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Abbreviations : 

AAPH: 2,2'-azobis[2-amidinopropane]hydrochloride 

AMVN: 2,2'-azobis[2,4-dimethylvaleronitrile] 

α-T: α-Tocopherol 

α-TO•: α-tocopheroxyl radical 

ATF4: Activating transcription factor 4 

C/EBPβ: CCAAT-enhancer binding protein β 

CEHC: δ-carboxyethylhydroxychromanol 

COX-1/-2: cyclooxygenase-1/-2 

DLPC: dilinoleoyl phosphatidylcholine 

DCM: Dichloromethane 

HAT: Hydrogen Atom Transfer 

HMG-CoA Red: Hydroxymethylglutaryl-Coenzyme A reductase 

HO∙: hydroxyl radical 

IL-8: interleukin 8  

KLK2: Kallikrein Related Peptidase 2 

L∙: lipid radical 

LCMs: Long chain metabolites 

LCMS: Liquid Chromatography, Mass Spectrometry 

LO∙: alkoxy radical 

LOO.:  alkylperoxy 

5-LOX: 5-lipoxygenase 

LTB4: leukotriene B4 

MRP-associated proteins : Multidrug resistance-associated proteins 
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NF-κB: nuclear factor-kappa B  

oQM:  tocopheryl ortho quinone methide 

PARP-1: poly(ADP-ribose) polymerase 1 

Pgp: P-glycoprotein 

PKC: Protein kinase C  

PSA: Prostate Specific Antigen 

PXR: pregnane X receptor 

QTOF: Quadrupole time of flight 

SCMs: Short chain metabolites 

SET: Single Electron Transfer 

SPLET: Sequential Proton Loss and Electron Transfer 

TM4SF1: Transmembrane 4 L Six Family Member 1 

Tocols: tocopherols and tocotrienols 

TQ: tocopherylquinone 

VCAM: Vascular cell adhesion protein 

VEOP: vitamin E oxidation products 
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Abstract 

Vitamin E components and vitamin E oxidation products (VEOP) define the “vitaminEome”. 

VEOP are produced through biological and chemical processes. They are found at low 

concentrations in vivo and may play particular biological functions linked with 

chemoprevention and inflammatory processes. Much data have been reported leading to more 

insight into VEOP. VEOP are generated through peroxy-radical generating systems and via 

reactive oxygen and nitrogen species as well as enzymatically by a variety of enzymes. In 

vivo, VEOP and their catabolites may reach the blood circulation and display physiological 

properties. This narrative review expands upon parent vitamin E chemistry as well as VEOP 

chemical concepts. The in vitro and in vivo routes by which they can be generated are 

exhaustively approached. Finally, we will discuss therapeutic and chemopreventive 

opportunities that VEOP offer with a special focus on their cytotoxic and anti-inflammatory 

functions. 
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Highlights 



 Vitamin E compounds act as antioxidants in different systems through different 

mechanisms 

 Vitamin E oxidation product (VEOP) formation is affected by several intrinsic and 

extrinsic factors 

 VEOP could be used as markers for several debilitating diseases 

 VEOP are associated with potent anti-inflammatory and cytotoxic activities 
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Introduction 

Vitamin E is a nutrient that is considered to be a functional food. It is the most 

important fat‐soluble antioxidant that protects biomembranes and low density lipoproteins 

from oxidation. In the past decades, the chemistry of vitamin E oxidation with peroxyl radical 

generating systems has been systematically studied. As a result, vitamin E oxidation products 

(VEOP) have generated biomarkers, which may help to understand the vitamin E redox cycle 

and turnover. In addition, VEOP may act as physiological and/or pharmacological tuners of 

vitamin E in a biological environment (Matsuo et al., 1989; Yamauchi et al., 1997, 2019; 

Rosenau et al. 2007a, 2009; Niki, 2007, 2014 and 2019). 

By preserving living organisms against oxidation processes, Vitamin E (tocols) 

prevents the activation and the diffusion of free radicals formed during the lipoperoxidation 

process. In experimental models, free radicals are produced through physical methods such as 

thermolysis, photolysis, radiolysis as well as sonolysis along with chemical and 

electrochemical methods, which are performed by electron redox transfers. Free radicals are 

also generated in living systems, they comprise reactive oxygen and nitrogen species. The 

assessment of the anti-radical capacities of tocols requires a broad range of experimental 

models, starting from simple tests without other lipid co-substrates, testing in biological 

media, in preclinical trials and finally in clinical trials. When exerting their antioxidative 

actions, tocols are extensively oxidized and generate VEOP. This supports further 

investigations as to the isolation, purification, structural identification and definition of the 

biological properties of these VEOP. One of the main properties of Vitamin E is to block lipid 

peroxidation in a lipid bulk phase, by blocking radical chain reactions. Thus, vitamin E may 

react with alkoxy (LO∙), alkylperoxy (LOO.) or hydroxyl (HO∙) radicals through mechanisms 

that will be developed in this review to give tocopherone derivatives and other recurrent 

stable end products amongst which tocopherylquinone (TQ), tocored, 5-

methyltocolderivatives, dimers and trimers and many others (see vide infra). Therefore, 

vitamin E introduces a lag phase during which lipoperoxidation slows down until reaching 

vitamin E depletion when the rate of peroxidation increases again. 

The activity of α-Tocopherol (α-T) against lipoperoxidation has gained in interest, due 

to the impressive development of physical chemistry approaches. The chemical mechanism is 
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slow enough to allow a detailed characterization of the radical tocopheroxy. These studies 

were commonly performed by Electron Spin Resonance and Laser Flash analysis techniques 

(Kohl et al. 1969; Boguth and Niemann, 1971; Svanholm et al., 1974; Ozawa et al., 1978; 

Mukai et al, 1982; Doba et al., 1983; Matsuo and Matsumoto, 1983; Tsuchija et al., 1983). 

Electrochemical models showed that vitamin E analogs are low redox-potential molecules, 

that reduce free radicals with a higher redox potential (Svanholm et al., 1974; Burton and 

Ingold, 1986; Webster, 1999; William and Webster, 2004; Lee et al., 2005). 

Nevertheless, current concepts of the antioxidant effects of α-T encompass some 

discrepancies (Cillard et al., 1980; Terao & Matsushita, 1986; Bowry & Stocker, 1993; Mukai 

et al, 1993). Indeed, although α-T is a well-known antioxidant agent and the main antioxidant 

carried by plasma lipoproteins (Herrera & Barbas, 2001), it is a pro-oxidant in vitro in strong 

oxidizing conditions such as high oxygen tension, in the presence of free metal ions, or at 

high concentrations (Cillard et al., 1980; Inglod, 1993; Bowry and Stocker, 1993; Mukai et al, 

1993; Yoshida et al., 1994; Witting et al., 1995; Bowry et al., 1995; Kontush et al. 1996; 

Upston et al., 1999, 2002; Bernard et al., 2001; Zai-Qun, 2010). Beside its anti-oxidative 

potential, Boscoboinik et al. (1991) published the first report giving evidence that α-T 

regulated cell signaling and gene transcription. Therefore, they showed that α-T displayed 

bio-potencies. However, the key functions of vitamin E, other than being a non-antioxidant, 

are still under debate. Vitamin E and its oxidation products have been reported to display a 

wide range of biochemical and pharmacological potencies. To date, many VEOP have been 

characterized but little is known as to their bioavailability and their exact roles in the 

bioactivity of α-T. The aim of this review is firstly to expose the complex chemistry of 

vitamin E oxidation depending on the biological model. We will next report significant in 

vitro and in vivo biological properties of VEOP. This review is the first comprehensive report 

that combines both chemical and biological aspects. 

A brief survey of Vitamin E chemistry 

Tocols (Vitamin E) are amphipathic and lipophilic antioxidants that are biosynthesized 

mostly by plants and cyanobacteria (DellaPenna and Pogson, 2006; Khallouki et al. 2020). 

Tocols are very soluble in apolar solvents and slightly soluble in alcohols. Tocols are very 

sensitive to light in the presence of air or other oxidants. Their phenolic group can be 

esterified with various acids. The resulting products can retain some of their biological 
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activities but not their antioxidant potential. Tocols differ in the number and position of 

methyl groups present on the chromanol ring. Their chemical structures consist of two fused 

rings (6-hydroxychroman) and a long hydrocarbon side chain attached at the 2-position of the 

chroman ring. In Tocopherols, the side chain is saturated while in tocotrienol this side chain is 

a farnesyl chain with three double bonds at positions 3′, 7′ and 11′ (see figure 1). 

α-T is the most biologically active form amongst tocol congeners (Pennock et al., 

1964). The human body preferentially retains α-T rather than any other vitamin E analog. In 

1982, the Commission on Biochemical Nomenclature (International Union of Pure and 

Applied Chemistry and International Union of Biochemistry and Molecular Biology Joint 

Commission on Biochemical Nomenclature), encompassed tocotrienols into vitamin E 

components. Moreover, the modern concept of "vitamin E” includes a larger group of natural 

as well as synthetic vitamin E derived products. The different isoforms with their exact 

nomenclature are shown in figure 1 and table 1 (IUPAC-IUB, 1966, 1974, 1981). 

α-T dietary supplements are often in esterified forms obtained by esterification of the 

hydroxyl group at the C6-position of the chromanol ring with an acetate, linoleate, succinate, 

nicotinate or phosphate group. These esterified forms are more stable and more resistant to 

oxidation than their parent forms but are no more antioxidant due to the blocade of the 

phenolic group (Ruperez et al., 2001). On the other hand, tocotrienols have only one chiral 

center. However the configurations of the two first existing double bonds at the position 3’ 

and 7’, allow for 4 cis/trans geometric isomers. The only natural isomer of tocotrienol that 

exists is the 2R, 3’, trans 7’trans also known as the (2R,3′E,7′E) configuration (Pennock et al., 

1964 ; Drotleff et al. 2001). 

Other important trivial denominations of commercial and therapeutic importance are 

described below: 

 2-epi-α-tocopherol is known as L-α-tocopherol (2S, 4’R, 8’R-α-tocopherol) 

 2-ambotocopherol corresponds to a mixture of D-α- and L- α-tocopherol which is 

obtained using synthesis with phytyl and achiral hydroquinone, this is also know as dl-

alpha-tocopherol 

 The reduction of 5,7,8-tocotrienol in which the unsaturated 3’, 7’ and 11’ are 

hydrogenated and two asymmetrical centers are created at C4’ and C8’ is a mixture of 
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2R, 4’R, 8’R ; 2R, 4’R, 8’S ; 2R, 4’S, 8’R  and 2R, 4’S, 8’S, this mixture is known as 

4’-ambo, 8’-ambo-α-tocopherol. 

