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Abstract (179 of 200 words) 83 

Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of 84 

the cardiovascular system, and are considered important mediators of intercellular and extracellular 85 

communication. Two types of EV of particular interest are exosomes and microvesicles, which have 86 

been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, 87 

and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and 88 

as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. 89 

Despite their promise, technical challenges related to their small size make it challenging to 90 

accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to 91 

provide the reader with an overview of the techniques and technologies available for the separation 92 

and characterization of EVs from different sources. Methods for determining the protein, RNA and 93 

lipid content of EVs are discussed. The aim of this document is to provide guidance on critical 94 

methodological issues and highlight key points for consideration for the investigation of EVs in 95 

cardiovascular studies.  96 

  97 
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1. Pathophysiological relevance of EVs in the cardiovascular field 98 

In recent years, extracellular vesicles (EVs) such as exosomes and microvesicles have gained 99 

significant interest as mediators of intercellular communication in both the healthy physiological 100 

state and during pathophysiological stress.1-4 All cell types in the cardiovascular system release EVs.5 101 

However, most mechanistic studies use cell culture-derived EVs. EVs are also detected in plasma, 102 

where they are derived primarily from erythrocytes, platelets, endothelial and immune cells.6 The 103 

plasma EV content responds to environmental changes and can regulate pro-inflammatory and 104 

innate immune responses, coagulation pathways and atherogenic interactions.7 It is therefore of 105 

interest to understand the function of EVs in the cardiovascular system. 106 

Several characteristics make EVs promising biomarkers for cardiovascular pathologies.1 For example, 107 

EVs are secreted into body fluids such as blood, lymph and pericardial fluid, and EV molecular cargo 108 

reflects the state of the cell of origin. Therefore, by purifying EVs it is possible to enrich for 109 

diagnostic markers that may otherwise be obscured by the large quantity of proteins present in the 110 

fluid.3 For example, acute coronary syndrome results in the rapid appearance of EVs in plasma that 111 

can be purified, aiding the identification of specific miRNAs,8 in comparison to the detection of 112 

cardiac miRNAs in total plasma, which  is inferior to high sensitivity assays for traditional markers of 113 

damaged myocardium such as troponins 9, 10. Cardiac allograft rejection can be predicted with an 114 

accuracy of 86% based on the concentration and contents of EVs released by the transplanted heart 115 

into the blood, potentially eliminating the need for endomyocardial biopsy.11 miRNA signatures in 116 

circulating large EVs, in contrast to freely circulating miRNAs, predicted the occurrence of 117 

cardiovascular events in patients with coronary artery disease,12 highlighting the prognostic 118 

potential of EV-miRNA expression pattern.  119 

In certain situations, EVs can contribute to the mechanism of cardiovascular diseases. For example, 120 

sEVs contribute to the development of pulmonary arterial hypertension,13, 14 and to vascular 121 

calcification.15, 16 Adipocyte-derived extracellular vesicles and their ceramide content have impact on 122 

cardiac mortality in advanced atherosclerosis.16, 17 Endothelial EVs released during myocardial 123 

infarction can mobilize splenic neutrophils and monocytes following their transcriptional activation 124 

and could contribute to attenuated cardiac function.18, 19 Therefore, EVs are emerging as key players 125 

in different stages of disease development of cardiovascular disease and metabolic syndrome 126 

(reviewed in20-22). 127 

EVs are also promising therapeutic agents for treating cardiovascular disease. They have been shown 128 

to mediate various beneficial effects of conditioned medium from stem cells.23, 24 EVs can be 129 

separated from tissue-culture medium “conditioned” by the growth of cells, and there is growing 130 

interest in using such EVs for treating a variety of cardiovascular pathologies.5 For example, EVs 131 

purified from medium conditioned by cardiac progenitor cells (Exo-CPC), but not from normal 132 

dermal fibroblasts, are cardioprotective and proangiogenic in models of myocardial infarction and 133 

chemotherapy-induced cardiotoxicity,25, 26 and stimulate cardiovascular cell proliferation following 134 

myocardial infarction.27 Similarly, platelet-derived EVs in endothelial progenitor cell cultures 135 

contributed to their proangiogenic activity.28, 29 In another example, EV coating of stents accelerated 136 

their re-endothelialization and reduced in-stent restenosis compared to drug-eluting and bare metal 137 

stents in mice.30  138 

Currently, there are more than 250 clinical trials registered to use EVs in a range of diseases 139 

(ClinicalTrials.gov), as either biomarkers for response to drug treatment or as direct therapeutic 140 

mediators. It is therefore crucial that appropriate methods are used to separate, validate and 141 

characterize EVs, both to improve their clinical application, and to provide fundamental insights and 142 
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in-depth analyses of their mechanism of action. The aim of this document is to provide guidance on 143 

these critical methodological issues and highlight key points for consideration in the design of 144 

experiments using EVs. Some of the methods described can be applied generally to all studies using 145 

EVs, but we provide CV-specific methods where relevant. 146 

1.1 Definition of extracellular vesicles and use of terminology  147 

Three main classes of EVs can be distinguished by their mechanism of production: exosomes, 148 

microvesicles and apoptotic bodies (Figure 1). Microvesicles and apoptotic bodies are released 149 

directly via outward budding of the plasma membrane in living or dying cells, respectively, and carry 150 

proteins, lipids, nucleic acids and other active components that can affect target cells and modify 151 

their behaviour.4, 5, 31 Exosomes are produced by inward budding of late stage endosomes, thereby 152 

forming intraluminal vesicles in multivesicular bodies (MVBs), which are released upon fusion of the 153 

limiting membrane of the MVB with the cell membrane.32 The formation of MVBs and subsequent 154 

fusion with the plasma membrane is a highly orchestrated mechanism involving the Endosomal 155 

Sorting Complexes Required For Transport (ESCRT) machinery, which includes the proteins 156 

Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate (HRS), Tumour Susceptibility Gene 157 

101 Protein (TSG101), Signal Transducing Adapter Molecule 1 (STAM1) and Programmed Cell Death 158 

6-Interacting Protein (PDCD6IP or ALIX), although ESCRT-independent mechanisms have also been 159 

reported.32 Precisely how cargo is sorted into exosomes is unclear, although some binding motifs 160 

have been suggested.32 161 

The umbrella term “EVs” encompasses various types of membrane-enclosed vesicles, including 162 

exosomes, microvesicles, extracellular autophagic vesicles and apoptotic bodies, and these can have 163 

overlapping size ranges (Figure 1). However, there is no consensus on specific markers that can 164 

distinguish EV types. Consequently, and since it is challenging to isolate individual EV types with high 165 

purity, it is preferable to refer to the separated vesicles simply as “EVs” and report the purification 166 

methods used for their separation and characterization. The International Society of Extracellular 167 

Vesicles in their position paper, MISEV2018 strongly recommended the use of operational terms, 168 

based on: size [e.g.: small(s), medium(m) or large(l) EVs); density range (e.g.: low-, middle-, or high- 169 

density EVs]; biochemical composition (e.g.: CD63+ve EVs or Annexin 5+ve EVs); or culture- or cell-type 170 

of origin (e.g.: hypoxic EVs, cardiomyocyte-derived EVs, etc.), unless the biogenesis of the EVs was 171 

determined.31 However, it must be recognized that many of these terms are protocol-dependent 172 

and relative, so it is important that their use is clearly defined. Here, we use the term “sEVs” to refer 173 

to purified samples enriched in small EVs and MVB-derived exosomes, and “lEVs” to refer to 174 

preparations enriched in larger EVs and shed microvesicles.  175 

2. Source of EVs      176 

For investigations of cardiovascular EV function, primary cells, blood or explanted cardiac tissue may 177 

be preferred. When the aim is to develop EVs as therapeutic agents, and large quantities are 178 

required, readily expandable cells or cell lines may be preferable. Mesenchymal Stromal Cells (MSC) 179 

are a popular source as they are cytoprotective, can improve cardiac contractility and calcium 180 

handling and have beneficial immunomodulatory effects including in the setting of atherosclerosis 181 

and pulmonary hypertension.14, 33-35 182 

EVs from many different sources have been shown to improve cardiac function following MI, 183 

including cardiac stem cells,36 cardiovascular progenitor cells (CPC),37, endothelial progenitor cells,38 184 

cardiosphere-derived cells,39 embryonic stem cells40 and iPSC-derived cardiomyocytes41(reviewed in 185 
5). EVs from the epicardium can promote proliferation of cardiomyocytes.42  EVs can also be 186 
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beneficial against other forms of injury such as doxorubicin/trastuzumab-induced cardiac toxicity.26 187 

