks, is a practical tool to identify
structural continuities in changing environments. We previously
reported that time-lapse adaptive optics ophthalmoscopy is
helpful to detect motion of pigment spots during GA (22). Using
time-lapse OCT, migration of pigment foci (hyperreflective foci,
HRF) within the retina has also been reported (23). Here, we
investigate if time-lapse sequences of SLO images could improve
the characterization of the dynamic changes in fundus features
associated with GA progression.

PATIENTS AND METHODS

This institutional retrospective study was carried out according
to the principles outlined in the Declaration of Helsinki and
was approved by an ethics committee (Comité de Protection
des Personnes Sud-Est III), independent from our institution, as
required by French law. The present study is an ancillary study
on GA imaging registered in clinicaltrials.gov (NCT04128150
and NCT04129021). All participants gave informed consent
to take part in this study. Standard procedures were used
for multimodal imaging including color fundus photographs
(Topcon TRC-501X) and infrared (IR) and short wavelength
autofluorescence (swAF) scanning laser ophthalmoscopy
(SLO), and optical coherence tomography (OCT) (Spectralis R©,

Heidelberg Engineering, Heidelberg, Germany). Near infrared
autofluorescence (NIRAF) was captured using the Heidelberg
Retina Angiograph (Heidelberg Engineering).

Cases were selected based on the quality of images, frequency
of follow-up and presence of hyperreflective spots along atrophy
margins by IR SLO. Thus, 6 eyes from 6 patients (4 females and
2 males; age range 64 to 80 years; visual acuity, counting fingers
to 20/20; refraction range, −2/+0.5) fulfilling these criteria were
identified. One (case 4) was reported in a previous paper (22). The
mean follow-up was 32.8 months (range, 18–72); mean interval
between imaging sessions was 2.4 months (range, 1.4–3.8).

SLO and OCT images were exported in portable network
graphic (PNG) format. Careful registration and equalization
of successive images of time-lapse videosequences is crucial
to neutralize wobbling and hence document a continuum of
microscopic features over time. Adjustment of brightness and
contrast of each SLO frames was performed manually to smooth
differences between frames using Adobe Photoshop 7.0 (Adobe
Corporation, Mountain View, CA). To build up time-lapse
SLO sequences, successive images were aligned with i2k Align
Retina (DualAlign, LLC, Clifton Park, NY) using default settings
(rigid registration). The results were evaluated by three of the
authors (MP, NN, KG). Accuracy of registration and quality of
equalization was based on stability of anatomical landmarks such
as retinal and choroidal vessels, and the absence of scintillation.
SLO scans that were obviously distorted, overexposed or out of
focus were discarded. Low quality frames were easier to identify
while viewing the sequence rather than separately. Residual
shakes in videosequences were manually corrected using either
iterative registration procedures or Photoshop. If not satisfactory,
additional registration and equalization procedures were done;
this process was iteratively performed as needed. Recently, we
used the registration plugin of Fiji (available in the public domain
at rsb.inf.nih.gov/ij; National Institutes of Health, Bethesda, MD)
which improved the procedure. Then, by manually scrolling the
time-lapse sequence back and forth repeatedly at various frame
rates (typically 5 - 10fps), microscopic features were visually
tracked individually.

Time-lapse OCT B-scan sequences were constructed in a
similar way, using the Bruch’s membrane and the pattern of
choroidal vessels as landmarks. Building time-lapse sequences of
OCT was more difficult because of the narrow plane of OCT
scans and of the limitations of the performances of eye tracking
of the Spectralis system; this often resulted in micrometric
displacement of the plane of the scan and hence loss of features
to be tracked. Other difficulties were related to the variability of
the signal-to-noise ratio and to the scan deformations.

RESULTS

On initial examination, the size of atrophic lesions ranged
from 1.03 to 3.2 mm² (average, 2.14 mm²). On OCT scans,
atrophic margins presented features typical of complete RPE
and outer retinal atrophy (24) bordered by an external
limiting membrane descent. On SLO IR images a variable
amount of hyperreflective spots were present along the margins
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FIGURE 1 | Cases 2 (top row) and 5. Multimodal imaging of GA. Arrowheads show examples of hyperreflective spots. Hollow arrowheads in OCT images point to the

shadow effect.

FIGURE 2 | Case 4. Successive SLO images illustrating the change in the shape of a hyperreflective spot during follow-up.

of atrophy (Figure 1; Supplementary Figure 1). These spots,
which varied in shape, size and amount were mostly NIRAF
positive and produced a shadow effect on OCT scans. Short
wavelength hyperautofluorescence was less consistent than
NIRAF. Accordingly, NIRAF is believed to be both more
specific and more sensitive than swAF for the detection of
melanin (25–28).