 

The fate of vitamin E with in vitro peroxy radical generating systems 

Some known substrates of lipid peroxidation include constituents of cell membranes 

and plasma lipoproteins such as polyunsaturated fatty acids, cholesterol, phospholipids and 

lipoproteins. Lipoperoxidation occurs via reactions that by-pass the spin barrier between these 

lipids (the ground state is of singlet multiplicity) and oxygen (a biradical of triplet multiplicity 

in its fundamental state). There is consequently a need for a catalysis that will overcome this 

dissociation energy which will have an impact on allylic or bis allylic labile lipid protons. 

This leads to the formation of unstable hydroperoxides, which will break-down into toxic 

volatile secondary compounds (aldehydes, alcohols, ketones, epoxides). Such compounds are 

responsible for the oxidative deterioration of tissues. In food, the sustained oxidative damage 

of lipids is responsible for their changes in molecular structure and molar mass. This is 

associated with variations in the physical properties of lipids and a degradation in the quality 

of food. This causes organoleptic changes and loss of microbiological and nutritional 

properties. In vivo, if defensive systems are overwhelmed, these compounds could contribute 

to the development of certain cancers, neurodegenerative diseases and atherosclerosis. Several 

reviews have been published on this topic but much more mechanistic insight is required to 

improve our knowledge and our understanding of these processes (Frankel, 1980, 1998, 2005; 

Poisson & Narce, 2003; Niki, 2009; Bochkov et al. 2010; Yin et al., 2011; Niki, 2021). 

Lipoperoxidation proceeds in three steps: the initiation step, the propagation step and the 

termination step. The alkyl radical generated from an unsaturated lipid after hydrogen radical 

abstraction (carbon‐centered radicals, L.) is named the initiation step. There are many factors 

that influence the reaction at this stage. These include on the one hand, intrinsic factors such 

as the physical state of the system, the presence or not of pro-oxidants such as transition metal 

ions, the presence of biological heme or non-heme irons as well as initiating agents amongst 

many others. On the other hand, extrinsic factors include temperature, light, pH,  oxygen 

partial pressure, and the presence of water (Hsieh & Kinsella, 1989). Lipid peroxidation can 

be triggered by photosentitizers such as pigments. This involves the formation of an excited 

singlet state of oxygen as observed with hydrophobic porphyrin derivatives (Jeong, 2016). 
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While the antioxidant power of vitamin E family members are well studied in vitro in various 

solvents and lipid suspensions, in vivo, lipid oxidation can occur through enzymatic reactions 

performed by oxidoreductases, lipooxygenases and cyclooxygenases (Yin et al., 2011; 

Hajeyah et al., 2020). Auto-oxidation of lipids may also take place in the presence of free 

radicals that may already be present in the medium. As illustrated for linoleate (figure 2), a 

vulnerable bis allylic carbon atom forms a radical with a low rate constant reaction between 

two cis double bonds of the fatty acid) (-CH=CH-CH2-CH=CH-). The radical formed at C-11 

(highlighted in bold), is delocalized over the five carbons from C-9 to C-13 (Porter et al., 

1980, 1981, 1984, 1986, 1996; Davis, et al., 2006; Xu et al., 2009). The radical formed is then 

stabilized by intramolecular rearrangements leading to a conjugated diene, which can 

subsequently react with dioxygen to form a lipid peroxyl radical (LOO•). Because of its 

constant high rate, the lipid peroxy-radical will attack another polyunsaturated lipid molecule 

in a continuous process, causing the formation of a new lipid radical (L.). This is associated 

with the formation of an unstable primary lipid hydroperoxide (LOOH), and this is termed the 

propagation step. In the termination step, lipoperoxidation occurs when radicals combine and 

stop the propagation step. In vivo, lipid hydroperoxides can either be metabolized through a 

selenoperoxidase-mediated two electron reduction to give rise to the corresponding less toxic 

alcohols, or may entail a one electron reduction to generate a free radical-mediated chain 

peroxidation, hence decomposing into low reactive peroxyl radicals (LOO.) as afore 

mentioned. However, depending on whether they react with specific transition metals, redox 

cycles with Iron and Copper being the most reactive, these hydroperoxides may then produce 

extremely reactive alkoxyl radicals (LO.) (Halliwell and Gatteridje, 1984; Sevanian & 

Hochstein, 1985). The decomposition of hydroperoxides may also generate hydroxyl radicals 

(HO·) via the well-known reactions of “Fenton and Haber Weiss”, through the “Beckman-

Radi-Freeman pathway” or the “Cadenas-Poderoso shunt” during a nitrative stress (reviewed 

in Boveris et al., 2008). 

Antioxidants may stop lipid peroxidation through different mechanisms. They can 

directly interrupt the propagation of the radical chain reaction, they can act as metal chelators, 

inhibiting the catalysis of the production of free radicals, or they can act as quenchers in the 

case of photo-oxidation by active singlet-oxygen. They may also act as “synergists”: 

molecules that help to increase the antioxidant activity such as phospholipids (Frankel, 1998; 

Bandarra et al., 1999). As shown by -T in various in vivo or in vitro systems, the energy of 
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dissociation of its phenolic moiety is weak and therefore facilitates the radical reactions via a 

dehydrogenating oxidation. Moreover, with any other co-substrate lipid (unsaturated fatty 

acid, phospholipid, or cholesterol) in homogeneous solutions, in aqueous dispersions such as 

micelles or liposomes (used as a model to mimic the in vivo lipid oxidations), and in 

biological fluids such as plasma, vitamin E reacts with peroxy radicals to form different 

oxidation products (VEOP). The antioxidant activity of vitamin E is deep-rooted by its 

chemical structure, and is also adapted to its level, its mobility, and its solubility either in a 

dispersed system or in a homogeneous phase. Its antioxidant potential will also depend on the 

physical state of a given microenvironment of the system (Huang et al., 1996). Vitamin E is 

more powerful as an antioxidant in polar emulsified media such as oil-water emulsions, 

plasma membrane and phospholipids with a high surface/volume (HSV) ratio, than in a 

continuous lipid phase such as oils due to its hydrophobic nature (Frankel et al., 1994). This 

behavior is known as Porter's polar paradox (Porter, 1993) which unfortunately disregards the 

influence of many other factors. 

In homogeneous solutions as well as in heterogeneous lipid bilayers, α-T inhibits lipid 

peroxidation either by trapping the chain-carrying LOO· or by scavenging the initiator (the 

initial oxidant ROO·). α-T acts as a radical proton donor to a peroxyl radical, and transforms 

itself into a tocopheroxy radical of weak reactivity. This reaction is fast and is even faster than 

the reaction of lipids with other lipid peroxy radicals (Niki et al., 1984). In vitro, kinetic 

studies indicated that the rate constant for -T + ROO·  -TO· + ROOH is greater than l06 

M-1s-l (Winterle et al., 1984; Min and Boff 2002; Naumov and Vasil’ev 2003; Choe and Min 

2006). The speed with which tocols react with a peroxy radical reflects their direct respective 

antioxidant properties (Burton and Inglod, Kamal-eldin & Appelqvist, 1996). One molecule 

of α-T can scavenge two molecules of radicals such as LOO·. The mechanisms involved in 

this effect take place in a stepwise fashion. 1) α-T deactivates free radicals through a 

Hydrogen Atom Transfer (HAT), which acts via a homolytic breaking of the O-H bond of the 

chromanol backbone, giving rise to a more stable α-tocopheroxyl radical (α-TO•), also called  

the α-tocopheryl-semiquinone radical. 2) α-TO• may also be formed via a Single Electron 

Transfer (SET) in which an electron is first transferred from α-T to the radical, and the 

tocophenoxy radical cation is then deprotonated. 3) Another proposed mechanism relies on a 

Sequential Proton Loss and Electron Transfer (SPLET). SPLET proceeds first by a 

deprotonation of -T’s phenolic group, forming a -tocopheroxy anion, which in turn 
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transfers an electron to the radical, giving rise to the -tocopheroxy radical. In addition, tocols 

may also undergo another SPLET to form a relatively less reactive chromanoxylium cation, 

which is stable for a few hours in dry lipophilic solvents at low temperatures (Wilson et al., 

2006). Subsequent electron and proton transfers may lead to the formation of 

tocopherylquinone methide (oQM) from either the tocopheroxy radical or the tocopheroxy 

cation. Moreover, experimental systems often lead to an unusual reactivity of the 5a-methyl 

group of -T in both apolar and polar media (Goodhue and Risley, 1964; Skinner and 

Parkhurst, 1971; Suarna and Southwell, 1989). The 5a-methyl group of the chromanol 

backbone (see structure figure 1 above) is also critically involved in the formation of oQM. 

This is not observed with other tocol congeners, which are partially methylated, such as - and 

-T. These tocols show other oxidation behaviors (see vide infra). The HAT mechanism 

predominates in apolar solvents, SET and SPLET are more prevalent in polar solvents, 

whereas all three mechanisms may coexist in micellar or heterogeneous systems (Najafi et al., 

2011 ; Wang et al., 2019). Figure 3 depicts the three main possible intermediates obtained that 

will lead to α-T oxidation products. 

Generation of oQM is governed by the type of oxidant used, solvent polarity and its 

hydration state (Rosenau et al., 2007a). oQM contains an , -ethylenic ketone which may be 

converted via a 1,4‐addition with nucleophiles, into covalent quinone-Nucleophile residues. In 

addition, hetero‐Diels‐Alder reactions may also occur and usually give rise to α‐T dimers and 

trimers (Nilsson et al., 1968a,b; Schröder and Netscher, 2001; Rosenau et al., 2002). 

-TO· forms resonance-stabilized tocopherol radicals, and amongst these forms the 

position 8 is predominant (this is depicted in the figure 4). -TO• are stable enough to inhibit 

the formation of another radical and to stop the propagation of a chain reaction. -TO• may 

give rise to different metabolites. The major metabolites are 8a-lipiddioxy-α-tocopherone (I), 

8a-alkoxy-α-tocopherone (II), their hydrolysis products 8a-hydroxy-α-tocopherone (III) and 

8a-hydroxyperoxy-α-tocopherone (IV), and the end product α-tocopherylquinone (α-TQ, V). 