On the other hand, EVs can be detrimental, for example contributing to vascular smooth muscle cell 188 

calcification.15, 16 As yet, there is little consensus on the ideal source of EVs, however one head-to-189 

head comparison suggests CPC may be more efficacious than BM-MSC.25 190 

Certain stimuli can alter EV production and function, in a cell-type dependent manner, including 191 

calcium,43 hypoxia/ischaemia,44 shock wave therapy,45 atorvastatin,46 and exercise.47, 48 Conversely, 192 

cardiovascular disease can alter EV production and function. For example, myocardial infarction 193 

increase EV release,49 EV-miR-mediated vascular intercellular communication is altered in patients 194 

with CAD and CKD, promoting CKD-induced endothelial dysfunction,50 and diabetes mellitus impairs 195 

EV function.51, 52 196 

Cells can be cultured in standard tissue culture flasks, or bioreactor flasks or hollow fibre reactors 197 

may be used to maximize production. However, it is important to realise that culture conditions can 198 

affect sEV contents and activity significantly.53 199 

 200 

3. Methods of separation  201 

The optimal method for separating EVs depends on which biofluid or tissue is used as a source. 202 

3.1 Separation of EVs from cell culture medium 203 

Several techniques have been developed for the separation of EVs from cell culture medium, each 204 

with their advantages and disadvantages (Table 1). Most procedures are based on separation by 205 

size, and/or density, although many other extracellular particles may share these characteristics with 206 

EVs. A protocol of differential centrifugation or ultracentrifugation published by Thery et al. is 207 

commonly used to separate both sEVs and lEVs (Box 1).54 A subsequent density-gradient separation 208 

using sucrose or, preferably, iodixanol, further improves EV purity.55 Size-exclusion chromatography 209 

has become popular since it effectively removes part of the contaminating soluble protein, and 210 

columns can be readily made or purchased (Figure 2D).56, 57 Precipitation of sEVs is possible using 211 

polyethylene glycol (PEG)-based reagents, for example in HEK293 or MSC cultures,58 but the purity 212 

obtained is generally inferior to other techniques.55, 59 Ultrafiltration is more commonly used as an 213 

initial clean-up step to remove larger (e.g.: >0.8 μM) contaminants because membranes can become 214 

blocked when filtering large volumes and because of concerns that high pressures may damage the 215 

membranes of larger EVs. Affinity isolation, typically using antibodies, provides highly pure isolates 216 

although at the expense of yield, and only a subset of EVs might be isolated.60 Furthermore, the 217 

procedure to recover EVs from antibodies could affect their functionality and requires testing.61 218 

Diafiltration, asymmetric flow field-flow fractionation (AF4)62 and tangential flow filtration63 purify 219 

and concentrate sEV fractions and are scalable, but AF4 requires specialized and expensive 220 

equipment. 221 

Several head-to-head comparisons of EV separation procedures have been published55, 59, 64, 65, for 222 
human plasma, urine and also specific cardiac-derived progenitor cells, but ultimately, the optimal 223 
method and obtained quantity depends on the source of the biofluid, the amount of available 224 
biofluid and the intended use. For clinical analyses of thousands of blood samples for EV-associated 225 
biomarkers, rapid precipitation might be sufficient but for mechanistic studies, purer EVs is essential. 226 
The use of cell culture medium as a source of EVs allows for more rigorously controlled conditions 227 
for EV production, but the cell culture environment differs from in vivo physiology. Given the 228 
challenge of removing contaminating serum EVs, protein and lipoproteins, when highly pure EVs are 229 
required for ‘omics analysis or functional investigation, it is advisable to harvest EVs from cells grown 230 
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in chemically defined medium rather than EV depleted serum or serum-replacement supplements. 231 
However, control experiments must be in place to assess cell viability and contents of contaminating 232 
apoptotic bodies, when removing serum. EV-depleted serum may be used but still contains large 233 
quantities of proteins and lipoproteins which can co-isolate with EVs / are common contaminants of 234 
EVs and procedural controls are necessary to check for potential contaminant.66 235 
3.2 Separation of EVs from blood 236 

A critical consideration when separating EVs from blood is the pre-analytical procedures (Table 2).67, 237 
68 For instance, EVs can be separated from either plasma or serum, but serum preparation causes 238 

platelet activation, which releases large numbers of platelet-derived EVs, and the thrombus formed 239 

traps some of the EVs.69 The yield of EVs separated from plasma can be affected by the type of 240 

anticoagulant used and requires great care to prevent platelet activation and haemolysis. It is 241 

possible to use any of the methods described above to separate EVs from platelet-free plasma. 242 

Plasma contains only ~108-1010 sEVs / ml and ~106 lEVs / ml compared to ~1016 lipoprotein 243 

particles/ml and large quantities of albumin, globulins and other proteins and substances, which 244 

greatly complicates the isolation of EVs.70, 71 However, by combining several orthogonal methods it is 245 

possible to improve both yield and purity of EVs.72 Given the many variables that can substantially 246 

influence EV yield and purity, it is essential that all pre-analytical procedures and residual 247 

contaminants are comprehensively reported alongside the separation method.73  248 

3.3 Separation of EVs from tissue 249 

The isolation of EVs from tissues has considerable scientific interest for understanding their local and 250 

remote roles in cardiovascular disease development. Their presence should first be confirmed in situ, 251 

e.g. electron microscopy can identify the presence of vesicle structures in pathological samples such 252 

as human atherosclerotic plaques, ischaemic heart and muscles, or the brain74, 75. EV separation from 253 

fresh tissues represents a challenging task as the method used should ensure that isolated vesicles 254 

come from the extracellular space and do not result from tissue homogenization (cell death, 255 

membrane self-assembly; Table 2). Gentle mechanical disruption of tissue, optionally followed by 256 

enzymatic treatment, can be used to release EVs.43 EVs have been released by collagenase perfusion 257 

of Langendorff-perfused rat hearts followed by differential centrifugation.76, 77 Appropriate controls 258 

should be considered to estimate the effects of the procedure. Therefore, using tissues from 259 

genetically modified models and processing healthy tissues or tissues from sham animal models in 260 

parallel to pathological samples might help evaluate the direct effect of tissue homogenization.49, 74, 261 
78 Furthermore, the effect of the enzymatic cocktail on EV numbers and protein expression also 262 

requires investigation.76 263 

 264 

4. General principles for EV identification and characterization  265 

A number of recommendations have been published regarding how to characterize and confirm 266 

identity, yield and purity of EVs,2, 5 but the most authoritative are The Minimal Information for 267 

Studies of Extracellular Vesicles ("MISEV") guidelines published by the International Society for 268 

Extracellular Vesicles (ISEV).31 A key overriding principle of the guidelines is that multiple, 269 

complementary techniques should be used to characterize EVs. Other guidelines have made 270 

quantifiable metrics to define the identity of MSC-sEV preparations, and facilitate stratification and 271 

comparison of different MSC-sEV preparations for therapeutic purposes.79  272 

First, it is important to quantify the number of EVs relative to the total lipid or protein content of EV 273 

preparations obtained. The yield of EVs should be measured relative to the amount of starting 274 
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material (e.g.: number of secreting cells, volume of biofluid, or mass of tissue). This calculation 275 

should be performed every time EVs are isolated since it can vary significantly. Second, the presence 276 

of at least three positive protein markers of EVs (described below) is strongly suggested. Third, it is 277 

preferable to evaluate the presence of nonvesicular co-isolated components, e.g.: apolipoproteins 278 

A1, A2 and B (APOA1, APOA2, APOB), and albumin from plasma/serum isolates. Fourth, the 279 

presence of individual EVs should be demonstrated using, for example, electron microscopy or 280 

scanning probe microscopy. If an image with a single vesicle is shown then a wide-field image should 281 

also be shown, which helps to illustrate the purity. The most appropriate technique for 282 

characterization depends on the type of EV (large or small), as discussed below. 283 

