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ABSTRACT

In Multiple Sclerosis (MS), there is a large discrepancy be-
tween the clinical observations and how the pathology is
exhibited on brain images, this is known as the clinical-
radiological paradox. One of the hypotheses is that the clin-
ical deficit may be more related to the spinal cord damage
than the number or location of lesions in the brain. Therefore,
investigating how the spinal cord is damaged becomes an
acute challenge to better understand and overcome this para-
dox. Diffusion MRI is known to provide quantitative figures
of neuronal degeneration and axonal loss, in the brain as well
as in the spinal cord. In this paper, we propose to investigate
how diffusion MRI metrics vary in the different cervical re-
gions with the progression of the disease. We first study the
reproducibility of diffusion MRI on healthy volunteers with
a test-retest procedure using both standard diffusion tensor
imaging (DTI) and multi-compartment Ball-and-Stick mod-
els. Then, based on the test re-test quantitative calibration, we
provide quantitative figures of pathology evolution between
M0 and M12 in the cervical spine on a set of 31 MS patients,
exhibiting how the pathology damage spans in the cervical
spinal cord.

Index Terms— Diffusion MRI, Spinal Cord, Multiple
Sclerosis

1. INTRODUCTION

Multiple Sclerosis (MS) is a neuro-inflammatory disease as-
sociated with a range of clinical symptoms and progressive
physical disability. The use of non-invasive MRI techniques
is key to a better understanding and follow-up of the pathol-
ogy. However, there is usually a poor correlation between the
radiological observation and the clinical outcome, something
which is known as the clinical-radiological paradox (CRP).
One of the potential improvements in our understanding of
the pathology is using advanced quantitative MRI as well as
investigate the extent of tissue damage in the spinal cord [1].

Over the past decade, several groups started working on
the improvement of MRI techniques for the spinal cord [2].
Indeed, acquiring and processing MR images in spinal cord
presents inherent challenges. Differences in magnetic suscep-
tibility between soft tissues, air and bone make the magnetic
field of spinal cord non-uniform and inhomogeneous. Also,
given the small dimension of the cord cross-section (around
15 mm diameter at the cervical level), the specification and
localization of lesions require a robust distinction between
cerebrospinal fluid (CSF), grey matter (GM) and white matter
(WM). In addition, besides the involuntary motion, acquiring
MRI in the spine is hampered by the effect of cardiac and
respiratory motion [3, 4].

Focal lesions are visible and detectable on conventional
MRI (T1- and T2-weighted). However, more sophisticated
MR imaging, namely diffusion MRI (dMRI), can provide
quantitative information about tissue microstructure in vivo,
and therefore characterize axonal loss both diffuse and within
the lesions [5]. Several metrics extracted from the diffu-
sion MRI measurements are helpful as biomarkers of the
pathology, such as the diffusion tensor imaging (DTI) char-
acteristics: fractional anisotropy (FA); axial, radial and mean
diffusivities (AD, RD and MD). Multi-compartment models
also provide complementary measurements. In particular,
using clinical data, it is possible to fit a Ball-and-Stick model
[6], from which one can extract the intrinsic diffusivity (ID),
which is defined as the unique positive eigenvalue of the stick,
as well as the free water weight (FWW).

In this paper, we first investigate how reproducible these
measures are for each vertebral level in the cervical spine,
using a test-retest dataset on a group of 8 healthy subjects.
We then compute these metrics on a group of 31 MS patients,
and follow their longitudinal evolution between baseline and
follow-up 12 months later.



2. MATERIALS AND METHODS

In this section, we provide a description of the data acquisi-
tion, and of the image processing workflow for diffusion MRI
analysis.

2.1. Data acquisition

2.1.1. Patients and healthy volunteers

Eight healthy volunteers (4 females, 4 males, median age 31
years, range 21-35) and 31 MS patients (21 females, 10 males,
median age 30 years, range [20-49]) were recruited in the
study approved by the local research ethics committee. All
participants provided informed written consent.