When the amount of dioxygen (O2) is limiting, -T can react directly with the alkyl radicals 

in position C-6 instead of position C-8a to give 6-O-α-tocopheryl ethers (VI) in appreciable 

amounts. Another group of -TO• metabolites are C-4a/C-5-epoxy-8a-hydroperoxy-α-

tocopherone (VII), C7/C8-epoxy-8a-hydroperoxy-α-tocopherones (VIII) and their respective 

hydrolyzable products α-tocopherolquinone-2,3-oxide (α-TQE1, IX) and α-

tocopherolquinone-5,6-oxide (α-TQE2, X). Furthermore, α-T may also undergo a self-
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coupling reaction to form α-tocopheryl spiro-dimers (XI), α-tocopheryl ethano-dimers (XII) 

and α-tocopheryl spiro-trimers (XIII) (Kamal-Eldin & Appelqvist, 1996; Liebler et al., 1996; 

Rosenau et al., 2002, 2005, 2007a,b, 2009; Kamal-Eldin et al., 2008). Compounds X-XII 

display antioxidant activities (Csallany, 1970; Yamauchi et al., 1988). The formation of 5-

alkyloxy-7,8-dimethyltocol (XIV) is also observed. The manifold of vitamin E oxidation 

products described in this review is depicted in Figure 5. 

From a mechanistic point of view, some interesting features can be reported: Two α-

TO•s may combine either to form a non-radical product (recombination) or may also lead 

through a disproportionation reaction to the parent α-T and oQM. α-T can give hydroxy- and 

peroxyketal tocopherones (Winterle et al., 1984; Rosenau et al., 2007b), spiro-dimers (XI) and 

spiro-trimers (XIII) with good yields via o-QM and the respective Diels Alder reaction, 

mainly in inert and aprotic solvents (Suarna et al., 1988; Krol et al., 2001; Schröder and 

Netscher, 2001; Rosenau et al., 2007a,b). A revisited mechanism involved in the formation of 

these dimers and trimers as well as in the formation of the 5-alkyloxy-dimethyltocol has been 

solved by Rosenau et al. 2007b. This reaction proceeded via a heterolytic reaction with oQM 

as an intermediate, ruling out the occurrence of 5a-C-centered radical intermediates as earlier 

proposed (Goodhue and Risley, 1964; Nilsson et al., 1968a; Suarna et al., 1988). 

Furthermore, several other reactions may also be in competition hence limiting the 

antioxidant capacities of tocols. Solvolysis is a crucial contributor in tocol oxidation 

processes. Indeed, protic solvents may interact with phenols, hence preventing the interaction 

of phenolic OH with radicals (Iwatsuki et al., 1994). As an example, with ethanol as a solvent, 

α-T gives rise to 8a-ethoxy-tocopherone (XV) (Svanholm et al., 1974; Jore and Ferradini, 

1985; Sumarno et al., 1987; Suarna and Southwell-Keely, 1989; Litwinienko and Ingold, 

2007; Reichardt and Welton, 2011; Losada-Barreiro et al., 2015). 

The regeneration of α-TO• is often done by reducing agents such as vitamin C (Scarpa 

et al., 1984; Liebler et al., 1986, 1992). Vitamin C itself is either regenerated by reduced 

glutathione, cysteine or dihydrolipoic acid as intermediates (Niki et al., 1982; Constantinescu 

et al., 1993, Traber et al., 1994). α-TO• can either be regenerated by nordehydroguaiaretic acid 

(NDGA) (Liebler and Burr, 1992), ubiquinols (Niki, 1997; Stoyanovsky et al. 1995) and 

bilirubin (Neuzil and Stocker 1994; Bowry et al., 1995), but at a slower rate than vitamin C. 

Moreover, in vivo, Vitamin E may also be regenerated via a continuous supply of food 

antioxidants such as polyphenolic compounds. If -T is not regenerated, kinetic evidence 
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shows that it reacts with peroxy radical generating systems. This can be seen in vitro with a 

homodimeric thermolabile azometabolites, containing an N = N double bond, that may 

undergo a temperature-dependent homolysis through first-order kinetics in the presence of α-

TO•, thereby generating nitrogen and peroxyl radicals in aerobic systems. The most widely 

used azo compounds include 2,2'-azobis[2,4-dimethylvaleronitrile] (AMVN), 2,2'-azobis[2-

amidinopropane]hydrochloride (AAPH) (Yamauchi et al. 1997), 2,2-diphenyl-1-

picrylhydrazyl (DPPH) (Tsuchija et al., 1983; Musialik and Litwinienko, 2005) and 2,2'-

azobis(isobutyronitrile) (AIBN) (Skinner and Parkhurst, 1971; Mill et al., 1980). Unlike 

dialkylperoxides (ROOR’) or alkylhydroperoxides (ROOH), these azometabolites do not react 

with themselves or with the solvent (Mill et al., 1980, Winterle et al., 1984). On the other 

hand, thermolysis or photolysis dissociation of dialkylperoxides or alkylhydroperoxides are 

also used as initiators and immediately lead to the formation of two oxyradicals with a very 

high affinity for hydrogens. This is often illustrated by di-t-butyl hydroperoxide (DTBP) and 

t-butyl hydroperoxide (TBHP). TBHP decomposed more readily in polar than in apolar 

solvents (Stannett and Mesrobian, 1950). In apolar solvents, polytocopherols such as dimers 

and trimers have been characterized in appreciable amounts in the autoxidation of -T with 

unsaturated lipids (Csallany et al., 1970; Yamauchi et al., 1988). In polar protic solvents, 

TBHP could immediately oxidize -T and solvolysis via a chromanoxylium cation led to the 

formation of 5a-ethoxymethyl-7,8dimethyltocol (XVI), α-TQ (V) as well as 5-formyl-7,8-

dimethyltocol (XVII). In addition, -tocopherol spiro-dimers (XI) and trimers (XIII) were 

also observed but not as much as in apolar solvents (Suarna and Southwell-Keely, 1989; 

Suarna et al., 1992). 

Furthermore, the reaction of -T with less reactive peroxides such as ditertbutyl 

peroxy radicals leads mostly to a mixture of epoxytocopherones (Matsumoto et al., 1986; 

Matsuo et al.,1989; Liebler et al., 1990, 1992). Under aerobic conditions, Oxygen-centered 

peroxyl radicals (LOO.) derived from AMVN in hexane, acetonitrile or in liposomes, react 

respectively with α-TO• at the C-8a position, to give 8a‐(lipid‐dioxy)--tocopherone (I), 8a-

(hydroxy)--tocopherone (III), and their hydrolysis product α-TQ (V). Interestingly, the three 

systems also provide epoxytocopherones (VII and VIII) and their respective hydrolysis 

products 2,3-epoxy-α-tocopherolquinone (IX) and 5,6-epoxy-α-tocopherolquinone (X) along 

with a small amount of 8a-(1-cyano-1,3-dimethyl)butylperoxy-α-tocopherone 

diastereoisomers (XVIII). The content of tocopherones compared to epoxytocopherones is 
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dependent on the microenvironment of the medium although the yield of the α-TQ end 

product appears to be similar in the three different systems (Liebler et al., 1990, 1994, 1995, 

1996). The reaction performed in hexane gave 8a-substituted tocopherone adducts in 

appreciable amounts compared to the reaction performed on liposome systems which were 

found to give higher amounts in epoxytocopherones (Liebler and Burr, 1995). In another 

report, α-T is oxidized in the presence of AMVN in polar protic solvents such as ethanol, and 

led to other epoxytocopherone stereoisomers such as 4a,5-epoxy-8a-ethoxy-α-tocopherone 

(XIX), 7,8-epoxy-8a-ethoxytocopherone (XX) and 8a-(1-cyano-1,3-dimethyl)butylperoxy-α-

tocopherone (XVIII) (Yamauchi et al., 1989). 

Liebler et al. (1990, 1992) demonstrated two distinct pathways of different origins 

respectively for the formation of 8a-(lipidioxy)-α-tocopherone derivatives compared to the 

epoxytocopherone systems either in homogeneous systems or with liposomes. These two 

systems resulted from two competing reactions between α-TO• and peroxy radicals. Moreover, 

unlike the formation of tocopherone diastereomers which were directly involved in the 

antioxidant activity of α-T, epoxytocopherones were not and may occur only by autoxidation 

of α-T probably by a four-electron oxidation. 

In other reports, the oxidation of -T by methyl linoleate hydroperoxide generating 

systems, entails the formation of stable products such as -TQ, as well as the formation of 

dimers and trimers (Csallany et al, 1970; Yamauchi et al, 1988). In addition, with methyl 

linoleate-AMVN-derived peroxyl radicals, the primary products formed include 8a-(lipid-

dioxy)--tocopherones, four stereoisomers of methyl-13-(8a-peroxy--tocopherone)-

9(Z),11(E)-octadienoate and four others of methyl-9-(8a-peroxy--tocopherone)-10(E),12(Z)-

octadienoate (an example of structure (XXI) is depicted in fig. 5) (Yamauchi et al., 1990). 

The thermolytic incubation at 37 °C of liposomes containing -T with AMVN as an 

initiator, led to the formation of 8a-(1-cyano-1,3-dimethyl)butylperoxy-α-tocopherone (Fig. 5, 

XVIII), 8a-(hydroperoxy)tocopherone (Fig. 5, IV), -TQ (Fig. 5, V), 4a,5-epoxy-8a-

hydroperoxytocopherone (Fig. 5, VII), 2,3-epoxy--tocopherol quinone (Fig. 5, IX), and 5,6-

epoxy-a-tocopherol quinone (Fig. 5, X) (Liebler et al., 1991). Yamauchi et al. (1994, 1996, 

1998), showed that α-T suppressed the formation of different hydroperoxides formed in 

liposomes using the lipophilic AMVN or the hydrophilic AAPH radicals as initiators. For 

example, multilamellar liposomes of dilinoleoyl phosphatidylcholine (DLPC) liposomes 
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containing small amounts of -T (0.1 mol %) incubated with AMVN as an initiator, led to the 

production of a mixture of 8a-alkyldioxy-α-tocopherones as major products.  

Epoxytocopherones and their respective stable end-products were also detected. Amongst 

these products, α-TQ, epoxytocopherones 2,3 oxide and tocopherone 5,6 oxide, and DLPC-

derived 8a-(lipid-dioxy)-α-tocopherones were formed with the mechanism described above 

for the methyl linoleate model. Indeed, peroxyl radical liposomes react with the α-

tocopheroxy radical in position C8a. The central Sn-2- position of phospholipids was more 

subject to oxidation compared to the external Sn-1,3 positions of the glycerol moiety (Neff 

and ElAgaimy, 1996). In addition, the most labile allylic proton at C-11, in the Sn-2 position, 

generated a carbon-centered radical by transfer of a hydrogen in C-9 or C-13 respectively. As 

an example, one isomer formed is the 1-linoleoyl-2-[13-(8a-dioxy-(α-tocopherone)-

9(Z),11(E)-octadecadienoyl]-3-sn-phosphatidylcholine (DLPC-derived 8a-(lipid-dioxy)-α-

tocopherones (XXII)) (figure 5). No evidence for the formation of such a compound has been 

found in vivo. The 8a-(phospholipid-dioxy)-α-tocopherones were indeed deemed degraded to 

produce α-tocopherylquinone (Yamauchi, et al., 1994, 1996, 1998). 