4.1 Techniques for identifying EVs 284 

The most widely used techniques for quantifying EVs include light scattering techniques such as 285 

dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and resistive pulse sensing (RPS) 286 

(Figures 2E-H). However, the robustness and comparability of measurements is hampered by the 287 

lack of standardization, and quantification of EVs is less straightforward than it seems.80 For 288 

example, each technology has different limitations and potential biases towards certain size ranges. 289 

An important limitation of most widely used techniques is that they measure all particles, and 290 

cannot distinguish between sEVs and lipoprotein particles, protein aggregates, EV aggregates or 291 

other contaminants. Consequently, less pure isolates can paradoxically give the false impression of 292 

containing greater numbers of EVs. For this reason, it is preferable to use additional measurements 293 

such as total protein and/or lipid content to indicate the yield and purity.81 Alternatively, 294 

quantification of EV marker proteins by ELISA (enzyme-linked immunosorbent assay) or Western blot 295 

(semi-quantitative) can be useful for comparing yields.  296 

Since one of the defining features of exosomes is their size, this is another informative parameter to 297 

report when separating small EVs, although this is not specifically recommended in the MISEV2018 298 

guidelines. The size distribution of EVs can be obtained using NTA or RPS, calculated from electron 299 

microscope images, or using another technique. A second defining feature of MVB-derived 300 

exosomes is that they contain proteins involved in MVB formation and/or exosome release (e.g.: 301 

CD9, CD63, CD81, Alix/PDCD6IP, TSG101).60 These can be used as positive protein markers to 302 

indicate the enrichment of MVB-derived exosomes within the separated EVs. The presence of at 303 

least 3 markers should be demonstrated.31, 60 Notably, acetylcholinesterase is no longer considered a 304 

generic marker of exosomes.82 305 

Large EVs have a less well-defined size-range but can be analysed using similar techniques as for 306 

small EVs, or using flow cytometry, which is described below.2, 80  307 

4.2 Electron microscopy 308 

Transmission electron microscopy (TEM) allows imaging at the single EV level, visualizing their size 309 

and morphology, as well as detecting the presence of contaminants. Negative staining with uranyl 310 

acetate is the most common method. Of note, drying during preparation results in a typical 311 

“collapsed vesicle” or “cup-shaped” appearance (Figure 2B).54 Nowadays, the gold-standard method 312 

for imaging biological objects is cryo-TEM, which preserves their native hydrated structure via rapid 313 

freezing. Cryo-TEM presents several major advantages, including better capacity to distinguish bona 314 

fide EVs from non-vesicular particles and to determine the actual EV size, and to characterize 315 

heterogeneous EV samples, particularly the presence of EV aggregates either contained in the 316 

original sample or induced by isolation procedures. Combining EM with immuno-gold labelling aids 317 

with phenotyping of EVs in complex media, such as pure plasma or heterogenous media (Figure 318 
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2C).83 Other techniques, including single EV-microarray and atomic force microscopy can provide 319 

images of single EVs, as well as information on their biomechanical properties and size.84 320 

4.3 Flow cytometry 321 

Flow cytometry is an attractive technique for EV analysis, as flow cytometers are robust platforms, 322 

widely available and designed for high throughput quantitative analysis of single particles based on 323 

light scattering and fluorescence. However, flow cytometers are designed to analyse cells and 324 

several requirements need to be met to improve rigor and reproducibility of EV analysis.85 Flow 325 

cytometric analysis of sEVs (<300 nm size) is particularly challenging due to their dim fluorescence 326 

and scatter signals.85 In this respect, it is extremely important to calibrate flow cytometers, confirm 327 

detection of single EVs and be aware of the sensitivity of the platform used and potential 328 

interference by unbound fluorescent probes.86, 87 Nevertheless, the use of single EV flow cytometric 329 

analysis has reached a level were reproducible comparisons of EV concentration measurements can 330 

be nearly performed, for example of circulating EVs in patients with CVD.88-90 Marker proteins of 331 

interest for cardiovascular studies include those such as CD61 and CD144 for platelets and 332 

endothelium respectively, CD147 (SIRPα) for cardiomyocytes, CD235a for erythroid-derived EVs and 333 

leucocyte/lymphocyte- and monocyte-derived EVs (CD45/CD3 and CD14).88-91 The MIFlowCyt-EV 334 

Framework, drafted by an EV flow cytometry working group of ISEV-ISAC-ISTH 335 

(www.evflowcytometry.org), provided a consensus report for EV flow cytometric studies,86 advising 336 

the minimal experimental information that should be reported. 337 

4.4 Functional analysis of EVs 338 

Ideally, the functional activity of EVs would be assayed using a simple, in vitro potency assay as a 339 

surrogate for their in vivo functionality, but no single, universal method has been identified. In the 340 

cardiovascular field, EV function is commonly assessed using an assay of in vitro angiogenesis, cell 341 

viability, contractility, or combinations thereof. Commonly used in vitro assays of angiogenesis 342 

include the scratch assay,91 Boyden chamber migration assay,92, 93 endothelial tube formation94, and 343 

vessel sprouting assays.44, 95, 96 An accurate measure of sEV quantity and purity is important when 344 

conducting dose-response experiments of their functionality. At present there is no consensus on 345 

which measure of quantity (particle number, protein content, quantity of starting cells, etc) is 346 

preferable,31 but whichever normalization technique is used (preferably more than one) it should be 347 

reported and justified. Furthermore, appropriate (procedural) controls should be included to proof 348 

that effects are EV-mediated. For the use of EVs as therapeutic tools, in vitro potency assays are 349 

required to predict the effectiveness of EV preparations for clinical use, but this depends on the 350 

ability to convincingly identify the mechanism of action and quantify the biological activity.97 351 

4.5 Reporting methodology 352 

Finally, to aid reproducibility and transparency, isolation and characterization methodology should 353 

be reported in public databases and repositories such as EV-TRACK, a crowdsourcing knowledgebase 354 

(http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating 355 

authors, reviewers, editors and funders to put experimental guidelines into practice.98 356 

 357 

5. Chapter 4: Methods for determining the protein content of EVs 358 

5.1 Total protein content 359 

http://www.evflowcytometry.org/
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Total protein content in an EV preparation can be estimated using standard protein assays such as 360 

bicinchoninic acid (BCA) assay or Bradford assay, or variations thereof, optimised for low protein 361 

concentrations. Quantification of total protein in an EV sample and comparison with particle counts 362 

may give an indication of its purity. It has been suggested that pure sEV isolates contain 363 

concentrations of < 1 µg protein / 1010 EV particles,81 although this is not necessarily universally 364 

applicable, because there are not yet methods available that can measure all EVs.  365 

5.2 Antibody-based techniques to identify specific proteins 366 

There may be subpopulations of EVs with different protein content that can be detected using 367 

antibodies. Some can be used as marker proteins to identify the cell type of origin within the 368 

cardiovascular system (see section 3.3). In addition to EV marker proteins, hundreds of additional 369 

proteins can be identified, which may be either genuine EV components or co-isolated proteins. The 370 

most common approaches to detect and quantify the relative levels of EV proteins are antibody-371 

based experimental methods (Table 3).31 All antibody-based techniques require the use of 372 

appropriate controls to confirm antibody specificity.99 373 

Western blotting can identify proteins that are associated or co-isolated with EVs and provide useful 374 

information about the yield and purity of an EV preparation.64  Importantly, it can also confirm the 375 

molecular weight of the target protein. Compared with cell lysates, a disadvantage of EV samples is 376 

the lack of reference (“house-keeping”) proteins to use for normalisation purposes in 377 

immunoblotting experiments. Therefore, equal protein amount, volume from which EVs are 378 

separated or particle number are commonly used. Inclusion of the original sample, the EV-depleted 379 

sample and procedural control samples are required to draw firm conclusions about enrichment of 380 

proteins in the EV isolate (or depletion of contaminants). Western blotting can be challenging since it 381 

requires relatively large quantities of EVs for sufficient sensitivity. Alternative versions such as dot 382 

blotting or capillary electrophoresis immunoassays can provide considerably higher sensitivity.100 383 

