
����������
�������

Citation: Bongrand, P. Is There a

Need for a More Precise Description

of Biomolecule Interactions to

Understand Cell Function? Curr.

Issues Mol. Biol. 2022, 44, 505–525.

https://doi.org/10.3390/

cimb44020035

Academic Editor: Inyeong Choi

Received: 25 November 2021

Accepted: 17 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Is There a Need for a More Precise Description of Biomolecule
Interactions to Understand Cell Function?
Pierre Bongrand

Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, Cnrs UMR 7333, Aix-Marseille Université UM 61,
13009 Marseille, France; pierre.bongrand@inserm.fr

Abstract: An important goal of biological research is to explain and hopefully predict cell behavior
from the molecular properties of cellular components. Accordingly, much work was done to build
extensive “omic” datasets and develop theoretical methods, including computer simulation and
network analysis to process as quantitatively as possible the parameters contained in these resources.
Furthermore, substantial effort was made to standardize data presentation and make experimental
results accessible to data scientists. However, the power and complexity of current experimental
and theoretical tools make it more and more difficult to assess the capacity of gathered parameters
to support optimal progress in our understanding of cell function. The purpose of this review is to
focus on biomolecule interactions, the interactome, as a specific and important example, and examine
the limitations of the explanatory and predictive power of parameters that are considered as suitable
descriptors of molecular interactions. Recent experimental studies on important cell functions, such
as adhesion and processing of environmental cues for decision-making, support the suggestion
that it should be rewarding to complement standard binding properties such as affinity and kinetic
constants, or even force dependence, with less frequently used parameters such as conformational
flexibility or size of binding molecules.
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1. Introduction: Why Is There a Need for Elaborate Parameters to Describe the
Properties of Cellular Components?

A long-term goal of cell biologists consists of explaining cell function with basic laws
of physics and chemistry [1,2]. This requires to address the following questions:

(i) Define and identify informative cell properties (i.e., features or attributes). The
choice of considering a particular property is somewhat arbitrary and depends on the
function that is being explored. As an example, the set of gene transcription rates may
be thought to account for a cell differentiation state [3]. More transient properties are
cell polarization, i.e., asymmetrical organization, or motility state: whether a cell is
immobile on a surface or migrating throughout a living organism. The activity of a
particular signaling pathway is another example. A cell state may be defined as the
time-dependent set of values of a suitable group of properties.

(ii) Define and identify the pieces of information, or signals, provided to cells by the
extracellular medium. A signal may consist of the application of a force on a region
of the cell membrane or binding of a ligand to a cell surface receptor. As will be
discussed below, multiple binding interactions are continually formed and broken,
and a choice may be necessary to define significant signals, which depends on the
function that is being explored. Additionally, the effect of a signal may be strongly
dependent on its localization and temporal evolution. These features must, therefore,
be included in the parameters used to describe signals.
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(iii) Discover rules allowing to predict the temporal evolution of cell states as a function of
received signals. It must be emphasized that the way rules are expressed may involve
somewhat hidden assumptions. Thus, it may be implicitly assumed that the description
of a cell state does not need to include its history, i.e., that cell evolution may be described
as a Markov process, an assumption that is not always warranted [4,5].

Thus, the first step of analyzing a cell function consists of selecting and defining
parameters that can be measured and processed and that will provide a suitable description
of cell properties. As an example, the property of a molecule A to bind to another molecule
B may be described by using the affinity constant, which is a quantitative parameter. A
property may also be described in a binary (or Boolean) way: when a couple of molecules
A and B is considered, it is described as “physically interacting” or not. The purpose of this
review is two-fold. Firstly, we shall briefly discuss the dependence of different methods
used to study cell functions on the initial choice of the parameters. Secondly, we shall focus
on the description of biomolecular interactions, since they are considered as prominent
contributors to cell function, and we shall ask whether the parameters currently used
to describe molecular interactions are sufficient to allow the tools currently used by cell
biologists to elucidate cell behavior.