Lipid hydroperoxides may be decomposed into free radicals through a transition metal 

catalysis (Halliwell and Gatteridje, 1984; Sevanian & Hochstein, 1985). Iron III complex-

catalyzed decomposition of methyl 13(S)-hydroperoxy-9(Z),11(E)- octadecadienoate with α-T 

in aerobic homogeneous solutions has been studied by Yamauchi et al., (1995). They report 

that the lipid alkoxyl radicals that are generated tend to rearrange into carbon-centered 

epoxyallylic radicals, which are then added to the 8a-carbon radical of α-T. The 

8a‐(epoxylipid‐dioxy)‐α‐tocopherone products that are formed include 4a,5-epoxy8a-

hydroperoxy--tocopherone and an ‐tocopherol dimer along with two stereoisomers of 

methyl (13S)‐(8a‐dioxy‐‐tocopherone)‐(9Z,11E)‐octadecadienoate, four stereoisomers of 

methyl-9‐(8a‐dioxy‐‐tocopherone)‐(12,13)‐epoxy‐(10E)‐octadecenoate and four 

stereoisomers of methyl-11‐(8a‐dioxy‐‐tocopherone)‐(12,13)‐epoxy‐(9Z)‐octadecenoate (an 

example of structure (12S, 13S, XXIII) is depicted in figure 5) (Yamauchi et al., 1995). 

Although in human LDL, α-T does not provide any protection against oxidation of the 

cholesterol-esterified linoleate (Kim et al, 2005), the in vitro peroxidation of LDL lipids 

generates hydroperoxides mainly from cholesteryl linoleate (Ch18:2). 9- and 13-

hydroperoxides with trans, cis conjugated diene were formed as the major oxidation products 

if endogenous α-T was present in the LDL (Horton and Fairhurst, 1987; Frei et al., 1988; 
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Kenar et al., 1996). Oxidation products of α-T with peroxyl radicals generated by iron-

catalyzed decomposition of Ch18:2 hydroperoxides (Ch18:2-OOH) in homogeneous systems, 

have been investigated (Yamauchi et al., 2002). The results indicated that the peroxyl radicals 

from CH18:2-OOH react with the 8a-carbon radical of α-T to form addition products such as 

cholesteryl (8a-dioxy-α-tocopherone)-epoxyoctadecenoates (4 isomers) along with cholesteryl 

(8a-dioxy-α-tocopherone) octadecadienoates (2 isomers), these are illustrated by structures 

XXIV and XXV, depicted in figure 5 (Yamauchi et al., 2002). 

During lipoperoxidation, research on other congeners (γ- and -), which were not fully 

methylated gave somewhat other insights into their oxidation products as well as their 

antioxidant potentials. Similar tocopherones were formed, albeit in smaller amounts than for 

the α-form, including 8a-(alkyl-dioxy)-γ-tocopherones (XXVI) and 8a-(alkyl-dioxy)--

tocopherones. Self recombinations of γ- and - tocopheroxy radicals led to the formation of 

other dimer types that still have potent antioxidant activities by means of their free hydroxy 

protons. More specifically, the emerging products from the γ-form include, in addition to 8a-

(lipid-dioxy)-5-(γ-tocopheroxy)-γ-tocopherone (XXVII), the γ-tocopherol diphenylether 

dimer (γ-TED, XXVIII), 5-(γ-tocopheroxy-5-yl)-γ-tocopherol (γ-TBD, XXIX) along with γ-

tocored (XXX) and γ-tocopherylquinone (γ-TQ, XXXII) (Komoda & Harada, 1969; Fujitani 

& Yukagaku, 1984 ; Yamauchi et al., 1997). Tocored (XXX) is an intense bright orange-red 

metabolite, which may also be formed from the fully methylated chroman moiety of α-T due 

to the unusual cleavage at the 5a-methyl group site of α-T (John et al., 1939 ; Komoda and 

Harada, 1970). The exact mechanism responsible for its formation was elegantly deciphered 

by Rosenau et al. 1997. Compared to the γ-form, similar results have been reported with δ-T, 

however, no evidence on the formation of δ-TBD compared to γ-TBD, has been reported in 

the autoxidation of methyl linoleate with the AMVN peroxyl radical generating system 

(Yamauchi et al. 1997). 

 

Vitamin E oxidation products with other radicals and oxidants 

At a first glance, in the absence of other lipid co-substrates, tocol oxidometric assays 

have been achieved in strong acid media or using conventional reagents based on transition 

metals (3d) and lanthanides (4f) which may form colored compounds. Indeed, the 
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oxidizability of the 6-hydroxychroman ring of α-T and δ-T with metal ions generates the 

corresponding 1,4- Benzoquinones (John et al., 1939 ; Frampton et al. 1954 ; 1960 ; Skinner 

& Parkhurst, 1971, Khallouki et al, 2016). When the oxidation was carried out in boiling 

alcohol, it gave tocored, amongst other minor metabolites including hydroxy-p-quinone 

(tocopurple, XXXI). The oxidation of α-T with ferric chloride, was earlier the basis for 

precise and simple reactions to carry out in clinical routine assays to help characterize 

tocopherols colorimetrically (Emmerie and Engel, 1939; Martinek, 1964). More interestingly, 

a mild oxidation of α-T with alkaline ferricyanide K3Fe(CN)6, a red crystalline and hydrophilic 

solid oxidant of α-T, caught the attention of several biochemists due to its probable 

resemblance with in vivo vitamin E oxidation, which generates α-T dimers and trimers (Nelan 

and Robeson, 1962; Schudel, 1963; Skinner and P. Alaupovic, 1963; and Nilsson et al., 

1968b). 

A metastable state of oxygen such as singlet oxygen confers it dienophilic properties. 

It can be either quenched physically or chemically by other species to return to its ground 

state, or react via 1,3-addition, as well as [4/2] cycloaddition in a similar manner to the 

Diels/Alder reaction. From a kinetic point of view, α-T reacts favorably with singlet oxygen, 

but to a lesser extent with oxygen superoxide. Singlet oxygen may also originate from 

multiple substrates including anion superoxide, ozone, hydrogen peroxide, enzymes and 

sensitizers amongst many others (Krinsky, 1989). When it reacts with α-T, it yields α-TQ and 

TQE (Grams, et al., 1972; Clough et al., 1979; Neely et al., 1988; Sies et al., 1994). The 

reaction of α-T with superoxide ion (O2
-.) in aprotic solvents was different from that observed 

under protic conditions (Kaiser et al., 1990; Ha and Csallany, 1992). In line with this, it may 

act either as a nucleophile (Dietz 1970) or as an electrogenerated base (EGB) (Sugawara et 

al., 1983). The reaction of α-T with superoxide anion O2
.- in a protic solvent is very slow 

(Nishikimi and Machlin 1975). In aprotic solvents, it produced two unique tocopherone 

isomers, hydroxylated at the position C7, both were stereoisomers of 7-hydroxy-8,8a-epoxy-

α-tocopherone (XXXIII). However, under protic conditions (10% water in acetonitrile), the 

reaction with α-T produced compounds such as α-TQ, α-tocopherol dimer, and α-tocopheryl-

quinone-2,3-epoxide (Ha and Cssalany, 1992). In addition, Matsumoto and Matsuo (1977), 

used a rare oxidizing and drying salt of superoxide anion O2

-. in a reaction with an analog of 

α-T (6-hydroxy-2,2,5,7,8-pentamethylchroman) in aprotic polar tetrahydrofuran. With this 

system, they were able to hydroxylate the C-5 of the chroman ring. The same behavior was 

described by oxidation with bromine of α-T inducing the formation of 5-bromomethyl--
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tocopherol (XXXIV) (Rosenau and Habisher, 1995). The oxidation of α-T with organic 

oxidants such as N-bromosuccinimide or with quinone reagents, led to the formation of 8a-

hydroxy-α-tocopherone (IV) (Durckheimer and Cohen, 1964). The same compound has been 

detected as the main product in a micellar system, in which α-T was dispersed in an aqueous 

media with deoxycholate as an emulsifier and oxidized by xanthine-xanthine oxidase, a 

system that mostly generated superoxide anion and hydroxyl radicals (Nishikimi et al., 1980). 

All tocols except the fully methylated α-T and α-tocotrienol (α-T3) react with nitrous 

acid. γ-T forms 5-nitro-γ-tocopherol (tocoyellow) which is a yellow nitro compound 

(Brigelius and Traber, 1999; Cooney et al. 1993). Dimers -TED and -TBD have also been 

formed with 2%  triethylamine oxide (TMAO) in a methyl linoleate system (Ishikawa et al., 

1978). 

Thermal oxidation of α-T in hexane may readily lead to α-TQ, 5- formyl-γ-tocopherol 

(5-F-γ-T), as well as spirodimers and spirotrimers and the formation of -T was also observed 

(Büsing and Ternes, 2011 ; Kreps et al., 2016). The thermal decomposition of other forms of 

tocols such as α-T3, which is the least thermostable Tocotrienol vitamin, with the highest rate 

of degradation (Piironen 1988; Ko et al., 2010), led to the formation of oxidation products 

similar to the α-T congener. These include 7-formyl-β-tocotrienol (XXXV) and 5-formyl-γ-

tocotrienol (XXXVI) as well as α-tocotrienol dihydroxydimers (XXXVII) as major products 

alongside α-tocotrienol quinone (XXXIX), α-tocotrienol spiro-dimers (XXXVIII) and α-

tocotrienol spiro-trimers (XL) (Busing and Ternes, 2011). More recent insights into the 

oxidation products of the eight forms of tocols thermally stressed in an apolar solvent such as 

hexane, have also been performed and comprehensively reported by Drotleff et al. (2015). 

Vitamin E oxidation products in oils 

Different findings as to the decomposition of tocols at high temperature in oils have 

been reported both in natural oils and in tocopherol-stripped oils. 