The question of which proteins should be investigated as potential contaminants is debated, but the 384 

best guideline is provided by MISEV.31 Depending on the source of EVs, it can be useful to verify the 385 

removal of lipoproteins (e.g.: APOB, APOA1, APOA2) and serum albumin (Figure 3), and proteins 386 

from endoplasmic reticulum or plasma membrane. 387 

ELISA is a well-established technique that can provide sensitive antibody-based detection in multi-388 

well formats. A sandwich ELISA format (combining separate capture and detection antibodies) is 389 

likely to be required when using enzyme-linked or fluorescent detection, but a highly sensitive 390 

immunoassay variant based on time-resolved fluorescence called DELFIA (dissociation-enhanced 391 

lanthanide fluorescence immunoassay) is able to detect EV-associated molecules using a single 392 

detection antibody.64, 101 Similar to dot blots, immunoassays provide good sensitivity for small 393 

sample amounts, but require thoroughly validated antibodies and do provide information to validate 394 

the molecular weight.  395 

EV flow cytometry can be used to detect surface protein markers as indicated above. Immuno-gold 396 

labelling can be performed for visualization using TEM or cryo-TEM, although it is not quantitative, 397 

and it is mostly used to label EV membrane proteins. Detection of immunogold label on non-EV 398 

particles in the sample may indicate that the target is only a contaminant in the EV isolate. 399 

Novel antibody-based approaches such as surface plasmon resonance102 and interferometric 400 

imaging103 have also been utilized for EV protein characterisation, but they usually require expensive 401 

specialised equipment and consumables which limits their widespread use. 402 
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5.3 Mass spectrometry of the EV proteome 403 

Proteomic analysis of EV samples by mass spectrometry (MS) provides the most comprehensive 404 

analysis of the EV protein cargo (Table 3), and does not rely on an a priori selection of proteins based 405 

on the availability of antibodies or other affinity reagents for specific proteins.60, 104 MS approaches, 406 

however, have an inherently lower sensitivity compared with antibody-based techniques. This is 407 

mainly due to the excess amounts of highly abundant proteins (e.g.: albumin) in the EV preparations 408 

which mask the presence of low-abundant EV proteins.105 To address this, MS can be combined with 409 

better isolation techniques for EVs that result in less contamination. It is recommended to compare 410 

the EV proteome to tissue or cell source of the EV sample to identify the degree of 411 

enrichment/depletion of proteins. For EVs separated from cell cultures in which media are 412 

supplemented with xenogenous components (e.g. bovine serum), it is also recommended to 413 

searches against databases of other organisms. Bovine serum proteins are a common contaminant 414 

in EVs isolated from cell cultures, unless cells are grown in serum free media. Finally, independent 415 

validation with an antibody-based technique is advisable since MS detects peptides, which can 416 

originate from both intact and fragmented proteins. Most journals require that EV proteomic data 417 

are deposited in online databases.106 418 

5.4 Intraluminal vs membrane proteins 419 

Determining whether a protein is intraluminal, membrane or external to the EVs is of great 420 

importance for understanding the structure, origin and function.31 Mixing a broad-range protease 421 

(e.g. proteinase K) with an EV-containing sample in presence or absence of detergent can help to 422 

establish whether a protein is intraluminal or present on the surface/outside of the EVs. Notably, EV 423 

subtypes have different sensitivities to detergents.107 Detergents will also disrupt other lipid 424 

structures such as lipoproteins, another common contaminant in EV preparations. Protease 425 

treatment can also determine the topology of membrane proteins or the degree of contamination of 426 

an EV sample,108 but proteases will digest the extracellular domains of EV membrane proteins. 427 

Alternatively, surface labelling can be performed to enrich for EV membrane proteins and distinguish 428 

them from intraluminal cargo.109  429 

 430 

6. Methods for determining the RNA content of EVs 431 

EVs carry various species of RNA, including microRNA (miRNA), circular RNA (circRNAs), vault RNA, 432 

small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, transfer RNA (tRNA), long non-433 

coding RNA (lncRNA) and messenger (mRNA), as well as fragments thereof.60 EV subtypes differ in 434 

their RNA cargo profile, according to parent cell type and environment, as well as stochastic 435 

principles, and the method of isolation used.110 Although most attention has focused on the miRNA 436 

content of EVs, miRNAs might only represent a minor constituent of EVs relative to other RNA 437 

species.111 The mechanism for sorting RNAs to EVs might include association with RNA-binding 438 

proteins, specific RNA motifs and RNA modifications.112, 113 439 

6.1 RNA analyses by qRT-PCR and RNA-sequencing 440 

At first, RNA cargo of EVs was based solely on the use of Taqman miR-PCRs focused on individual 441 

miRNAs, and it was a challenge finding ways to normalize data. Data normalization was usually 442 

implemented by spiking-in an exogenous miRNA supposedly not expressed in mammalian species, 443 

such as Caenorhabditis elegans miRNA-39 (Cel-39) before RNA extraction. More recently, several 444 
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quantitative PCR (qRT-PCR) and digital PCR protocols are available to detect the miRNA cargo of 445 

EVs.114  446 

Advances in RNA-sequencing technologies have enabled the identification of EV-derived RNAs in 447 

nearly all human biofluids,115 and associated with pathophysiological phenotypes.116 The use of RNA-448 

sequencing approaches has provided a better understanding of the diversity of the EV-embedded 449 

RNAs.46, 60, 117  450 

Certain pre-analytic confounders are well known, e.g.: heparin can interfere with PCR analyses of 451 

RNAs,118 but can be overcome by heparinase treatment. The presence of certain miRNAs is 452 

suggestive of haemolysis of blood samples (e.g.: miR-486-5p, miR-451, miR-92a, and miR-16), or 453 

presence of contaminating calf serum (e.g.: miR-122, miR-451a and miR-1246).119-121 Lipoprotein 454 

contamination can also create difficulties in data analyses and interpretation since they can also 455 

carry miRNAs122. To prevent contamination of EV preparation by RNAs carried by lipoproteins and 456 

extra-EV Argonaute proteins, the use of proteinase K and RNase A digestion can be implemented 457 

before proceeding to RNA extraction.112 It is useful to include a negative control without enzymatic 458 

treatment and positive control samples containing RNA, to confirm complete digestion of non-459 

exosomal RNAs. 460 

In order to compare data, several manually curated database were developed: Vesiclepedia 461 

(http://www.microvesicles.org/) and Exo-carta  (http://www.exocarta.org/) include RNAs,  lipids and 462 

proteins identified in different classes of EVs. More recently, the extracellular RNA communication 463 

(ExRNA) consortium (https://commonfund.nih.gov/exrna) was created by the NIH to establish 464 

foundational knowledge and technologies for extracellular RNA research (https://exrna-465 

atlas.org/).123  466 

6.2 How to evaluate the functional role of EV RNA 467 

Despite the numerous examples of studies suggesting important roles of EV-mediated RNA transfer 468 
on target cell behavior, e.g. the regenerative potential of epicardium-derived extracellular vesicles 469 
mediated by conserved miRNA transfer, assessing the true (patho-)physiological role of such transfer 470 
is a formidable challenge, not least because of the relatively low EV RNA concentrations. For 471 
investigations into general mechanisms underlying EV-mediated RNA transfer, sensitive reporter 472 
systems have been developed that allow the study of EV-RNA transfer at the single cell level.124, 125 473 
However, to prove a direct effect of endogenous RNA species on EV target cells, additional 474 
challenges need to be addressed and important control experiments are required. These include 475 
demonstrating that the RNA of interest: 1) full length is present inside EVs; 2) shows increased levels 476 
in recipient cells upon delivery (in the absence of upregulated expression); and 3) directly mediates a 477 
particular response in target cells, by interfering with its presence or function without affecting the 478 
content of EVs or recipient cells in any other way. Recently published reporting guidelines on EV-479 
RNA studies should help to ensure reproducibility and to critically evaluate past and future studies 480 
claiming EV-RNA-induced physiological and pathological responses.112 481 
 482 