2.1.2. MRI Acquisition

MS patients and healthy volunteers were scanned on a 3T
Siemens Verio scanner. Each subject was scanned twice with
the same acquisition protocol. For MS patients, the second
acquisition was performed within 12 months of the first one,
however for healthy volunteers both acquisitions were per-
formed few minutes apart. Thirty non-collinear diffusion-
weighted images (DWI) were acquired at b = 900 s·mm−2,
six non-DWI (b = 0) measurements and one non-DWI (b = 0)
with an opposite phase encoding direction (PED) were also
acquired. Scans were performed in sagittal orientation and
head-feet (H-F) PED. The pulse sequence used for diffusion
MRI is echo planar imaging (EPI). The reduced-FOV (field-
of-view) technique was employed to reduce sensitivity of EPI
to susceptibility artifacts. Sixteen slices were acquired with
the following parameters without inter-slice gap: TR/TE =
3600/90 ms, with 2x2x2 mm3 as the resolution, and image
matrix 80x80. The total acquisition time for the dMRI se-
quence was approximately 7 minutes. The protocol also in-
cludes high-resolution T1-weighted image for anatomical ref-
erence with an isotropic 1x1x1 mm3 resolution.

2.2. Pre-processing and metrics extraction

2.2.1. Diffusion MRI pre-processing

Motion between DWI were corrected using the method pre-
sented in [7] and implemented in the Spinal Cord Toolbox
(SCT) 1 [8]. Then, dMRI data were corrected for suscep-
tibility distortion using HySCO (Hyperelastic Susceptibility
Artefact Correction) method as implemented in ACID-SPM
toolbox presented in [9]. This method was recently shown
to provide best results for distortion correction of spinal cord
images [10, 11].

1http://spinalcordtoolbox.com

2.2.2. Segmentation

For each subject scan, whole spinal cord segmentation was
carried out both on the mean DWI volume (b = 900 s·mm−2)
and the T1-weighted using the SCT. A quality check was per-
formed and parameters were modified, or manual adjustments
were made when necessary.

2.2.3. Computation of diffusion-based metrics

We reconstructed Diffusion Tensor Images (DTI) and Ball-
and-Stick models [6] in which the dMRI signal is split into a
single isotropic component and a single anisotropic compo-
nent. DTI was computed using SCT and Ball-and-Stick was
reconstructed using Anima-Public package 2.

Metrics to be considered in the spinal cord quantification
are: fractional anisotropy (FA), mean diffusivity (MD), ax-
ial diffusivity (AD) and radial diffusivity (RD) for the DTI
model, and intrinsic diffusivity (ID) – defined as the diffusiv-
ity of the stick, and free water weight (FWW) for the Ball-
and-Stick model. The objective to quantify these metrics is to
test the presence of WM abnormalities in MS patients.

2.2.4. Template-based analysis

Next, DWI data were registered to the PAM50 spinal cord
template [12], using a various affine and homeomorphic trans-
formation between the mean of the DWI, the T1-weighted
anatomical data and PAM50 template [8]. Alignment with
the template provides robust definition of the inter-vertebral
levels for the spine. This enables computation of the average
metrics in spinal cord using the atlas-based approach intro-
duced in [13], which overcome biases related to partial vol-
ume effects. Compared to ROI and tractography approaches,
this approach is less sensible to susceptibility distortions. As
a result, we can quantify diffusion-based metrics averaged for
each inter-vertebral level between C1 and C7 within white
matter. The processing pipeline as a whole is summarized in
Fig. 1, and with more details in [14].

3. RESULTS

3.1. Inter-subject and intra-subject variability on healthy
controls

The variance across subjects of every metric was computed
for each vertebral level in controls and in patients. As re-
ported in Fig. 2 and Table. 1, the variance of almost every
metric is higher in vertebral levels C1-C2 and C6-C7 in con-
trols. This can be explained by the fact that larger distortions
are observed in images at the top and the bottom of the field
of view. In the following, we propose to use C3-C5 levels to
extract averaged metrics with low cross-subject difference.

2https://github.com/Inria-Empenn/Anima-Public
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Fig. 1. Illustration of the pipeline. (1) Segmentation of the cord on T1W. (2) Manual identification of two vertebral levels. (3)
Registration to the PAM50 template. (4) Motion and distortion correction of dMRI data. (5) Computing DTI and Ball&Stick
maps using Dipy and Anima packages. (6) Segmentation of the cord using DWI mean data. (7) Registration of PAM50-T1
to DWI mean data using the inverse warping field from previous registration as an initial warping field. (8) Quantification of
metrics by vertebral level of the cervical part.