The formation of TQ, Epoxy-tocopherylquinone and α-Tocotrienylquinone epoxides 

as well as tocored rather than Tocopherones, have often been detected (Murkovic et al., 1997; 

Verleyen, 2001; Nagy et al 2007; Büsing and Drotleff, 2012; Niki, 2019), whereas photo-

irradiation of extra virgin Olive Oil entailed the formation of tocopherone stereoisomers with 

no TQ observed (Tanno et al., 2020). Tocored was also reported to be a strong natural 
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antioxidant useful for oil preservation and especially suitable for lipid based food substrates 

(Komoda and Harada, 1969; Zheng et al., 2020). Tocored was reported to be present for the 

first time in cottonseed oil (Golumbic, 1942), in germ oil (Swift et al., 1944; Komoda and 

Harada, 1969) as well as in soybean oil (Komoda et al., 1967). The concentration of tocored 

in soybean was found to be moisture-dependent, and could reach 102.2 mg kg−1 (Komoda et 

al., 1967). Tocopherylquinone is a major oxidation metabolite present in oils. It may 

accumulate as the plant’s response to biotic as well as abiotic stress including drought, 

thermal stress, and leaf age (Kruk et al., 1995, 2005; Munne-Bosch, 2005). At high thermal 

oxidation or cooking, -TO• undergoes a self-coupling to produce dimers and trimers in corn 

oil, and mixed dimers with two different tocopherols and tocotrienols have also been reported 

(Nilsson et al., 1968b). However, these products were not subsequently observed and this was 

probably due to the different dimerization kinetics observed for each tocol analog (Gutfinger 

and Letan, 1972; Niki, 2019). 

Vitamin E oxidation products in biological samples 

Oxidation products of vitamin E have also been detected in the urine and plasma of 

animals and humans, in cell cultures, in human atherosclerotic lesions amongst many other 

biological samples, and some are reported here (Csallany and Draper, 1962; Hughes and 

Tove, 1980; Vatassery et al., 1993; Wurzel et al. 1995; Jain et al., 1996; Yanagawa et al., 

1999; Terentis et al., 2002; Mangialasche 2013a; Torquato et al., 2016). It is worth noting that 

numerous biological systems are able to reduce tocopherylQuinone to 

tocopherylhydroQuinone (TQH2) and this reaction may occur normally in vivo (Kohar et al., 

1995). Moreover, α-T is not the sole precursor of α-TQ, there is also a proof of concept that α-

TQ can also be biosynthesized even in the absence of α-T, in normal human plasma, and in 

animal tissues. The concentration of α-TQ remains smaller compared to the parent compound 

due, in part, to the recycling of -TO• into α-T. In vivo studies have shown that α-TQ and its 

epoxide derivatives did not alter the antioxidant status in rat liver tissues. This clearly 

indicates the presence of an efficient reductase that catalyzes α-TQ into α-TQH2 via the 

epoxide forms. The reductase was identified as the NAD(P)H:quinone oxidoreductase 1 

(NQO1) (Siegel et al., 1997; Leray et al., 1998; Mayhoub et al., 2012), or as thioredoxin 

reductase with varying potencies (Fang et al., 2005; Gregor et al. 2006). α-TQ behaves like a 

redox‐cycling agent. It may act as an antioxidant after its conversion in biological systems to 

its reduced form α-TQH2. α-TQH2 acts as a potent radical-scavenging agent and is more 
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active than ubiquinol (a reduced form of coenzyme Q), or its parent molecule α-T (Kruk et al., 

1993; Kohar et al., 1995; Neuzil et al., 1997; Shi et al., 1999; Niki, 2007; Shrader et al. 2012). 

α-TQH2 can be re-oxidized into α-TQ, hence constituting a quinone/hydroquinone 

antioxidant redox system as illustrated in figure 6 (Niki et al., 1984; Mukai et 1993; Shi et al., 

1999; Itoh et al., 2007). 

In experimental models of isolated rat liver mitochondria as well as in perfused rat 

liver, the reaction of α-T with AAPH or with tertbutylhydroperoxide, generated α-TQ, α-

TQH2 and epoxyquinones, with no evidence of the formation of 8a-(lipid-dioxy)-α-

tocopherones) (Ham & Liebler, 1992, 1997). In lipid bilayers, 8a-hydroperoxytocopherones 

were detected as very minor products throughout peroxyl radical-mediated oxidations 

(Matsuo et al., 1989). It has also been reported that in rat, chick and earthworm tissues, a rare 

2,5,6-trimethyl-3- (farnesylfarnesylgeranyl-geranyl)1,4-benzoquinone was formed following 

α-T side-chain oxidation and elongation (Martius and Purer (1963)). In bovine muscle 

microsome systems, as well as in chilled and frozen fish muscle, the presence of α-TQ along 

with epoxytocopherones as the main α-T oxidation products respectively was reported 

(Faustman et al. 1999; Pazos and Medina, 2005). In isolated LDL, the main oxidation product 

of α-T was α-TQ alongside 5,6-epoxy-α-tocopherylquinone (α-TQE1) and its hydrolytic 

product 2,3-epoxy-α-tocopherylquinone (α-TQE2) (Terentis, et al., 2002). The presence of a 

phosphorylated form of α-T, although present in small quantities in various biological 

samples (plasma, tissues), suggested the existence of an α-tocopherol kinase/phosphatase, 

which remains to be identified (Zingg et al., 2010). 

Furthermore, from a nitrative stress point of view, in mammals, large quantities of 

Nitric Oxide (NO.), are generated through the oxidative deamination of arginine by iNos 

synthase catalysis (Marietta et al., 1988; Nathann 1992; Chiueh et al., 1999). NO. is a mixed 

hydrosoluble/liposoluble gas highly diffusible in cell membranes from the vascular system. At 

high concentrations, NO. quickly interacts with the superoxide anion radical to produce the 

toxic peroxynitrite  (ONOO─) anion, which is a powerful oxidant of biological tissues (Radi et 

al., 1991; Ischiropoulos et al., 1992). This entails the formation of two radicals: a hydroxyl 

radical and a nitro radical, at physiological pH. Unlike the full methylated α-tocopherol, the 

5th position in the -T is unoccupied on the chromanol ring, and may undergo facile 

electrophilic or nucleophilic susbtitution reactions, which explains why 5-nitro--tocopherol 
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(5-NO2--T, XLII, fig. 5) is produced (Cooney et al., 1993; Hoglen et al.,1997; Christen et 

al.,1997; Hensley et al., 2005). 5-NO2--T was not detected in human LDL possibly due to the 

regeneration of -T by -T (Beckman and Koppenol, 1996; Umeno 2017; Morita et al., 2019), 

although it has been observed in vitro by the treatment of lipoproteins with peroxynitrite and 

in lipopolysaccharide-stimulated rat astrocytes (Christen et al., 1997, 2002). In vivo, 5-NO2--

T and its probable metabolites are possible biomarkers of the formation of reactive nitrogen 

species. Indeed a number of studies have reported increasing levels of 5-NO2--T in smokers 

and sick individuals with metabolic syndromes associated with elevated nitrative stress 

(Christen et al., 1997; Morton et al., 2002; Williamson et al., 2002; Leonard et al., 2005; 

Devaraj et al., 2008). In addition, 5-chloro--tocopherol may also be formed due to the action 

of Hypochlorous acid (HOCl), both products are considered as specific biomarkers of 

nitrative and oxidative stress respectively. In vivo, HOCl, which is generated by stimulated 

neutrophils during inflammation and infection, may also react with -T as well as -T to 

produce -TQ and -TQ respectively (Eiserich et al. 1996; Nguyen and Southwell-Keely, 

2007). 

Although some studies showed no evidence of the formation of dimers or trimers 

(Plack and Bieri (1963, 1964)), other researchers succeeded in their isolation from 

mammalian livers and spleens (Csallany et al, 1963a,b; Mellors and Barnes, 1966; Draper et 

al., 1966; Strauch et al., 1969). In mouse skin irradiated by UV, the topical application of α-T 

induced the formation of α-T dimers as major photoproducts (Kramer-Stickland et al., 1999). 

 

In vivo Vitamin E Catabolites 

If tocols are oxidized at the level of their chroman cycles in vitro (see vide supra), their 

phytyl side chains still remain stable against chemical attacks (Rosenau et al., 2007a, 2009). 

However, in vivo vitamin E isoforms are catabolized at different rates in the liver to produce 

α-, β-, γ-, and δ-carboxyethylhydroxychromanol (CEHC). The formation of various tocol 

metabolites through the side chain oxidation pathway, has also been detected in plasma and 

cell cultures (Sontag and Parker, 2002; Jiang et al., 2007, 2015). This biotransformation is 

catalyzed by phase I enzymes, much like tocopherol ω-hydroxylase activity, which is 

associated with microsomal cytochrome CYP4F2 and CYP3A4. These enzymes catalyze the 

-hydroxylation of the methyl terminal, and susbsequently, a microsomal dehydrogenase 

oxidation step led to 13’-hydroxychromanol (13’-OH) and 13’-carboxychromanol (13’-
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COOH) production (Birringer, 2001). The oxidative chain-shortening reactions leading to 

these products consists in five cycles of β-oxidation. Two steps occur in peroxisomes and 

three occur in mitochondria. Each β-oxidation cycle cleaves a two carbon moiety from the 

main side chain to give 3′-COOHs as end products, and mid or shorter-chain 

carboxychromanols such 11′-, 9′-, 7′- and 5′-COOHs (Birringer et al., 2001, 2002; Sontag and 

Parker, 2002; Mustacich et al., 2010; Jiang et al., 2015; Bartolini et al., 2021). These 

metabolites have intact ring structures illustrating their non participation in the antioxidant 

activity of tocols (Schultz et al. 1995; Galli et al., 2002, 2004; Freiser et al. 2009). Long 

chains of -T metabolites are depicted in figure 7. 

The enzyme kinetics necessary to form carboxy chromanol derivatives depend on the 

presence of their other isoforms as well as their respective concentrations (Devaraj et al., 

2008). α-T is metabolized by Cyp3A4 (Birringer et et al., 2001), while Cyp4F2 preferentially 

oxidizes γ-T and -T (Sontag and Parker, 2002; Leonard et al., 2005). CEHC (3’-COOH) 

predominates in human plasma and stems essentially from γ-T oxidation (up to 10 µM) 

(Burbank, 2017). Long chain carboxychromanol 11′-COOHs from -T and γ-T forms were 

found in the plasma of rodents (Jiang et al., 2015), while - and γ-13’COOH were found in 

mice feces (Jiang et al., 2013). In parallel, these compounds can be found in bioconjugated 

forms in plasma, bile, feces or urine. Sulfated, glucuronidated forms were found in animal and 

human urine (Chiku et al., 1984; Swanson et al., 1999; Schultz et al., 1995; Zhao et al., 2010; 

Li et al., 2008) as well as in human plasma (Jiang et al., 2007; Freiser et al., 2009). 