2. The Initial Choice of Parameters Used to Describe Cell Properties Strongly
Influences the Performance of Quantitative Methods Currently Used to Study
Cell Function

Before focusing on the description of biomolecule interactions, it seemed useful to rapidly
discuss the power and limitations of strategies currently used to model cell function within
the domain of systems biology. Indeed, the information that can be obtained on cell function
is dependent on the choice of parameters that can be defined and measured, and the choice of
methods that will be used to process data. We shall describe several representative examples
of strategies that may be considered to study cells or cellular components.

2.1. An Exhaustive Ab Initio Description of Cell Function Seems Out of Reach in the Near Future,
and It Is Not as “Parameter-Independent” as Might Be Thought: Lessons from
Molecular Dynamics

Computer simulation is a powerful way of studying complex systems. Molecular
dynamics (MD) is a prominent example and it brought new information on protein struc-
ture and biomolecule interactions [6,7]. A brief discussion of the basic principles, recent
advances, and limitations seems warranted to discuss the relevance of this approach to
cell function. See, e.g., [8] for a technical description of Gromacs, a freely available MD
software providing a good example of currently performed MD simulations [9,10].

A typical MD computation consists of simulating the evolution of a protein molecule
in a box filled with water and ions. The current orders of magnitude are 100 nm for the
linear size of the box, 10,000 for the number of atoms in the protein, and 100,000 for the
number of water molecules or number of water atoms. A full description of the protein may,
thus, involve an order of 60,000 parameters, corresponding to the positions and velocities
of all atoms. The simulation consists of starting from a reasonable conformation, usually on
the basis of a structure obtained by an experimental method such as X-ray crystallography,
and calculating the forces experienced by all atoms with empirical force fields in order to
determine the displacement and velocity changes of individual atoms during a time step
on the order of 1 fs (10−15 s). This procedure is then repeated for at least several millions
of steps, with periodic recording of the parameters, yielding “trajectory files” that can be
processed to determine requested pieces of information. MD has been used for more than a
decade to obtain insight on ligand-receptor interactions [6]. This approach is now widely
used to address a variety of problems, such as an estimate of binding affinities [11], check
of the quality of experimentally determined structures [12], or assessment of the influence
of the conformational variability of proteins on docking behavior [13]. This strategy was,
thus, able to bring new insight into protein structure and function without any a priori
model of investigated phenomena.
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However, applying this powerful approach to whole cells is clearly out of reach: the
size of a typical cell is on the order of 10 µm, and the number of atoms is, thus, 1515-fold
higher than accessible with current MD simulations. The number of steps required to reach
physiologically significant time periods would need a more than 1000-fold increase. As
recently emphasized [2], the computational power required to deal with this complexity is
not expected to be available before many decades. Therefore, a drastic dimensional reduc-
tion would be required to simulate cellular systems. Noticeably, such simplification was
already required to explore physiologically relevant properties of single proteins or ligand-
receptor couples with MD. So-called coarse-grained simulations might consist of replacing
individual atoms with groups such as water molecules [14], accelerated sampling [15,16],
splitting long simulations by a number of shorter ones with different starting configurations
(so-called umbrella sampling), or increasing transition rates with well-chosen virtual forces
(steered MD) allowed to explore more extensive regions of conformational landscapes.

As was recently emphasized [17], a conventional simulation can now generate ter-
abytes of data, and data processing requires elaborate methods that are not always easy
to fathom, and the outcome of which may depend on the choice of parameters used to
describe studied systems. As an example, it was shown with a toy model that unsupervised
“machine learning” tools failed to identify important features of a system described with
cartesian coordinates rather than interatomic distances [17].

While a more detailed discussion of MD would not fit into the scope of this review,
this example clearly shows that any attempt at a quantitative understanding of cell function
should require for many years a huge simplification and a choice of a restricted set of
parameters that may strongly influence the outcome of modeling attempts.