7. Methods for determining EV lipid content  483 

7.1 Lipid content  484 

The phospholipid bilayer membrane of EVs consists primary of phosphatidylcholine, in addition to 485 

phosphatidylethanolamine and phosphatidylserine.62, 126 The sEV membrane is relatively rigid due to 486 

its enrichment in sphingomyelin and cholesterol, and contains domains with an ordered lipid phase 487 

(“lipid rafts”; reviewed in 127). 488 

http://www.microvesicles.org/
http://www.exocarta.org/
https://commonfund.nih.gov/exrna
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Notably, EVs also carry lipids involved in signalling such as eicosanoids together with functional 489 

phospholipases and enzymes of the prostaglandin pathway.128 The lipid composition of large EVs is 490 

closer to that of the plasma membrane, which they originate from.126 Translocation of 491 

phosphatidylserine to the outer leaflet upon cellular activation has been suggested to be a 492 

prerequisite for large EV biogenesis127 . EVs with externalized phosphatidylserine are highly pro-493 

coagulant, leading to venous thrombosis, particularly in the presence of tissue factor (TF).129 494 

Total lipid content can be easily measured using a sensitive assay.130 The total protein-to-lipid ratio 495 

of an EV sample can then be used as an indication of EV concentration and purity.130, 131 However, 496 

like protein assays, lipid assays are affected by the presence of contaminating lipoproteins. 497 

MS is increasingly used to determine the complete lipidomic profile of EV samples62, 126. 498 

Furthermore, targeted lipidomic strategies can be developed based on the results of untargeted MS-499 

based lipidomics. Newer techniques include total reflection Fourier-transform infrared 500 

spectroscopy (ATR-FTIR)132 and Raman spectroscopy.133 Raman spectroscopy reveals the chemical 501 

composition of single sEVs, and can identify different subpopulations of EVs based on their overall 502 

biochemical composition, including cholesterol content, phospholipids-to-cholesterol ratio, and 503 

surface protein expression.133 504 

Most lipidomic studies of sEVs show an enrichment from cells to sEVs for cholesterol and 505 

sphingomyelin (representing approx. 40-50% and 10-20% of total small EV lipids, respectively).134 506 

Phosphatidylcholine and phosphatidylserine are in general the most abundant glycerophospholipids 507 

while phosphatidic acid, phosphatidylglycerol and phosphatidylinositol tend to be lower. Compared 508 

to cells, the content of phosphatidylcholine and phosphatidylinositol is generally lower in small EVs, 509 

while sphingolipids are increased. Certain lipids such as triacylglycerols and cholesteryl esters are 510 

found in lipoproteins and lipid droplets, and a high content of these lipids in EV preparations might 511 

be indicative for co-isolated or contaminating particles. There is evidence that sphingolipid 512 

composition of circulating EVs is altered after myocardial ischaemia.135 Of note, ceramide content in 513 

adipocyte-derived EVs regulate vascular redox state in obese patients and is associated with 514 

cardiovascular mortality.17 EV lipid composition is also dependent on EV type. MVB-derived small 515 

EVs have a higher cholesterol content than EV types released from the plasma membrane.131 In line 516 

with this, sEVs show the highest resistance to detergent lysis among EVs.107 517 

A subset of circulating EVs display oxidation-specific epitopes (OSE), which are immunogenic adducts 518 

derived from (phospho)lipid peroxidation.136 Thus, OSE+ EVs may be practical markers of pathology-519 

associated oxidative stress and may reflect pathological conditions better than EVs. Several different 520 

types of OSE can be identified using specific antibodies, including malondialdehyde (MDA), 4-521 

hydroxynonenal (4-HNE), and phosphocholine-containing oxidized phospholipids (PC).137 522 

 523 

8. Measurement of enzymatic activities carried by EVs 524 

EVs harbour active enzymes on their membrane. Most surface enzymes are not easily detectable 525 

although the functional activity of EVs can still be measured due to the amplification of the detection 526 

signal through the enzymatic process for such enzymes, including e.g. the generation of factor Xa.138 527 

Moreover, in most cases, both activators and inhibitors of a biological process are present at the 528 

same EV membrane. The overall functional activity of EVs will reflect the combined effects of these 529 

molecules.   530 

8.1 Pro-coagulant activity 531 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fourier-transform-infrared-spectroscopy
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fourier-transform-infrared-spectroscopy
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Large EVs possess procoagulant activities. This is mainly determined by the exposure of anionic 532 

phospholipids, especially phosphatidylserine which allows the binding of coagulation factors to the 533 

EV surface, as well as the exposure of active TF on some subsets of EVs.139 Assays measuring the 534 

functional capacity of EVs to generate factor Xa, thrombin, or a fibrin clot have been developed.140  535 

Phosphatidylserine contributions can be evaluated measuring a phospholipid-dependent coagulation 536 

time after EV dilution in a phospholipid-depleted plasma and activation with factor Xa (FXa) and 537 

calcium.141 Other assays combine solid-phase capture of EVs by annexin V and thrombin generation. 538 

A second group of assays focuses on the measurement of TF-dependent procoagulant activity of EVs. 539 

Thrombin generation in platelet-free plasma or purified EVs spiked in EV-free plasma is initiated in 540 

the presence of phospholipids without TF. High concentrations of TF-EVs are necessary for detection 541 

with this assay. Other studies evaluating the value of EVs as a biomarker of thrombosis have 542 

measured procoagulant EVs with FXa generation assays, using either EVs captured on coated plate 543 

or EV isolation using ultra-centrifugation (UC).142, 143 A more global assay also monitors fibrin 544 

generation after incubating plasma EVs isolated by UC in the presence of anti-TF or anti-FXII blocking 545 

antibodies.144 546 

In clinical practice, all these assays are currently limited either by a lack of specificity, a low 547 

sensitivity, or irreproducibility when UC is used to isolate EVs. For example, measurement of TF by 548 

flow cytometry remains challenging because of the low levels of TF and some concerns about anti-TF 549 

antibody specificity.145 To tackle such issues, a new EV-TF activity assay was recently developed using 550 

a new inhibitory anti-TF antibody and a more sensitive protocol.146 551 

Comparisons of assays measuring EV-TF activity suggest that Factor Xa generation assays are more 552 

sensitive than the Zymuphen assay,147 and a poor correlation was found between results of the 553 

factor Xa generation assay and the fibrin generation test.148 ISTH initiated a new collaborative 554 

project to compare the analytical performance of different assays measuring EV-TF in plasma 555 

samples149 to progress towards an optimal method to measure EV procoagulant activity in plasma 556 

samples. 557 

8.2 Fibrinolytic activity 558 

EVs have ambivalent functions in haemostasis since they also possess fibrinolytic activity. A subset of 559 

EVs may indeed vector plasminogen activators such as urokinase.150 Just as for procoagulant assays, 560 

the use of UC can result in poor reproducibility of fibrinolytic assays. To overcome this limitation, a 561 

hybrid assay combining specific capture of EVs and measurement of their plasmin generation 562 

capacity has been developed.151 High resolution laser scanning confocal microscopy could be also 563 

used to detect EV enzymatic activity using fluorescent reporters.152 However, throughput is limited. 564 

8.3 Enzymatic activities  565 

Presence of acetylcholinesterase is no longer used as a reliable EV marker; neurons and red blood 566 

cells produce this activity in abundance, whereas it is almost undetectable in other cell types and 567 

often associated with non-vesicular structures.82 Several metalloproteases, e.g. disintegrin 568 

metalloproteases and tissue inhibitor of metalloproteases have been reported in different EV 569 

preparations; these activities could confer on EVs the capacity to promote cell proliferation and 570 

remodelling of the microenvironment, which could contribute to EV therapeutic potential.153 571 

However, it remains crucial to demonstrate that the enzymatic activity is associated with EVs and 572 

not with soluble mediators, and does not result from co-isolation during the purification procedure. 573 

 574 
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9. Methodologies for functional characterization of EVs 575 