Glucosidated forms were reported to be present in mouse urine (Cho et al., 2009) and 

unconjugated forms were detected in feces (Zhao, 2010; Pein et al., 2018). 

Studies in humans using deuterium-labeled α- and γ-T demonstrated faster plasma γ-T 

disappearance and greater γ-metabolite production (Leonard et al 2005). γ-T is indeed rapidly 

converted by the liver in a cytochrome P450-dependent manner to its water-soluble 

metabolite γ-carboxyethyl hydroxychroman (γ-CEHC) in a free or bioconjugated form. These 

forms have been proposed to be those expected to exert beneficial biopotencies in vivo as well 

as at the cellular level. 

Large dose α-T dietary supplementation in humans and animals gives rise to the 

production of sulfated or glucuronide derivatives that can be found in urine. These are known 

as “Simon” metabolites. These are yellow oils, considerably more polar than α-T or any of its 
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known oxidation products and are slightly soluble both in water and in lipophilic solvents. 

These metabolites were identified as α-Tocopheronic acid, α-tocopheronolactone and γ-

tocopheronolactone (Simon, 1955; Pan et al., 2008). These metabolites were first thought to 

be artefacts formed under high dietary supplementation and only side-products under 

physiological conditions (Krishnamurthy and Bieri, 1963; Schultz et al., 1995). Interestingly, 

their is a certain analogy in the degradation of tocol side chains with the bile acid catabolism 

of cholesterol which leads to the formation of cholic acid (Bloch et al. 1943). Recent studies 

reported that α-TQ undergoes a similar ω-oxidation to that of α-T, catalyzed by the same Cyp 

enzymes (Shrader et al. 2012; Taylor et al., 2018). The catabolism of α-TQ is correlated with 

the human urine content of conjugated α-tocopheronolactone (Pope et al., 2002; Sharma et al., 

2013). α-tocopheronolactone is the final metabolite from the αTQ-ω-oxidation pathway. The 

proposed pathway depicting the fate of α-TQ is shown in the figure 8. 

In humans and mice, α-carboxyethylhydroxychroman (α-CEHC) glycine and its 

glucoronide form as well as α-CEHC taurine have also been characterized as urinary 

metabolites and α-CEHC glutamine has been detected in the urine of mice (Johnson et al., 

2012). 5-(6-Hydroxy-2,5,7,8-tetramethyl-chroman-2-yl)-2-methyl-pentanoic acid (α-

CMBHC, XLI, fig. 5) was also characterized in human urine as a minor metabolite (Pope et 

al., 2001). 

 

Biological and Medical Significance of Vitamin E oxidation Metabolites  

Vitamin E is proposed to act through a non-specific antioxidant mechanism via its 

catabolites. Studies on the biological significance of tocol catabolites have been reviewed in 

several reports. This includes anti-inflammatory, anti-atherogenic and chemopreventive 

activities as well as cytotoxicity, apoptosis and activation of several signaling pathways at the 

cellular and molecular level. These effects were found to be more potent with vitamin E 

catabolites than their unmetabolized precursors (Jiang et al., 2014; Galli et al., 2017; Schubert 

et al. 2018; Jiang et al., 2019). 

In biological systems, the best surrogate indicators associated with oxidative and 

nitrative stress are α-TQ and 5-NO2--T (tocoyellow) as well as their ratios α-TQ/α-T and 5-

NO2--T/-T which are also used as biomarkers and were found to be associated with some 
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debilitating conditions such as ischemia/reperfusion (Murphy et al., 1992), Alzheimer's 

disease (Ravaglia et al., 2008; Mangialasch et al., 2012, 2013a,b; Casati et al. 2020), 

hypercholesterolemia (Ballard et al. 2016), coronary diseases (Morton et al., 2002) and para-

physiological states (Mottier et al., 2002). Other data showed that bioprenylquinones may 

monitor changes in the physical properties of the lipid bilayer (Cain et al.. 1972; Spisni et al. 

1978; Fato et al., 1986). Bioprenylquinones are produced by mitochondria and peroxysomes, 

which could mediate their effects since they are known to control cell cycle regulation, 

apoptosis, inflammation as well as cytotoxicity or cytoprotection. 

α-TQ was found to be the major tocopherylquinone in vivo compared to γ-TQ (Kiyose, 

2001). This may be explained, as proposed by Cornwell’s team, by an evolutionary approach. 

Indeed poor cellular uptake of γ-T allowed the generation of only a small amount of its 

mutagenic metabolite γ-TQ (Cornwell et al. 2002). 

The exact biological roles of these bioprenylquinones have not yet been fully 

explored, although in plants, a number of studies have shown evidence that -TQ participates 

in the photosynthetic electron transport and metabolism (Itoh et al., 2001). -TQ has been 

identified as a major oxidation product of -T in atherosclerotic plaques (Terentis et al., 

2002). 

In addition, different plasma concentrations of VEOP are observed in Alzheimer’s 

disease (AD) and were related to cognitively healthy subjects. Humans exhibited a broad 

inter-individual fluctuation in leukocyte telomere length (LTL) that is strongly correlated with 

age, sex, heredity, as well as with lifespan. The levels of α-TQ/α-T and 5-NO2--T/-T ratio, 

were significantly associated with AD in patients with small Leucocyte Telomers (Casati et 

al., 2020). Moreover, in vitro, α-TQ targets multiple pathogenic factors involved in 

Alzheimer’s disease (AD). α-TQ inhibits α-amyloid aggregation, disaggregating preformed 

fibrils and decreases reactive oxygen species, NO and inflammatory cytokines levels (Yang et 

al., 2010; Mangialasche et al., 2012, 2013a). 

The cytotoxicity of Vitamin E metabolites has been broadly studied in vitro. 

Tocopherylquinone cytotoxicity can be explained either by their redox cycling properties or 

by their interactions with specific protein targets. Indeed, due to its electrophilic character, -

TQ can undergo “Michael” addition with amines and thiol residues present in proteins and 

nucleic acids. This leads to the formation of quinone-Nucleophile residues, which are 
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considered to be involved in -TQ cytotoxicity. These properties are not shared with the fully 

methylated non-arylating quinone α-TQ (Cornwell et al., 2003; Niki, 2007). Both γ-TQ and δ-

TQ are highly cytotoxic arylating electrophiles. Both compounds were reported to be highly 

cytotoxic in leukemic cells independently of their P glycoprotein status and were more potent  

than anthracyclines (Thornton et al., 1995; Cornwell et al., 1998; Jones et al., 2002; Cornwell 

et al., 2002, 2003; Sachdeva et al. 2005). α-TQ is cytotoxic against human breast 

adenocarcinoma cells ZR-75-1 (Thornton et al., 1995; Cornwell et al., 1998; Jones et al., 

2002). In another report, Wang et al. (2006) studied TQ cytotoxicity in neuroblastoma cell 

lines. They reported that unlike α-TQ or its precursor α-T, -TQ (10 mM) induced 

endoplasmic reticulum (ER) stress by activating the pancreatic ER kinase (PERK) signaling 

pathway. This pathway involves elF2α, ATF4, and C/EBP homologous protein (CHOP). 

CHOP mediated the apoptosis signaling network which is involved in several human diseases 

such as diabetes, cancer and neurodegenerative disorders.  

Androgen Receptors (AR) are members of the nuclear steroid receptor superfamily, 

which act as ligand-activated transcription factors. AR control the expression of genes 

involved in the growth, survival, and differentiation of prostate cells (Zhu and Kyprianou, 

2008). α-TQ was reported to induce anti-androgenic effects on prostate cancer cells. α-TQ 

induces a down-regulation of the AR at the protein and at the mRNA level in LAPC4 and 

LNCaP cells. This effect was associated with a decrease of androgen-induced PSA release in 

LNCaP cells. In contrast, α-TQ was inefficient on the androgen-independent cell lines Du145 

and PC3 (Thompson and MacKenzie 2008). Furthermore, Fajardo et al. (2016) reported a 

reduced prostate cancer incidence amongst male smokers, primarily associated with Vitamin 

E supplementation. This bioactivity of Vit E might also be related to the formation of α-TQ 

during chronic oxidative stress. Indeed, α-TQ but not α-T decreased the overexpression by 5-

fold of human prostate gland genes such as TM4SF1, KLK2, and PSA. 

γ-TQ (20–50 mM) was reported to induce apoptosis in other cell lines such as human 

leukemia HL-60, colon adenocarcinoma WiDr cells and murine thymoma cells in a dose- and 

time-dependent manner (Calviello et al. 2003). Such a pro-apoptotic effect was associated 

with a modification of the mitochondrial transmembrane potential, the release of 

mitochondrial cytochrome c and the activation of caspase-9. In contrast α-T and α-TQ are 

weakly cytotoxic on Human colon cancer HCT-116 and HT-29 cells, whilst  these cells are 

sensitive to  γ-TQ and δ-TQ (Dolfi et al. 2013). 
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More recently TQ and its reduced forms were reported to control ferroptosis in cancer 

cells. Ferroptosis is an iron-dependant programmed cell death acting via the redox control of 

15-lipoxygenase (15-LO) (Hinman et al., 2018), but the fine mechanism involved in this 

effect deserves further investigations. This effect may be controlled by multiple pathways that 

integrate both intra- and extracellular signals. Ferroptosis seems to play a role in critical 

adaptations to the redox metabolism in a wide array of diseases (Do Van et al., 2016; 

Stockwell et al., 2017; Wenzel et al., 2017 and Li et al., 2021). α-TQ is a more dynamic 

inhibitor of ferroptosis than its precursor α-T. α-TQ inhibits 15-LO through the reduction of 

its active non-heme Fe3+ center into the inactive Fe2+ state; hence inhibiting ferroptosis signals 

by blocking the formation of lipid peroxidation products (Hinman et al., 2018). 

A janus facet have also been ascribed to γ-TQ. Indeed, γ-TQ was cytoprotective in 

PC12 cells and immature primary cortical cells, whilst pre-treatment of these cells at sub-

lethal concentrations resulted in an increase in the levels of γ-TQH2 and glutathione. This 

effect was due to an increase of cysteine availability in an ATF4-dependent manner (Ogawa 

et al., 2008). 

Altogether these effects highlight that the efficacy of TQ metabolites to kill cells 

depends on the TQ types, the concentrations used during treatments as well as 

the cellular context. 