2.2. The “Omic” Approach: Representative Examples of Strategies Used to Analyze Huge Datasets

During the last two decades, following the completion of the human genome project,
much effort was made to build extensive datasets of key cell properties, such as the status of
gene transcription (transcriptome [3]), protein content (proteome [18,19]), intracellular bio-
chemical reactions (metabolome [20]), or list of molecular interactions (interactome [21,22])
and computational tools were developed to process available data. Not surprisingly, the
power and limitations of data processing tools are highly dependent on the precise parame-
ters that are fed into databases. We shall give a few general examples before focusing on
parameters used to account for biomolecule interactions in Section 3.

2.2.1. Graph Theory, Networks, and Logic-Based Models

Networks, which are also called graphs in the mathematical literature, may be de-
fined as collections of points (also called nodes or vertices) joined in pairs by lines (also
called edges or links) [23]. This basic principle is displayed in Figure 1. They are widely
used in the biological literature to summarize large datasets. As an early example, an
analysis of inflammation was performed by using microarrays to measure the transcription
rate of 3714 genes in blood leukocytes of human volunteers before and 2, 4, 6, 9, and
24 h after intravenous injection of an inflammatory stimulus [24]. A statistical analysis
was performed to determine the genes that displayed increased, decreased, or constant
transcription rate. A computer-assisted analysis of over 200,000 scientific papers was
performed to identify connections of different types (e.g., physical or transcriptional) be-
tween gene pairs. The results were displayed as a network involving 1556 genes and their
interactions. Each gene was represented as a node with three discrete states. In a similar
spirit, integrin-mediated cell adhesion was analyzed by searching published data. The
results were represented as a network made of 156 nodes representing so-called adhesome
components and 690 interactions that might consist of physical interaction, activation, or
inhibition [25]. Network analysis was shown to yield valuable hints on the function of
displayed molecules [26,27]. Obviously, this analysis is strongly dependent on the choice
of parameters represented by the edges.
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Figure 1. Example of a network representation of six molecules (A, B, C, D, E, F) that may be, e.g.,
enzymes or cytoskeletal components. The edges may represent binding interactions, or enzyme
activation and inhibition. Network analysis may reveal remarkable patterns, also called motifs, that
can be ascribed a particular function (such as retroinhibition) [27]. A relatively independent group
(such as ABCF) may be viewed as a fairly autonomous module and represented by a single node for
network simplification. Additionally, the frequency of occurrence of a particular motif such as ABCF
in a huge network can be calculated, and this may be compared to the frequency expected with a
random distribution of edges [25].

This representation is a good starting point for the building of a Boolean network as
a basis of dynamic modeling of cell function [28–30]. This strategy was used to analyze
the differentiation of CD4+ T lymphocytes that play a key role in orchestrating immune
responses [29]: following stimulation with infectious agents, CD4+ may differentiate into
different subtypes that will preferentially activate a particular branch of the immune
response. Thus, Th1 cells will enhance cellular effectors by activating cytotoxic T cells or
mononuclear phagocytes. Th2 cells will activate humoral responses. Treg cells will prevent
excessive activation and autoimmunity. The balance between possible differentiation
pathways may determine the outcome of an infection. Thus, intracellular pathogens are
known to escape antibody responses. It is, therefore, of prominent medical importance
to predict and possibly manipulate the outcome of a particular stimulation. The authors
scanned the scientific literature to build a regulatory network including 18 nodes (cytokines
or transcription factors) with two possible states (active or inactive) and Boolean algebraic
equations based on known biological data to obtain dynamical predictions. As an example,
the state of IL2-receptor at time t + 1 was calculated as {(IL-2 at time t) AND (NOT SOCS-1
at time t)}, (IL-2 is interleukin 2, SOCS is suppressor of cyokine synthesis). A notable
finding is that this approach yielded so-called attractors (as defined within the framework
of chaos theory), i.e., states that remain stationary and that were concluded to correspond
to already-known differentiation states. More recently, a similar strategy was used to
analyze the differentiation pathways followed by macrophages [31]. The Boolean model
comprised 29 nodes (such as cytokines or kinases) and 60 interactions. This was aimed at
better controlling the balance between pro- and anti-inflammatory fates.