During follow-up, atrophy expanded from an average
surface area of 2.14 to 7.47 mm² (+349 %; mean progression
1.95 mm²/year). The median (±SD) radial growth rate of
atrophy was 127.2 µm/year (±8.7). On SLO time-lapse
videosequences, atrophic areas were seen to expand in
all directions (Supplementary Videos 1–3). In margins,
hyperreflective spots showed extensive changes, consisting of a

various association of change in shape, fragmentation, expansion
or disappearance (Figure 2). Despite such variability, careful
observation of the entire SLO time-lapse sequence of some of
the hyperreflective spots revealed a continuum of the successive
positions of hyperreflective spots (Figure 3). This continuum
gave the impression of a centrifugal motion of some of these
spots away from the expanding atrophic area, which is best
viewed by the videos.

To provide a more detailed view of these changes, SLO
time-lapse sequences were cropped to isolate individual
spots and compare their successive positions (Figure 4;
Supplementary Figure 2, Supplementary Video 3). This also
showed that the successive positions of these spots were
temporally and spatially correlated with atrophy progression.
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FIGURE 3 | Case 6. Top row, SLO IR and NIRAF images. Bottom row, progression of atrophy. Time-points relative to the first image are indicated in the second and

third images. Note the changing aspect of the hyperreflective spot (arrowheads; see also Supplementary Video 2).

FIGURE 4 | Case 4. Spatiotemporal (xt) plot. Images from regions of interest

(boxed in A) were registered and rotated in (B) in order to display the

progression from left to right; the x axis represents distance, the y axis time.

Arrowheads show two hyperreflective spots that are followed-up. Note the

deviation from verticality of the virtual line joining the successive positions of

the hyperreflective spot shown by arrowhead 2, which is initially located

620µm away from the margins. See also Supplementary Video 3.

Over the entire follow-up, that is, over several years, some
spots could be tracked over distances up to from 41 to 489µm
(examples in Figure 4). In addition, some spots located
more distally (i.e., several hundred microns from atrophy
margins) underwent mobilization and apparent displacement
away from atrophy (example in Figure 4, shown by arrow 2,
Supplementary Video 3).

Time-lapse sequences of OCT scans are shown in Figure 5

and Supplementary Videos 4–6. Since OCT scans were seldom
placed along the successive position of spots, we experienced

more difficulties in tracking individual hyperreflective spots
than by SLO. The case showed in Supplementary Video 4

shows progressive thinning of the outer nuclear layer following
atrophy. Supplementary Video 4 also shows a HRF, that is,
a hyperreflective spot located within the outer plexiform
layer, which remained at the same location during follow-up.
Two time-lapse sequences captured a subretinal hyperreflective
spot (Figure 5; Supplementary Videos 5, 6). In both cases a
subretinal hyperreflective spot could be detected in margins
during atrophy progression. No clear evidence of upward
migration (i.e., toward inner layers) was noted.

DISCUSSION

Here we used time-lapse sequences of SLO and OCT images
to track the changes in microscopic features of margins during
GA progression. We paid particular attention to the changes
over time in the distribution and aspect of hyperreflective
spots, a prominent feature of AMD. We observed that these
hyperreflective spots are most often NIRAF positive, suggesting
that they contain melanin. They were located within the
RPE/Bruch’s membrane complex, hence they were not what is
called HRFs, which are within the retina, close to the outer
plexiform layer. We observed that over the course of months
these spots show conspicuous changes, either changing shape,
fragmenting, growing or disappearing. Intriguingly, time-lapse
imaging also revealed in many case a continuum between the
patterns of hyperreflective spots. In fact, over the entire follow-
up viewing the time-lapse sequence gave the impression that
some of these spots underwent centrifugal displacement in
synchrony with atrophy progression. This contrasted with our
observation of a HRF which remained static during follow-up.
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FIGURE 5 | Case 2. Follow-up by SLO and OCT of a subretinalhyperreflective spot. Top, SLO IR image showing the area displayed below. Bottom shows

magnifications at three time-points. Arrowheads follow a hyperreflective spot seen by SLO IR (left column) and OCT (See also Supplementary Video 5).

In the literature, migration of a HRF toward the inner retina was
previously reported (23) as well as stability over several years (19)
but not centrifugal migration. Hence, taken collectively, these
data suggests that subretinal hyperreflective spots and HRFs may
behave differentially.