Apart from TQ metabolites, some studies have focused on the cytotoxicity of long 

chain metabolites of vitamin E. α-13′-COOH and δ-13′-COOH or δ-13′-OH at 20µM were 

found to be more cytotoxic than their tocopherol precursors or their short and mid–chain 

carboxychromanol oxidation products when tested on liver hepatoma Hep-G2 cells. These 

compounds induced both caspase-3 and caspase-9 activation, PARP-1 cleavage, a reduction 

of the mitochondrial membrane potential, and an increase in the intracellular and 

intramitochondrial reactive oxygen species levels (Birringer et al., 2010). δ-Tocotrienol-13’-

COOH (Garcinoic acid), first isolated from an African bitter nut Garcinia kola (Mazzini et al., 

2009), significantly suppressed the growth of human colon cancers (HCT-116, HT-29, Caco-2 

and normal epithelial cells (CCD841CoN), and appeared to induce apoptosis and autophagy 

in human cancer cells. These effects were associated with a modulation of the sphingolipid 

metabolism. δ-Tocotrienol-13’-COOH induced an increase in intracellular dihydrosphingosin, 

dihydroceramide and ceramide levels and a decrease in sphingomyelins. This modulation of 

the lipid metabolism is associated with a rapid induction of apoptosis (Jang et al., 2016). 
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Moreover, Drotleff et al. (2015) reported that an oxidized γ-tocotrienol was cytotoxic 

in the human estrogen receptor positive breast cancer cell line MCF-7. In the human colon 

adenocarcinoma cell line LS180, α-CEHC, γ-CEHC and α-13'-COOH were found to stimulate 

the expression of P glycoprotein (Podszun et al. 2017). The cytotoxicity expressed as the 

percentage of growth inhibition of different cell lines leading to the IC50 values of vitamin E 

in vivo metabolites in previously studied cancer cell lines are summarized in table 2. 

It is well established that the production of pro-inflammatory compounds are catalyzed 

by cyclooxygenases (COXs)- or 5-lipoxygenases, and several cytokines/chemokines and are 

associated with chronic inflammation in tumorigenesis (Wang et al. 2010; Ben-Neriah et al. 

2011; Grivennikov et al., 2010). 5-lipoxygenase (5-LOX)-catalyzed leukotriene and 

cyclooxygenase (COX-1/COX-2)-catalyzed eicosanoids are key regulators of inflammation 

and both play a key role in inflammation-associated diseases. Theses enzymes are potent 

targets for vitamin E metabolites. Metabolites of vitamin E in their free or sulfated forms were 

detected in the plasma and urine of both animals and humans. Long chain metabolites (LCMs) 

are excreted via the bile into the intestine and are mainly found in the feces (Bardowell et al., 

2012a, b; Jiang et al., 2013; Jiang et al. 2014). Importantly, LCMs are found in human plasma 

at nanomolar concentrations albeit with some substantial fluctuations (Wallert et al., 2014 ; 

Galli et al., 2017 ; Pein et al., 2018). Short chain metabolites (SCMs) are mainly found in 

glucoronidated forms in human urine (Swanson et al., 1999). Such compounds (LCMs) 

mediate immune functions and have been examined for their anti-inflammatory potentials. 

This field of research is a very dynamic one and deserves further investigations. Docking 

experiments suggested that 13'-carboxychromanol metabolites from all tocols bind to COX-2 

and HMG-CoA reductase yielding specific biological activities (Sarkisyan et al., 2018). In 

COX-preinduced cells with 5 µM arachidonic acid as a substrate, long-chain 

carboxychromanols, but not their vitamin E sulfated analogs, reduced COX-2 activity. 9'- and 

13'-carboxychromanol, both inhibited purified COX-2 with an IC50 of 6 or 4 μM, 

respectively. 13'-carboxychromanol was reported to be a competitive inhibitor of arachidonate 

on both COX-1 and COX-2. These compounds were found to be more potent than analogs 

with shorter side-chains and their tocopherol precursors (Jiang et al., 2008). 

In human blood neutrophils or differentiated HL-60 cells, the long-chain metabolites 

of vitamin E derived from δ-tocopherol and δ-tocotrienol were both shown to be potent dual 

inhibitors of cyclooxygenase COX-2 and 5-Lipooxygenase. In these studies, δ-Tocotrienol-
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13’-COOH (Garcinoic acid) appeared to be slightly stronger than δ-Tocopherol-13’-COOH in 

inhibiting 5-LOX with an IC50 of 2 and 0.5-1 µM respectively, but less potent in inhibiting 

COX-2 with an IC50 of 9.8 μM and 4 μM respectively (Jiang et al., 2011, 2014, 2019). 

Furthermore, δ-Tocopherol-13’-COOH decreased the cellular production of ionophore-

stimulated LTB4 in HL-60 cells (a leukotriene involved in inflammation) regardless of the 

different stimuli with an IC50 of 4-7 μM (Jiang et al., 2011). In another study, δT-13’-COOH 

was found to display an anti-inflammatory activity close to that of ibuprofen. δT-13’-COOH 

was found to be more potent than all other tested tocol analog metabolites (Grammas et al., 

2004; Jiang et al., 2008, 2014). 

More data have reported direct interactions of such vitamin E metabolites with 5-

lipoxygenase (5-LO) (Pein et al., 2018). The mechanism of α-T-13'-COOH anti-inflammatory 

potential was also revealed by Pein et al., (2018). They showed both by library screening 

(liver-on-chip) and in vitro and in vivo testing, that this compound was a potent allosteric 

inhibitor of 5-lipoxygenase in human leukocytes. α-T-13'-COOH efficiently suppressed 

inflammation within immune cells in mouse models of peritonitis and asthma. 

5-LOX is involved in the biosynthesis of lipoxins, and resolvins (Serhan et al., 2014). 

Unlike zileuton, a synthetic leucotriene inhibitor (a 5-LOX inhibitor clinically used against 

asthma), α-T-13′-COOH was found to strongly increase systemic resolvin E3 levels in mice 

with less toxicity (Pein et al., 2018). 

Apart from these bioactivities, LCMs appear to regulate lipid homeostasis and Long-

chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell 

formation in vitro which might strongly alter atherogenic processes (Wallert et al., 2014). 

In a more recent report, α-13′-COOH revealed possible antiatherogenic effects via the 

modulation of the lipoprotein lipase system which reduced VLDL-induced foam cell 

formation in THP-1 macrophages (Kluge et al., 2021). These metabolites, including Garcinoic 

acid (δ-T3-13′-COOH), were also inhibitors of lipopolysaccharide-stimulated inducible nitric 

oxide synthase (iNos) expression and Cox 2 in murine RAW264.7 macrophages (Wallert et 

al., 2015; Ciffolilli et al., 2015; Schmölz et al., 2017; Wallert et al., 2019). 

α-13'-COOH and -13'-COOH analogs activated all three PPARs in a dose-dependent 

manner, exhibiting remarkable activity (Willems, 2021). δ-T3-13′-COOH (Garcinoic acid) 



33 
 

along with other LCMs were found to be peroxisome proliferator-activated receptor PPARγ 

and pregnan X receptor (PXR) antagonists (Willems et al., 2021). δ-T3-13′-COOH is also a 

modulator of nuclear receptors involved in the β-amyloid metabolism and progression of 

Alzheimer’s disease (Marinelli et al., 2020). 

In vitro and animal (but not yet human) studies, identified -CEHC as a mild 

endogenous natriuretic factor distinct from α-CEHC. This observation may be of 

physiological importance in the regulation of the water-sodium balance by inhibiting the 

potassium channel and increasing the secretion of urinary sodium. In contrast, -T and -T 

did not exhibit such properties (Wechter et al. 1996; Murray et al., 1997; Saito et al., 2003). In 

animal studies, ‐CEHC was shown to protect against metal-induced nephrotoxicity through 

various mechanisms such as an antioxidant-based mechanism (Appenroth et al., 2001), the 

down-regulation of COX-2 and the inhibition of the anti-apoptosis protein NF-κB (Hensley et 

al., 2004; Jiang et al., 2008). ‐CEHC inhibited the expression of cyclin D1 which induced a 

cell cycle arrest in the G1 phase in prostate cancer cells (Galli et al., 2004). Moreover, 

‐CEHC may also control the neutrophil oxidative burst through the negative modulation of 

PKC-related signaling (Varga et al., 2008). Li et al. (2016) showed that ‐CEHC also exerts 

vasoprotective effects which may preserve eNOS signaling in human aortic endothelial cells 

(HAECs) subjected to hyperglycemia-like conditions by decreasing the expression of VCAM, 

E-Selectin, and IL-8. 

Along with these observations, Simon metabolites with open chroman rings were 

considered as biomarkers of the antioxidant potential of vitamin E (Simon et al. 1956). 

Although, they were first considered as artefacts formed by simple oxidation (Schultz et al., 

1995), other reports illustrated by Pope et al. (2002) provided evidence that Simon 

metabolites may be native metabolites. More recent studies underlined the importance of the 

content of α-tocopheronolactone conjugates in the urine of children with type 1 diabetes 

compared to healthy children, the contents were fifteen times greater in diabetic individuals 

(Sharma et al. 2013). 

Conclusion and future directions 

Overall, this complex study created a scientific perspective on tocochromanol 

oxidation products which may be much more diverse. There remains a growing interest to 

fully clarify the physiological functions of vitamin E as well as its janus faced effects. We 
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have attempted to cover the research available to date. Evidence suggests that VEOP are good 

candidates to exert different biological properties according to their chemical structures and 

are more active than their metabolized precursors, which suggests that the physiological 

functions of vitamin E are still not yet fully understood. 

The effect of TQ against cancer cell proliferation and the anti-inflammatory effects of 

tocol LCMs may be generated through several molecular mechanisms that deserve to be 

further investigated. Furthermore, the concentrations used for in vitro studies are far more 

elevated than those found in animal plasma and biological tissues. In addition, very little is 

known about the absorption, distribution and transport of VEOP and their putative receptors 

and other targets. The future challenge could also focus on studies of their specific 

bioavailabilities in rodents and humans and the eventual increase of their cellular uptake to try 

and improve their pharmacological properties. Furthermore, the toxicities of TQ must be 

taken into account as some compounds are electrophilic and alkylating. On the other hand, in 

vivo, if Tocopherones are formed, they might be reduced into tocopherols and thus neutralized 

through enzymatic systems that are not yet identified. Although the catabolism of 

tocopherylquinones has been analyzed in vivo and a cross-talk has been established with the 

long chains of -tocopherol and Simon products, the human catabolites of 5-NO2--T do 

warrant further investigations. 