These simple examples deserve some comments: (i) as was early emphasized, the use
of logic-based models made it possible to perform a dynamic treatment of complex systems
in absence of detailed quantitative experimental data [28,30]. (ii) This approach is appealing
since it is fairly easy to grasp intuitively. (iii) The validity is difficult to assess rigorously,
and it is not obvious to determine which features of a network may be considered as unique.
(iv) The building of the network is based on the use of arbitrary thresholds to achieve a
binary description of molecular states and interactions [29].

Therefore, it is not surprising that more quantitative models were considered to be
necessary to account for complex biological systems. Thus, fuzzy logic was proposed as
a more quantitative approach, with a possibility of more than two states of a node, and
probabilistic transitions [32]. Boolean models were transformed into quantitative models in
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order to make use of quantitative experimental data, and this approach was applied to a
study of T lymphocyte signaling [33]. However, a detailed discussion of these attempts
would not fall into the scope of the present review.

2.2.2. Viewing Cells as Mobile Points Moving on a Multidimensional Landscape

The starting point was a highly quoted metaphor by C. Waddington, who compared
differentiating cells to marbles rolling down a surface with valleys (corresponding to
developmental paths) and local minima [34,35]. This general representation recently
met with considerable success. In the widely used Pubmed database, the number of
papers retrieved with the “landscape” keyword increased from 269 to 10,468 (0.7% of
published papers) between the years 2000 and 2020. As an example, the reprogramming
of mouse embryonic fibroblasts into pluripotent stem cells was studied with single-cell
RNA sequencing [3]. A total of 315,000 cell samples were sampled at short time intervals
during an 18-day period and the cell trajectories in the developmental landscape were
derived with a mathematical procedure (so-called optimal transport theory) by relying on
the assumption that cells displayed straightforward displacement in a short time, and the
displacement probability did not depend on displacement history (following a Markov
model). A theoretical model of epithelial-to-mesenchyme transition was built on the
basis of 16 representative genes previously identified in experimental studies [36]. The
landscape metaphor was also used to account for different biological processes, such as the
signaling pathways of T lymphocyte activation, as revealed by analyzing cell proteome
and phosphoproteome [37], the immunological status of infected patients as a point in
a 19-dimensional space representing 19 blood cell types [38], or cell shape control by a
couple of interacting Rho GTpases [39]. More mathematically oriented reports aimed
at showing that the dynamics of complex systems were amenable to such a geometrical
representation [40,41].

This brief description deserves two remarks: (i) using models that were thoroughly
studied in other fields of science has long proved a very fruitful approach in the domain of
mathematics and physics. (ii) It may be difficult to assess the significance of parameters
that are fed into these models. Thus, epithelial-to-mesenchyme transition was modeled [36]
with a network involving 16 nodes representing genes or micro-RNAS, the relevance of
which was demonstrated experimentally. Activation, inhibition, and interactions were
modeled with functions involving a number of parameters, such as degradation rates
(16 parameters) or mutual activation (16 × 15 = 240 parameters are needed to account for
the effect of each component on the 15 others). In order to make the model manageable,
a number of parameters were slumped together, resulting in a total of five parameters.
Thus, while the model could yield metastable states and some path transitions consistent
with experimental data, it is very difficult to determine the actual biological significance of
nodes and activation parameters.