Levels
Metric C1 C2 C3 C4 C5 C6 C7 C3C5

AD 0.20 0.21 0.09 0.10 0.12 0.12 0.23 0.07
FA 82.4 54.6 49.0 49.9 86.1 122 122 44.5
RD 0.16 0.11 0.10 0.09 0.13 0.19 0.19 0.08
MD 0.16 0.12 0.08 0.08 0.12 0.15 0.19 0.07
ID 0.17 0.22 0.14 0.15 0.13 0.14 0.16 0.12
FW 71.6 38.2 47.0 50.3 80.5 133 137 43.7

Table 1. Standard Deviation (multiplied by 1000) of DTI and
Ball-and-Stick metrics averaged on each vertebral level. Dif-
fusivities are measured in mm2/s.

Besides, the reproducibility of DTI and Ball-and-Stick
metrics for white matter on controls can be visualized using
a Bland-Altman plot [15]. For this analysis, we computed
the average of each metric within the white matter of C3-C5,
giving a single data point for every metric, subject and scan.
The solid blue line represents the average difference between
scan2 and scan1 and the dashed lines indicate the 95% con-
fidence interval (CI). All points of controls (except two for
AD and FA) for all metrics fall within the 95% CI, meaning
that the studied diffusion metrics are reproducible. They can
therefore be further used to detect temporal changes in pa-
tients. Results are reported on Fig. 3.

3.2. Patient-based longitudinal evolution

The Bland-Altman plot computed on controls defines confi-
dence intervals for each metric averaged on C3-C5. We over-
laid on these Bland-Altman plots corresponding values for
patients, which allows identification of significant evolution
of a given metric between scan and rescan for each patient.
In Fig. 3, we can therefore identify significant longitudinal
evolution of microstructure-based measures between baseline
(M0) and 12 months follow-up (M12). Detailed results are
reported on Table 2 for specific patients, for which several
metrics show significant evolution between M0 and M12.

M12-M0 for C3C5
Patient Age Sex ADx103 FA IDx103 FWW

Patient04 32 F +0.712 -0.325 NSV +0.178
Patient16 31 F +0.659 NSV +0.675 +0.131
Patient35 22 F -0.205 -0.169 NSV +0.118
Patient69 36 F -0.307 +0.161 NSV -0.159

Table 2. Evolution of AD, FA, ID and FWW metrics aver-
aged over C3-C5 vertebral levels between baseline and 12-
months follow-up. Diffusivities are measured in mm2/s.
NSV: Non Significant Value, referring to Bland-Altman plot.



Fig. 2. Distribution of AD and ID for controls and patients at
M0.

4. DISCUSSION

In Table 2, we reported patients for which at least three diffu-
sion metrics evolved significantly between M0 and M12, with
respect to the confidence intervals reported in Fig. 3. For pa-
tients 04 and 35, we can observe a drop in FA, associated with
an increase in the FWW; conversely for patient 69, a increase
of FA is associated with a drop in FWW. For these three pa-
tients, ID did not change significantly, which could mean that
the change in AD for the DTI model is in fact only due to an
increase of the free water compartment, rather than a change
in the fibers themselves. Note that for patient 16, no signif-
icant change in FA is reported, however there is an increase
in the FWW. In general, we observe a complementarity be-
tween the evolution of metrics extracted from DTI and from
Ball-and-Stick.

Fig. 3. Blue: Bland-Altman plots for controls (scan, rescan).
Dashed lines correspond to the associated confidence inter-
val. Red: overlaid metrics difference for patients (ScanM12-
ScanM0); points falling outside the 95% confidence interval
correspond to significant evolution between M0 and M12.

5. CONCLUSION

In this work, we proposed a framework for studying the evolu-
tion of microstructure-related parameters measured with dif-
fusion MRI in the spinal cord white matter of MS patients.
Based on a group of healthy controls, we were able to de-
fine confidence intervals for diffusion-based metrics for C3-
C5 levels in the cervical spine. Using these confidence in-
tervals, we can follow the longitudinal evolution of the same
metrics for each patient, and identify abnormal trajectories as-
sociated with the pathology. Comparing metrics based on DTI
and Ball-and-Stick suggests that both models provide com-
plementary information. This suggests that even for clinical
data, multi-compartment models provide novel information
about the evolution of tissue microstructure, and should be in-
cluded in the processing workflow. Future work will include
definition of confidence intervals for each vertebral level and
study of how the evolution of diffusion MRI indices correlate
with clinical scores.
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