Due to the variable quality of the tools and technologies used to study EVs, complete and accurate 576 

reporting of methods is essential. These include the above-mentioned isolation and characterization 577 

techniques, but to understand the functional interaction and potential of different EV preparations, 578 

other points should be taken into consideration.  579 

i. In addition to EV purification and isolation, “EV-depleted” samples and quality and procedural 580 

controls (e.g.: unconditioned cell-culture medium processed in the same way) can help to 581 

determine true EV-mediated responses. GW4869, an inhibitor of neutral sphingomyelinase 2 582 

(nSMase2) and sEV release, is sometimes used as a control, but care is required in its use, as it is 583 

unlikely to be specific for exosome release.31, 154 584 

ii. Co-purified and bound molecules might affect functional assays,155 therefore it is best to avoid 585 

low-specificity methods such as general precipitation (polyethylene glycol, “salting out,” the 586 

basis of many commercial “exosome isolation” kits), unless these methods are combined with 587 

additional separation steps.  588 

iii. The biological nature of EV preparations makes normalization between conditions essential but 589 

there is no clear consensus on the best way forward. Some alternatives include: starting volume 590 

or the number of producing cells; total number of EVs; protein content; lipid content; metabolite 591 

content; or specific markers such as levels of tetraspanins or other putative house-keeping 592 

proteins or RNA species.156 It is recommended to have 2-3 different approaches, and to clearly 593 

describe each, to allow potential differences in functional outcomes to be explored.  594 

iv. For clinical therapeutic interventions, the identity of the EV preparations can be defined using 595 

quantifiable metrics.79 596 

v. In classical dose-response experiments, the relationship between the concentration of a 597 

ligand/drug and a measured outcome parameter is investigated. Such experiments should be 598 

considered to understand the dose-dependency of effects, and to understand the biological 599 

relevance of the quantity of EVs used. In many published works, the dose relative to 600 

physiological concentration is unclear. 601 

vi. Profiling of the EVs proteome and RNAome also will help to characterize their origin and also 602 

potential functional activities.157 603 

9.1 Uptake and biodistribution studies  604 

To understand specific uptake of EV species or how different EV subpopulations are produced, 605 

several potent inhibitors are commonly used, including chloroquine, neutral sphingomyelinase 606 

inhibitors, or genetic removal of Rab-protein family members.27, 158, 159 Inhibitors of micropinocytosis, 607 

endocytosis (clathrin, caveolin or lipid-raft dependent), phagocytosis or membrane fusion are also 608 

suggested to decipher in vitro the different routes and mechanisms of EV uptake by target cells.160 609 

Since these suggested compounds lack specificity, it is important to keep in mind that they only 610 

suggest potential mechanisms. No EV-specific interventions have been reported thus far.  611 

It is challenging to document the in vivo biodistribution of EVs. Many studies first isolate and tag EVs 612 

before injecting them in vivo, but these exogenous EVs may not reflect the same fate as 613 

endogenously released EVs. In addition, the presence of residual contaminants from the isolation 614 

procedure, the route of administration, the type of label used, the animal model and the detection 615 

method may all affect in vivo biodistribution. If fluorescent dyes are used for EV labelling they should 616 



MS # CVR-2021-0665-R2 
 

16 
 

be carefully selected. Many dyes, particularly lipophilic dyes, can form dye aggregates or micelles 617 

that are of similar size to EVs, or may bind to contaminants present in the isolate, such as 618 

lipoproteins and certain proteins.161 Furthermore, lipophilic dyes might dissociate from the labelled 619 

EV and be incorporate into cellular membranes in vivo, where long dye half-life may lead to incorrect 620 

assumptions about EV distribution and longevity and diffuse freely. Genetic approaches crossing 621 

ROSAmTmG mice with models expressing Cre-recombinase in a cell-specific manner have opened 622 

new avenues for quantifying uncommon populations of EV, such as cardiomyocyte-derived EVs in 623 

the circulation.
162 On the other hand, protein-based labels added using genetic approaches (e.g. GFP) 624 

can be susceptible to proteolysis and cannot be used on samples derived from human tissues and 625 

fluids. Therefore, careful control experiments are required to ensure the signal is specific and to 626 

monitor the influence of any free dye. Cell-cell interaction studies and paracrine activity of secreted 627 

exosomes can be studied by e.g. co-culture assays of different cell types. Some examples are 628 

reported where (direct) EV-cargo loading is used to detect EV-molecule transfer, but indirect effects 629 

and reduced EV functionality are examples of possible limitations of these methods.163 Possible 630 

controls include comparison with the biodistribution of free-label (no EVs) or of EVs that have been 631 

physically disrupted.164 632 

Investigation of endogenous EV biodistribution requires genetic labelling strategies, such as degron-633 

tagged reporters or pH-sensitive fluorophores, which provide a stronger EV labelling than that of the 634 

parent cell.165, 166 However, these approaches might be restricted to one specific subset of 635 

endogenous EVs. The EV-mediated transfer of Cre recombinase into floxed reporter cells appears to 636 

be an elegant method to study in vivo EV distribution and uptake.166 Another technique is to detect 637 

tissue uptake of a miRNA unique to the EVs, such as a foreign miRNA that the EVs have been 638 

engineered to express.25 639 

In conclusion, all current approaches to assess EV in vivo biodistribution (see Table 4 for examples) 640 
have their strengths and limitations, which must be carefully considered when designing 641 
experiments. 642 
 643 

10. Methodologies for clinical use of EVs in cardiovascular diseases  644 

Potential regenerative/reparative effects of EVs in the cardiovascular system have been observed  in 645 

both post-infarction, and non-ischaemic chemotherapy-induced cardiomyopathy models.1, 23, 26, 37, 39, 646 
42, 167 Although EV biodistribution and direct cellular uptake still needs much attention, preclinical 647 

meta-analyses indicate that stem cell-derived EV administration is associated with improvements of 648 

left ventricular ejection fraction, fractional shortening and a reduction of infarct size. These benefits 649 

are seen largely irrespective of the type of stem cell, timing of injection, route of delivery, dosage of 650 

delivery or follow-up period.168, 169 On the other hand, not unique to EV studies, there is a potential 651 

risk of positive publication bias.168, 169 While these positive data suggest that clinical studies may be 652 

warranted, there are a number of important issues to address including those related to upscaling of 653 

EV preparation processes in GMP-quality facilities using non-xenogeneic culture conditions, as well 654 

as ethical and regulatory approvals.5 Even with optimization of EV separation and characterization, 655 

several practical hurdles must be overcome to maximize the therapeutic potential of EVs. In addition 656 

to regenerative potential, however, EVs can play detrimental roles, for example potentially by 657 

causing thrombotic complications or forming microcalcifications that destabilize atherosclerotic 658 

plaques.170 The therapies preventing this deteriorating effect are under investigations. 659 

10.1 Production and storage effects on the quality of EV preparations 660 
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Prior to in vivo application, it is essential to assess the reproducibility of EV content, purity and 661 

functionality in batch preparations. These measures should include evaluation of ingredients and 662 

potential co-isolations of culture medium, while also keeping in mind that these might mediate part 663 

of the observed functional effects. The production of EV preparations for use in the cardiovascular 664 

system is not uniquely different from those for use in other systems. Manufacturing of MSC-sEV 665 

preparations for therapeutic applications is currently the most advanced with several preparations in 666 

clinical trials, as highlighted elsewhere.171  667 

For the isolation of EVs secreted by cells in culture, several cell-culture factories are available, 668 

including multi-layered culture flasks,63 hollow-fibre bioreactors,172 and microcarriers.173 Before 669 

these systems are used, however, their impact on EV production and bioactivity must be 670 

determined.  Isolated EVs are believed to be stable and can be frozen, but extensive studies are 671 

warranted to confirm that EV functionality is retained following freeze-thaw cycles and long-term 672 

storage.174 Multiple additional considerations are essential for handling blood-derived EVs,73 673 

including pre-analytical methods, and quality controls. 674 

10.2 Delivery strategies and biodistribution of EVs 675 

Efficient EV delivery to the target organ/cells may be necessary to achieve full therapeutic potential, 676 

but it should also be considered that the primary target may not be the diseased tissue if EVs 677 

function indirectly. Both systemic and intra-organ delivery is possible and close monitoring of EV 678 

biodistribution is needed since cellular uptake of EVs might not be accurately reflected by the 679 