2.3. Data Processing with Multivariate Statistics and Machine Learning

Multivariate statistics [42] have long been used to analyze large biological datasets [43,44]
and perform tasks such as identification of important parameters (with techniques such as
principal component analysis), significant groups in large sets of points (with so-called clus-
tering techniques), or correlations between different parameters and prediction of outputs
from input parameters. Discrete data, such as DNA sequences, are particularly amenable to
these powerful methods, and user-friendly tools were developed to make them accessible to
a wide community of users [45]. Furthermore, during the last decade, artificial intelligence
was more and more successfully used to perform complex tasks due to the progress brought
by deep learning to conventional machine-learning technology [46–48]. This met with im-
pressive success in a wide variety of fields, including image analysis [49], medicine [50],
and protein studies [51]. It is, therefore, not surprising that machine learning is more and
more often used to analyze cell processes such as immune cell differentiation [52] or relate
DNA sequence to cell morphological patterns [53].
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However, despite impressive successes met by artificial intelligence in finding pat-
terns in complex datasets and predicting outputs, some unanswered questions hamper
their contribution to our understanding of cell function. First, the complexity of trained
networks caused them to be considered as black boxes, and attempts are currently done to
decrease their opacity [54,55] or increase reliability [56,57]. Secondly, a well-known caveat
of correlation studies is that a strong correlation between two parameters is not a proof of
a causal relationship between these, and unveiling causal relationships is by no means a
simple task [58]. This limitation is important because it may hamper the understanding of
a cellular process if the parameters used to describe this process are not directly involved
in its mechanism. Thus, the very efficiency of machine learning to find patterns in complex
datasets makes it difficult to conclude that the parameters used to measure the studied
phenomena were directly and causally related to cell function.

In conclusion: as shown by the few examples we described, much effort is currently
being made in gathering huge datasets to describe various cell functions, and highly
sophisticated methods are currently developed to try and interpret these data and identify
hopefully predictive rules. The significance of conclusions is dependent on the choice
of parameters used to describe experimental data. The growing complexity of currently
published papers makes it more and more difficult to assess the validity of models, and
intrinsic relevance of chosen parameters. In the following section, we shall try to clarify
this, admittedly too general and abstract, statement by considering a more specific question:
which parameters should be used to account for protein interactions in order to derive
optimal benefit from the enormous amount of available information.

3. Is There a Need for a More Precise Description of Biomolecule Interactions?
3.1. Current State of Interactome Databases

It has long been recognized that biophysical interactions between cell components
play a key role in the cell structure and function [6,21,59,60]. Cell cohesion obviously
needs stable attachments between structural molecules. Cell communication with the
outer world relies on the adhesion to other cells or surfaces, and recognition of soluble
or surface-bound mediators with hundreds of membrane receptors [61]. Generation and
propagation of intracellular signaling events relies on the formation and dissociation
of multimolecular complexes [62,63]. Molecular transport throughout cells is strongly
influenced by interdependent crowding and binding effects. Thus, much effort is currently
being made to gather extensive experimental information on biomolecule interactions
and particularly protein interactions, to build extensive maps of the so-called interactome.
While a detailed description of the current state of this highly moving field would obviously
fall outside the scope of this review, it is important to emphasize some points:

(i) The term “interaction” may refer to different phenomena. Physical binding and unbinding
of a molecular pair in solution can be quantified with high accuracy with standard
techniques, as will be detailed below. High throughput maps of binary interactions
involving about 17,500 human proteins (about 90% of the protein-coding genome)
were built with the standard yeast two-hybrid method, yielding about 53,000 inter-
actions [60]. The validity of results was fed into public databases such as IntAct
(https://www.ebi.ac.uk/intact/ accessed on 7 December 2021) after careful valida-
tion [60]. However, as was well acknowledged by the authors, the occurrence of
physiologically relevant molecular interactions requires that molecular partners might
encounter each other within cells. Additionally, molecular interactions may display
significant differences in vitro and within cells [64]. Affinity purification-mass spec-
trometry (AP-MS) is currently used to obviate this difficulty [65,66]. This relies on
the use of cells expressing tagged “baits” that may be purified after cell lysis before
identification of binding partners with quantitative mass spectrometry. As a recent
example, a network of 118,162 interactions among 14,586 proteins was obtained after
affinity-purification of 10,128 proteins expressed by human epithelial kidney cells,
yielding the Bioplex 3.0 network [21]. Interestingly, comparison with data obtained on

