Agreement in Spiking Neural Networks
Résumé
We study the problem of binary agreement in a spiking neural network (SNN). We show that binary agreement on n inputs can be achieved with O(n) of auxiliary neurons. Our simulation results suggest that agreement can be achieved in our network in O(log n) time. We then describe a subclass of SNNs with a biologically plausible property, which we call size-independence. We prove that solving a class of problems, including agreement and Winner-Take-All, in this model requires O(n) auxiliary neurons, which makes our agreement network size-optimal.