tracking-labels used. Due to the small size of EVs, myocardial retention might be severely hampered 680 

since even stem cells, which are much larger than EVs, are immediately washed out from the 681 

myocardium after injection.175  EVs delivered intravenously are rapidly cleared (within minutes) and 682 

mainly distribute to the liver.176 Biodistribution studies, in which EVs are labelled with fluorescently 683 

linked lipid or amine dyes177, radiolabels178 or iron oxide particles,179 are highly warranted for 684 

mechanistic understanding of their effects. To facilitate long-term exposure of EV therapeutics, slow-685 

release systems in which EVs are loaded and slowly exposed to the targeted tissue are key. Both 686 

natural180 and synthetic177 delivery systems have been developed and display enhanced beneficial 687 

effects for cardiac repair38, with the caveat that they may require a direct intramyocardial delivery 688 

whose invasiveness may hamper their clinical acceptance. An alternative approach that has been 689 

successfully used to promote cardiac repair following myocardial infarction is thus to inject the EV-690 

producing stem cells into a semi-permeable chamber, which is then inserted subcutaneously to 691 

release EVs (and other factors) over time.36  692 

10.3 Loading therapeutics into EVs 693 

For successful intra-myocardial delivery, many limitations and barriers have to be overcome,181 694 

whereas bioengineered EVs with surface and/or cargo modifications might present unique 695 

advantages.  Engineered therapeutic nanoparticles include: i) vesicle-mimetics produced from cells 696 

by serial extrusion or cell membrane-cloaked nanoparticles, which have substantially greater yield 697 

and an easy purification process 182; ii) EV-liposome hybrids, produced using simple incubation or 698 

freeze-thaw cycles, for easier uptake by target cells and for enhanced delivery; and iii) synthetic EVs, 699 

which are based on liposomes with a composition similar to EVs. 700 

EVs have been modified to deliver small molecules, therapeutic RNA, proteins, lipids and different 701 

types of imaging molecules.183 184 Materials can be loaded into EVs via both passive loading (e.g. 702 

incubation with EVs or with EV-producing cells) or active loading (e.g. sonication, membrane 703 

permeabilization, electroporation, antibody binding of EVs or transfection of EV-producing cells). EVs 704 
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can be labelled on the surface or intraluminally.164 However, the labelling and loading procedure 705 

may alter physical, chemical and therapeutic properties of EVs or EV-mimetics. Moreover, 706 

therapeutic loading might be overestimated as observed for electroporation procedures that cause 707 

siRNA aggregate formation in the EV preparation.185 Therefore, a thorough in vitro and in vivo 708 

evaluation of their uptake, stability, efficacy and toxicity is necessary to develop suitable methods 709 

for future clinical studies. Recent research suggests that EVs of various sizes can naturally carry 710 

intact viruses used in therapeutics such as adeno-associated viruses (AAVs), (reviewed in 181,157 and 711 

may thereby be able to circumvent antibody neutralization.  712 

 713 

11. Conclusion  714 

In conclusion, researchers are gradually developing a better understanding of the role endogenously 715 

formed EVs in cardiovascular patho-physiology, how they may be sampled as biomarkers of 716 

cardiovascular disease, and how exogenously administered EVs might be used therapeutically. Basic 717 

procedures and principles for their purification, characterization, analysis and modification are in 718 

progress, which will facilitate detailed future mechanistic investigation. However, there are critical 719 

caveats at each step, and it is essential to bypass these pitfalls in order to avoid major setbacks and 720 

succeed in clinical translation (Tables 1,2,3). While relatively impure EV preparations may be shown 721 

to contain a desired biological activity useful for clinical applications, mechanistic studies may be 722 

hampered by the presence of unknown contaminants. This is essential, since approval of EVs for 723 

clinical use is likely to necessitate an effective potency assay (or an array matrix consisting of several 724 

potency assays), which would ideally reflect a proven mechanism of action.97 Apart from better 725 

separation techniques, characterization of EV preparations is needed using orthogonal and 726 

complementary methods to define the purity of the preparations and will reveal potential sources of 727 

contamination. With the wide interest in EVs from both academia and the pharmaceutical industry, 728 

there is no doubt that methods will continually evolve and improve, which will help to advance EVs 729 

studies in cardiovascular science.  730 
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12. Tables 731 

Table 1 Potential advantages and disadvantages of the main methods used to purify sEVs 732 

Method of purification Disadvantages Advantages 
Affinity-based methods  Low yield 

 Non-scalable 

 Antibodies are expensive and 
difficult to remove afterwards 

 Protein contaminants bind to the 
solid phase 

 Highly purified sEVs 

Diafiltration  Specialized equipment required  Membrane pores rarely block 

 Re-useable 

Centrifugation (Pelleting)  Labour intensive 

 Non-scalable 

 Expensive equipment required 

 Relatively low purity 

 Widely used 

 Standardised protocol (though 
may vary with different rotors) 

Density gradient centrifugation  Labour intensive 

 Non-scalable 

 Expensive and time consuming 

 It may be necessary to remove 
the gradient material, depending 
on subsequent analysis 

 Widely used 

 Standardised protocol 
 

Field-flow fractionation  Expensive equipment required 

 Extensive optimization required 

 High purity and yields can be 
achieved 

 Scalable 

Precipitation  Relatively low purity  Very rapid 

 “Home-made” techniques very 
cheap 

Size-exclusion chromatography  Labour intensive 

 Contaminants of a similar size of 
EVs may co-isolate 

 Widely used 

 Efficient at removing small 
proteins 

 Commercial columns available 

 Large columns can be made 
relatively cheaply for isolating 
sub-populations by size 

Tangential flow filtration  Expensive equipment required  Scalable 

 GMP-compliant 

Ultrafiltration through a membrane  Low purity 

 High pressures may damage the 
membranes of larger EVs 

 Membranes can become blocked 
when filtering large volumes 

 Scalable.  

 High yield 

 Cost-effective 

 More commonly used as an initial 
clean-up step or a concentration 
step post isolation 

 733 

 734 

 735 
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 737 

Table 2. Major factors to consider when isolating EVs from sources relevant to cardiovascular 738 

studies. 739 

Source of EVs: Major factors to consider Potential solutions 
Cell-culture 
conditioned medium 
containing serum 

 Risk of contamination from serum 
components including animal-derived 
EVs coming from serum 

 Contaminating EVs can be pre-
removed from serum 

 Consider using serum-free 
medium

a
 

Cell-culture 
conditioned medium 
without serum 

 Risk of cell phenotypic changes/death 
contaminating EVs with intracellular or 
apoptotic vesicles 

 Use short-term culture 

 Quantify levels of cell death 

Plasma  Care must be taken not to activate 
platelets during collection and handling 

 Platelets disrupt during a freeze-thaw 
cycle and hamper EV isolation  

 Challenging to remove contaminating 
blood proteins and lipoproteins 

 Carefully define suitable pre-
analytical procedures 

 Isolate EVs using a combination 
of orthogonal techniques 

Serum  EVs are released from activated platelets 

 Challenging to remove contaminating 
blood proteins and lipoproteins 

 EVs lost in the fibrin clot 

 Carefully define suitable pre-
analytical procedures. 

 Isolate EVs using a combination 
of orthogonal techniques. 