https://www.ebi.ac.uk/intact/
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another cell line (from human colorectal carcinoma) revealed, as expected, significant
differences between interatomic networks found with two different cell types. Addi-
tionally, when AP-MS was studied to monitor, for a period of time of 600 s, primary T
lymphocytes subjected to antigen-receptor mediated stimulation, the expected evo-
lution of signalosome interactions was clearly evidenced [65]. In conclusion, while a
reliable and nearly exhaustive network of the physical interaction of human proteins
under standard conditions may be available, an exhaustive description of interactions
involving relevant epigenetic states of the proteome and cellular environments is cur-
rently out of reach [21,60], despite the impressive amount of information gathered by
combining data mining and experiments, as exemplified by the STRING database [22].
As clearly stated [60]: “It remains infeasible to assemble a reference interactome
map by systematically identifying endogenous protein–protein interactions (PPIs) in
thousands of physiological and pathological cellular contexts”.

(ii) As already mentioned in the aforementioned examples, the quantitative properties of
biomolecule interactions may display huge variations. As an example, the dissociation
constant of biomolecular bonds may vary between picomolar values (as exemplified
by hormone-receptor interaction) and millimolar values [67], which may be considered
to represent ultra-weak interactions, of which the biological importance is, however,
recognized [68]. The lifetime of a ligand-receptor bond may vary between less than a
second (as was sometimes reported on cadherins [69] or antigen-antibody pairs [70])
and hours.

In conclusion, recent work has provided scientists with an extensive description of
biomolecular interactions that were represented as essentially qualitative networks. This
situation may be illustrated by a search made on several well-known databases to find
information on the interactome of P-selectin, an endothelial adhesion molecule that was
shown to mediate the rolling of blood leukocytes on inflamed endothelium by binding
to its main ligand PSGL-1 with a high binding rate and resistance to forces [71,72]. As
shown in Table 1, the P-selectin ligand was easily retrieved, but the specific quantitative
features of receptor–ligand interactions were not immediately displayed. The analysis
of these networks with suitable algorithms yielded new information on, e.g., signaling
pathways [37,65]. An open question is to know whether this basis may be sufficient to allow
a quantitative understanding and prediction of cell behavior provided suitable processing
methods are developed, or whether there is a need to incorporate a number of other
quantitative parameters in datasets. While it is certainly not possible to give a definitive
answer to these questions, it is certainly useful to review parameters recently used to
account for biomolecule interactions and discuss their relevance to cellular processes.

Table 1. Information given in representative public interactome database on P-selectin (CD62P)
interaction with PSGL1 (P selectin glycoprotein 1)/CD162 1.

Database Website CD162
Ligand

Affinity or
Kinetic

Constants

Catch
Bond

Rolling
Function

Nb of PUBLI-
CATIONS

Quoted

Biogrid https://thebiogrid.org/ accessed on 7
December 2021 + - - - 1

Dip https://dip.doe-mbi.ucla.edu/dip/ accessed
on 7 December 2021 + - - - 0

HPRD http://hprd.org/ accessed on 7 December 2021 + - - - 3

IntAct https://www.ebi.ac.uk/intact/ accessed on 7
December 2021 + - - - 4

Mint https://mint.bio.uniroma2.it/ accessed on 7
December 2021 - - - - -

String https://string-db.org/ accessed on 7
December 2021 + - - + 0

Uniprot https://www.uniprot.org/uniprot accessed on
7 December 2021 + +/- - + 11

1 Only immediately displayed information is shown. Bases are often interconnected and additional information
can be obtained by following several sequential links.

https://thebiogrid.org/
https://dip.doe-mbi.ucla.edu/dip/
http://hprd.org/
https://www.ebi.ac.uk/intact/
https://mint.bio.uniroma2.it/
https://string-db.org/
https://www.uniprot.org/uniprot
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3.2. Parameters Currently Available to Describe Biomolecule Interactions

In this section, we shall briefly describe methods currently available for quantitative
studies of ligand–receptor interaction and parameters yielded by these methods. In the
next section, we shall discuss the need of using these parameters to unravel cell function.