More research is therefore needed to study the other tocopherol congeners, their 

respective metabolites formed in humans and the determination of their potentially beneficial 

role in health. Indeed, tocotrienol congeners are quite different from tocopherols. They differ 

in their chemical structures, their stereochemistry, their metabolisms and their biological 

activities. Tocotrienols have indeed the same reactivity in vitro towards free radicals as 

tocopherols, but may disseminate faster than tocopherols in biomembranes and cultured cells 

due to their unsaturated nature, their plasma levels in humans however have been much less 

studied compared to tocopherols (Hayes et al., 1993). 

The “vitaminEome” (figure 9) includes a large diversity of products of transformation 

of vitamin E components, including oxidative self-condensation products, Simon metabolites, 

side-chain and chromanol oxidation products as well as conjugation products with lipids, 

phosphate and sulfate. 



35 
 

The limitation of this study is that the  “vitaminEome” was mainly characterized 

through in vitro using and requires validation studies in human. 

A precise knowledge of the “vitaminEome” is thus important. The identification of 

actors controlling this metabolism will give pharmacogenomic data that will predict the 

impact of these dietary components on human health. Therefore, exploring and determining 

the “vitaminEome” in humans will be crucial not only in future randomized trials but also if 

we consider that vitamin E is widely used in dietary supplements. 
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Figure captions 

Figure 1: structural features of Tocols (Tocopherols and Tocotrienols). The natural α-T has a 

2R, 4'R and 8'R configuration. Therefore, its systematic name is (2R, 4'R, 8'R)-α-tocopherol, 

formerly known as d-α-tocopherol, the abbreviation RRR-α-T is also used. It can be obtained 

by condensation of trimethylhydroquinone with phytol (DellaPenna and Pogson, 2006). A 

total racemic tocopherol mixture is then obtained, with 8 different stereoisomers, due to 3 

chiral centers at C-2, C-4 ' and C-8. Each of the four tocopherols may be represented by the 

configurations RRR, RSR, RRS, RSS, SRR, SSR, SRS and SSS. Therefore 32 stereoisomers 

may be produced. The commercial forms of vitamin E are RRR-α-tocopherol which is the 

natural stereoisomer or a synthetic form, called all-racemic-α-tocopherol or all-rac-α-

tocopherol, which is a mixture in approximately equal amounts of the 8 stereoisomers in the 

case of α-tocopherol (Lodge, 2005). 

Figure 2: Possible initiation of bis allylic carbons and mechanism of formation of 9-

Hydroperoxide and 13-Hydroperoxide in the autoxidation of linoleic acid 

Figure 3: Mechanisms of α‐tocopherol oxidation by: 1) hydrogen Atom transfer (HAT), 2) 

transfer of an electron and a proton single electron transfer (SET) or 3) sequential mechanism 

of loss of a proton and Electron transfer (SPLET). 

Figure 4: α-tocopheroxyl radical and its resonance-stabilized forms 

Figure 5: Investigated structures referred to in the text. 

Figure 5bis: Investigated structures referred to in the text (continued). 

Figure 6: Illustration using α-tocopherylquinone as an example of one and two electron 

reductions generating semiquinone and tocopherylhydroquinone. NQO1 : NADPH Quinone 

Oxidoreductase 

Figure 7: In vivo -tocopherol catabolite structures 



75 
 

Figure 8: Proposed pathway of the fate of α-TQ and Long chain Metabolites and their parent 

compound α-T as precursors of Simon metabolites (inspired and modified from Sharma et al., 

2013). 

Figure 9: Scheme showing the “VitaminEome” 
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Figure 5 continued 
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methyl 9-(8a-dioxy-(α-tocopherone)-12,13-
epoxy-10(E)-octadecenoates

(XXIII)
Cholesteryl-(8a-dioxy-α-tocopherone)-epoxyoctadecenoate

(XXIV)

cholesteryl (8a-dioxy-α-tocopherone)-octadecadienoate isomers 
(XXV)

8a-(lipidioxy)-γ-tocopherone
(XXVI)

8a-(lipidi-dioxy)-5-(γ-tocopheroxy)
-γ-tocopherone

(XXVII)

5-(γ-tocopheroxy)-γ-tocopherol
γ-TED (XXVIII)

5-(γ-tocopherol-5-yl)-γ- tocopherol
γ-TBD (XXIX)

tocored (XXX) tocopurple
(XXXI)

γ-tocopherylquinone
γ-TQ (XXXII)

7-hydroxy-8,8a-epoxy-α-tocopherone
(XXXIII)

5-bromomethyl-γ-tocopherol
(XXXIV)

7-formyl-β-tocotrienol
(XXXV)

5-formyl-γ-tocotrienol
(XXXVI)

α-tocotrienol dihydroxydimer
(XXXVII)

α-tocotrienol spirodimer
(XXXVIII)

α-tocotrienol quinone
(XXXIX)

α-tocotrienol spirotrimer
(XL)

α-CMBHC
(XL)

tocoyellow
(XLII)
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

Vitamin E
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Table 1: Designation of different Vitamin E structures   

 R1 R2 R3 DESIGNATIONS 

tocopherols H H H 2-methyl-2- (4',8',12'-trimethyltridecyl) chroman-6-ol 

α-tocopherol CH3 CH3 CH3 5,7,8-trimethyltocol. 

β-tocopherol CH3 H CH3 5,8-dimethyl-tocol 

γ-tocopherol H CH3 CH3 7,8-dimethyltocol 

-tocopherol H H CH3 8-methyl-tocol. 

tocotrienols H H H 2-methyl-2-(4',8',12'-trimethyltrideca-3',7',11' trienyl)chroman -6 

-ol, 

α-tocotrienol CH3 CH3 CH3 5,7,8-trimethyltocotrienol, 

β-tocotrienol CH3 H CH3 5,8-dimethyltocotrienol, 

γ-tocotrienol H CH3 CH3 7,8-dimethyltocotrienol, 

-tocotrienol H H CH3 8-methyltocotrienol, 
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Table 2. Overview of cytotoxics activities of the vitamin E LCMs and tocopherylquinones 

Vitamin E 

oxidation 

products 

Vitamin E sources Cancer cell lines IC50 

(μM) 

Concluding remarks 

Chromanol ring 

oxidation 

 

Oxidized γ-

tocotrienol 

Thermal oxidation in hexane of each 

synthetic vitamer congeners along with a 

palm tocotrienol-rich fraction (TRF),  

characterization and purification by 

HPLC/UV/ESI/MS 

Breast cancer MCF7 85 Results indicate that unlike oxidized 

tocotrienol mixtures, oxidation products 

of individual γ-T3 is expected to be the 

most cytotoxic in human MCF-7 breast 

cancer cells in vitro, 

γ-TQ Purification from γ-tocopherol-rich mixture 

of tocopherols by flash chromatography 

and elution with a gradient of 0–5% ethyl 

acetate in hexane, γ-TQ is obtained by 

synthesis 

Colon cancer HCT116 0.8 Apoptosis through cleavage of caspase 3 

and PARP1 as well as DNA 

fragmentation. 

δ-TQ Purification from δ-tocopherol-rich mixture 

of tocopherols by flash chromatography 

and elution with a gradient of 0–5% ethyl 

acetate in hexane, δ-TQ is obtained by 

synthesis 

Colon cancer HCT116 2 Apoptosis through cleavage of caspase 3 

and PARP1 as well as DNA 

fragmentation. 

γ-TQ Synthetic γ-TQ (MDR) leukemic cell HL-60, WiDr 

cells and murine ascites thymoma 

- Induction of apoptosis via caspase-9 

activation and cytochrome c release 

δ-TQ and γ-TQ Synthetic of tocopheryl quinones Acute lymphoblastic leukemia cell 

lines that are drug-sensitive (CEM) 

and multidrug-resistant 

(CEM/VLB100 CEM and multidrug-

resistant cell line, CEM/VLB100 

< 10 δ-TQ is more cytotoxic than γ-TQ and 

both were highly cytotoxic compared to 

other congeners 

γ-TQ Synthetic γ-TQ HL60 and MDR 

HL60/MX2 human promyelocytic 

leukemia, U937 human monocytic 

leukemia, and ZR-75-1 breast 

adenocarcinoma cells 

- Apoptosis in Drug-Sensitive and 

Multidrug-Resistant Cancer Cells through 

both P-glycoprotein and MRP-associated 

proteins 

γ-TQ Synthetic γ-TQ N2a (Neuroblastoma cells) < 5   The role of arylation in quinone toxicity 
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via Endoplasmic Reticulum stress 

Side phytyl 

chain oxidation 

 

δ-13'-COOH Synthetic δ-13'-COOH 

 

HCT-116 

HT-29 

8.9 

8.6 

δ-13'-COOH antiinflammatory and 

anticancer activities in colon cancer cells 

by modulating sphingolipids in vitro and 

in preclinic 

Garcinoic acid Natural Garcinoic acid purified from african 

garcinia Kola seeds 

HCT-116 

HT-29 

16 

17 

Garcinoic acid antiinflammatory and 

anticancer activities in colon cancer cells 

by modulating sphingolipids in vitro and 

in preclinic 

α-13'-COOH 

δ-13'-COOH 

α-13'-OH 

δ-13'-OH 

Natural Garcinoic acid purified from  

methanolic extract of african garcinia Kola 

seeds along with synthetic long chain 

metabolites 

HepG2 13.5 

6.5 

> 100 

>50 

long-chain metabolites may be 

responsible for antiproliferative 

properties of vitamin E vitamers. 

γ-CEHC, 

α-CEHC 

Garcinoic acid 

δ-13'-COOH 

α-13'-COOH 

Natural Garcinoic acid purified from  

methanolic extract of african garcinia Kola 

seeds along with synthetic, γ-CEHC, α-

CEHC, δ-13'-COOH and α-13'-COOH among 

other synthetic long chain metabolites 

Glioma C6 - Natural Garcinoic acid configuration, 

13'-Carboxy-δ-tocopherol is more 

cytotoxic compared to the other 

analogues 

γ-CEHC, 

α-CEHC 

Metabolites were a gift of Eisai, company, 

Japan with no indication of their origin 

PC3, HTB-82, HECV -  Cytotoxic effects through cyclin D1 

expression 

α-13'-OH Blood of healthy men extracted with 

hexane/DCM, 5/2 v/v, and characterized by 

QTOF/LCMS1 1 1 1 1 

THP-1 macrophages 7.4 Modulation of macrophage foam cells 

via different mechanisms at low 

concentration 

α-13'-COOH Synthetic vitamin E and its analogues Colorectal LS 180 adenocarcinoma 

cells 

- Activation of PXR and modulation de 

l’expression P-gp; 

- : not determined 
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