The fact that hyperreflective spots show mobilization is rather
unsurprising since such motion of intraretinal cells has already
been shown in vivo (29); it may be related to the fact that
macrophages, which are migrating in response to inflammatory
stimuli, are present in eyes affected by GA and may contain
melanin from phagocytized RPE cells (2). The significance of
the apparent continuum in the successive positions of these
spots is uncertain. This does not necessarily mean that there
is physical motion of these spots. Indeed, pigment deposition
along margins of atrophy may be agonal changes affecting RPE
cells and transmitted neighbor to neighbor, hence the apparent
displacement could be due to propagation of RPE cell death,
more or less like the propagation of a fire; however, the apparent
mobilization of more distally located spots challenges this
interpretation since it occurs in areas that only transformed into
atrophy months later. An alternative hypothesis for centrifugal
migration of subretinal hyperreflective spots could be that
pigment mottling actually undergoes displacement.

Our study shows that careful construction of time-lapse
sequences may be of interest to reveal the microscopic dynamic
changes associated with progression of retinal diseases. Time-
lapse image sequences can be constructed using commercially
available software. Yet, despite the fact that some OCT systems
provide built-in registration procedures in our experience there
is still a need for manual processing and expert supervision,
and often iterative procedures of alignment, sometime with
different software to obtain satisfactory time-lapse sequences.
Careful pixel-to-pixel registration and expert examination of the
successive frames is indeed crucial to neutralize wobbling and
hence document a continuum of microscopic features in the
long term. The precision of registration is commensurate to
the likeliness of distinguishing small changes from background
noise. In order to track microscopic features, it is also important,
to acquire images at close enough intervals. Indeed, the
possibility to detect the continuity of a given feature from
one time point to the next is strongly related to the time
sampling, that is, the interval between two examinations. This
is particularly crucial when addressing a complex and changing
environment. A potential limitation of time-lapse imaging in
cases with inappropriate time sampling is that it may cause
false recognitions of motion patterns, similarly to a stroboscopic
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effect. Hence, the shorter the time between two images, the
more accurate is the information brought by time-lapse imaging.
It is not easy, however, to determine a priori the adequate
interval to study a given process, which depends on its particular
dynamics. Therefore, the interval between imaging sessions we
used here for hyperreflective spots surrounding GA may not
be necessarily appropriate for other disease processes. We also
observed that display conditions (frame rate and back and forth)
affects the possibility to detect features; in particular, back-and-
forth viewing greatly improved the recognition of mobilization.

Whatever the interpretation of our data, our observations
demonstrate that time-lapse sequences may be useful to
investigate the long-term progression of AMD. Our findings may
provide new insights into the cellular dynamics accompanying
GA. Further work using time-lapse imaging may contribute
to better characterize structural changes associated with GA
progression. Higher resolution imaging systems such as adaptive
optics ophthalmoscopy may provide a better access to the
dynamics of microscopic features such as photoreceptors or
RPE cells.
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Supplementary Figure 1 | Multimodal imaging and evolution of case 1.Top row,

SLO, OCT and NIRAF images showing a subretinal hyperpigmented spot (arrows).

Bottom row, progression of atrophy. Time-points relative to the first image are

indicated in the second and third images (see also Supplementary Video 1).

Supplementary Figure 2 | Multimodal imaging and spatiotemporal (xt) plot of

cases 3. Registered images from regions of interest (boxed in A) were extracted in

order to display the progression from left to right (B). Arrow points to a

hyperreflective spot.

Supplementary Video 1 | Time-lapse infrared SLO of case 1. Note the

hyperreflective spot moving ahead of the progression front (11 frames; real time

duration, 24 months). The sequence is displayed back and forth to facilitate the

identification of moving features.

Supplementary Video 2 | Time-lapse infrared SLO of case 6. Note the

successive positions of a hyperpigmented spot (arrowhead in OCT images)

moving ahead of the progression front (15 frames; real time duration, 28 months).

The corresponding time-lapse OCT is shown in Supplementary Video 4.

Supplementary Video 3 | Time-lapse SLO of case 4, shown in Figure 4 (16

frames; real time duration, 4 years). The boxed area is displayed in the kymograph.

Supplementary Video 4 | Time-lapse OCT of case 6 (15 frames; real time

duration, 28 months). Note the progressive thinning of the retina overlying the RPE

loss (center of the OCT image) and the expansion of atrophy (tracked by arrows).

Note also on the right a HRF in the outer plexiform layer that remains static over

the entire sequence.

Supplementary Video 5 | Time-lapse infrared SLO and OCT of case 2. Note the

hyperreflective spot (arrowhead in OCT images) moving ahead of the progression

front (9 frames; real time duration, 5 years).

Supplementary Video 6 | Time-lapse infrared SLO and OCT of case 5. Note the

hyperreflective spot (arrowhead in SLO and OCT images) moving ahead of the

progression front (8 frames; real time duration, 18 months).
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