Tissue  
(e.g. myocardium)  

 Challenging to disrupt tissue without 
damaging the cell membrane 

 Risk of shaving epitopes from EVs when 
using proteolytic enzymes 

 Perform control experiments to 
ensure cells are not disrupted 

 Titrate enzyme quantity and use 
the minimum 

The importance of these points will vary depending on the intended use of the EVs, and must be 740 
evaluated separately for each experiment. 741 
aAs noted in the main text, these solutions can introduce problems of their own. e.g. EV removal 742 
from serum also removes other components, and it is probably not possible to remove 100% of the 743 
EVs. Serum-free medium may negatively affect cell health and EV quality. 744 
 745 

 746 
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Table 3 Advantages and disadvantages of common techniques used for EV detectiona 748 

Detection method Advantages Disadvantages 
Capillary 
electrophoresis 
immunoassay

b
 

 Smaller sample volume required 
 Ease of automation 
 Fast separation and data acquisition 

 Expensive instrumentation 
 Limit of detection poorer than solid 

phase detection (e.g. immunoassay) 

DELFIA
b
  Microplate setup 

 Higher throughput than 
immunoblotting  

 Sufficient sensitivity with only one 
antibody 

 Requires plate reader with time-
resolved fluorescence (TRF) detector 

 Risk of false positive signal with low 
specificity antibodies 

Dot blotting
b
  Smaller sample volume required 

 Protocols shorter than western 
blotting 

 Molecular weight not determined 
 Risk of false positive signal with low 

specificity antibodies 

Flow cytometry  Suitable for large EVs (>300nm) 
without generic fluorescent labelling 

 High throughput (suitable for clinical 
studies) 

 Quantitative analysis of single EVs 
 Can use multiple detection 

antibodies 
 Bead-based immune capturing 

protocols can be used to perform EV 
subset analysis

b
 

  

 Small EVs (<300nm) are below the 
limit of light scatter detection of 
many conventional flow cytometers 

 Generic fluorescent EV labelling may 
introduce biases in EV detection of 
heterogeneous EV preparations 

 EV-associated proteins may be 
below the limit of detection 

 Lengthy sample preparation with 
multiple control conditions required 

Imaging cytometer
b
  Can detect single small EVs 

 Can use multiple detection 
antibodies 

 Specialized equipment required 
 Extensive protocol development 

required 

Immunoelectron 
microscopy  
(TEM or Cryo-TEM)

b
 

 Single particle detection 
 Can distinguish membrane and 

intraluminal targets 

 Expensive equipment 
 Mostly qualitative 

Mass spectrometry  Comprehensive picture of the EV 
proteome 

 Quantitative analysis of more than 
one target protein 

 Label-based approaches powerful 
for quantitative purposes 

 Expensive equipment 
 Lengthy sample preparation 
 Substantial quantity required 
 Poor limit of detection due to the 

presence of high-abundant 
contaminants 

Sandwich ELISA
b
  Microplate setup 

 Higher throughput than 
immunoblotting 

 Risk of false positive signal with low 
specificity antibodies 

Transmission 
electron microscopy 
(TEM) 

 Single EV detection 
 Can distinguish membrane and 

intraluminal targets 

 Expensive equipment 
 Sample is dried so EV morphology is 

altered 
 Mostly qualitative data 

Cryo-transmission 
electron microscopy 
(Cryo-TEM) 

 As per TEM 
 Shows native shape of EVs 

 As per TEM 

Western blotting
b
  Well-established protocols 

 Molecular weight determined 
 Large sample volume required 
 Time-consuming 
 Usually semi-quantitative 

aAn important overarching consideration is whether isolation of EVs is necessary for subsequent 749 

analysis steps. E.g.: Some analysis techniques such as flow cytometry can be optimized to work in 750 

the presence of (diluted) plasma or serum, negating the need for purification and its attendant 751 

limitations and inherent variability. 752 
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bAll techniques using antibodies require validation of antibody specificity and optimisation of their 753 

concentrations and blocking reagents. 754 

 755 

  756 
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Table 4 – examples of EV labelling for direct transfer and biodistribution studies 757 

 Method of EV 

labelling 

  

(Animal) models 

  
Observations Advantages Disadvantages References  

Lipophilic dyes 
(e.g. PKH26, 
PKH67, DiD) 

 Ischaemic mouse 
hearts   

 cell lines 

 EV-bound 
labels co-
labelled with 
cardiac-specific 
cell types 

 direct transfer 
in vitro cultures 

 Well-
establishe
d 
protocols 

 Non-EV 
mediated dye 
transfer from 
EVs to other 
cells or 
organs. 

 Free label 
transfer 

27 
161

  

 Donor cell 
RNA transfer 

 cel-miR-39 
overexpressi
on donor cell 
(lipofectamin
e) 

 In vitro cell model 

 Perfusing isolated 
rat hearts 

 Mouse 
proteins 
present in 
human cell 
lines 

 Dose-
dependent 
presence of 
increased cel-
miR39 levels in 
cultured cells 
and ex vivo 
hearts 

 Intact EV 
sorting 
and 
mechanis
ms 

 Well-
establishe
d 
protocols 

 Variation in 
EV content 
due to donor 
cell changes 

186
 

25
 

EV siRNA loading  Electroporation  Knock-down of 
target genes in 
organs 

   Disruption of 
EV integrity 
and 
functionality 

187
 

Fusion proteins  Luciferase- or 

 GFP-linked labels 
to CD9 or CD63 

 CD63-pHluorin 

 Cardiac-specific 
EV tracking via 
Luciferase 
expression 

 In vivo and in 
vitro EV 
release, 
transfer and 
function 

 Direct EV 
visualizati
ons 

 EV release 
and organ 
specific 
uptake 

 EV 
functionality 
disrupted 

 Limited signal 
detection 

188
 

189
 

166
 

Degron reporters  In vitro cell 
models 

 Highly sensitive 
EV release 

 High 
sensitive 

 Functional 
tools need 
donor/target 
manipulations 

165
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13. Figures  759 

 760 
 761 

 762 

Figure 1.  763 

The typical size range of the major lipid-bilayer EVs up to 1000 nm diameter. 764 
aAs reported by Jeppesen et al.60  765 
bThe size of apoptotic vesicles/bodies can range up to 5 μm in diameter.  766 
Please be aware that the diameter of EVs depends on the detection method used.  767 
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 768 

 769 

Figure 2. 770 

 Representative images of different techniques of EV characterization.  771 

A) Transmission electron micrography (TEM) of multi-vesicular body (MVB) containing 772 

exosomes (arrows) in primary HUVECs. 773 

B) Transmission electron micrography (TEM) of negative-stained EVs isolated from HUVECs 774 

(sEV = small EVs, lEV = large EVs). 775 

C) Cryo-TEM of a single CD81+ EV from iPS-derived cardiovascular progenitor cells.37 The lipid 776 

bilayer is clearly resolved (arrow). 777 

D) Fractionation of sEVs (purple) from proteins (green, blue) by size-exclusion chromatography. 778 
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E) Single frame from nanoparticle tracking analysis (NTA) of an sEV sample under constant 779 

flow, showing particle tracks (red) and particle size-distribution (blue). 780 

F) Representative trace of EV sample obtained using resistive pulse sensing (RPS). 781 

G) Individual particles detected by RPS, with size determined relative to calibration beads of a 782 

known size. 783 

H) Size distribution of EVs obtained by RPS.  784 
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 785 

Figure 3.  786 

Steps towards EV characterization, adapted from MISEV2018 guidelines.31 787 
1) Determine the quantity of EVs obtained, relative to the amount of starting material.  788 
2) Verify the presence of at least three positive protein markers of small EVs, including one 789 
transmembrane or GPI-anchored protein (eg: CD9, CD63, CD81, NT5E/CD73), and one cytosolic, 790 
luminal protein (eg: ALIX/PDCD6IP, HSC70). For large EVs, a wide range of surface markers such as 791 
integrins from the cell of origin may be used. 792 
3) Preferably, demonstrate the relative abundance of significant contamination by non-vesicular, co-793 
isolated components such as lipoproteins (APOB, APOA1, APOA2) or albumin. 794 
4) Characterize individual EVs, with images of single EVs (both wide-field and close-up).  795 
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 796 

14. Box 1  797 

The standard differential ultracentrifugation protocol for EV isolation, originally published by 798 

Thery et al.54 799 

1. Centrifuge sample at 300 g for 10 min, at 4°C. (Remove cells and cell debris)  800 

2. Centrifuge supernatant at 2,000 g for 10 min, at 4°C. (Remove larger complexes)  801 

3. Centrifuge supernatant at 10,000 g for 30 min, at 4°C. (Microvesicles are in the pellet). 802 

4. Centrifuge supernatant at 100,000 g for 70 min, at 4°C in ultracentrifuge. (EVs are in the pellet) 803 

5. Re-suspend the pellet containing EVs and contaminating proteins. 804 

6. Centrifuge 100,000 g 70 min, 4°C in ultracentrifuge to wash. (sEVs/exosomes are in the pellet). 805 

  806 
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