Here, our purpose is not to present an exhaustive description but only to give a feeling
for the kind of information that is currently available.

3.2.1. Interaction between Soluble Molecules and Surface-Bound Receptors

Surface plasmon resonance (SPR) is a widely used method [73,74]. A protein solution
is driven along a receptor-coated surface in a narrow channel and the amount of bound
material is determined in real time by probing the refractive index near the surface with
an evanescent wave. When equilibrium has been reached, the protein solution is replaced
with an empty buffer and the kinetics of protein release is determined. This method
allows label-free determination of the kinetic constants of bond formation and dissociation
(Figure 2), and the equilibrium constant can be calculated as the ratio between these kinetic
constants (Section 3.3). In contrast, standard radioimmunoassay (RIA) or enzyme-linked
immunosorbent assays (ELISA) only yield equilibrium constants. It is usually considered
that the mechanisms of interaction between a soluble and a surface-bound molecule are
comparable to the interaction between two soluble molecules; however, they are easier to
study. Another point is that the measured parameters represent average values of a large
number of molecules. The receptor and solute must be homogeneous.

Figure 2. Studying ligand-receptor interaction with SPR. (A) A ligand solution (blue disks) is
driven through a narrow channel, of which the floor is coated with receptor molecules. A laser
beam (green arrows) is used to probe the optical properties at the interface, allowing real-time
determination of the amount of bound material. (B) A typical curve. After an equilibration period,
the ligand solution is driven into the channel, resulting in progressive increase of bound material
(first arrow). The ligand solution is then replaced with an empty buffer and the ligand release is
monitored. The on- and off-rate can, thus, be determined. A significant cause of error is the presence
of molecular aggregates in the ligand solution.

3.2.2. Interaction between Surface-Bound Ligands and Receptors

The aforementioned methods are subject to two kinds of limitations (see [61] for
a recent discussion). First, important cell functions such as adhesion or migration on
surfaces are mediated by membrane receptors and surface-bound molecules. Second, as
will be described in Section 3.3.4, kinetic rates of bond formation and dissociation are not
sufficient to account for all important cell phenomena. These points are important since the
properties of interactions between surface-bound molecules (two-dimensional or so-called
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2D interaction) cannot be derived from data obtained with soluble molecules (so-called 3D
interactions) [75]). We shall briefly describe three methods that were widely used to study
2D interactions during the last two decades [70,76].

Atomic force microscopy (AFM) was very early used to study strong interactions, such as
streptavidin-biotin or antigen-antibody bonds. As depicted in Figure 3, the ligand-coated
nanometer-width tip of an AFM is pushed against a receptor-coated surface with a typical
force of order of 50–100 pN and a typical duration of order of 100 ms. The tip is, thus, sub-
jected to a disruptive force increasing with a constant rate called the loading rate, expressed
in pN/s. This setup was shown to evidence single-bond attachments that were usually
broken when the applied force ranged between a few tens of piconewtons [77,78] and nearly
200 pN [79]. The measured value is called the unbinding force. Several limitations must
be mentioned: first, the unbinding force is not an intrinsic molecular parameter, since it is
dependent on the loading rate. Second, the kinetic constant of bond formation is difficult
to estimate, since the contact area cannot be measured accurately, and the dependence of
the binding probability on contact duration is difficult to estimate. Third, the monitoring of
very weak bonds, such as the interaction between T cell receptors and their ligand, may be
difficult to achieve [80].

Figure 3. Atomic Force microscopy. (A) The ligand-coated tip (blue triangle) is bound to a flat
spring (cantilever), bearing a mirror that reflects a laser beam (red arrows) towards a detector (D),
allowing rapid and sensitive determination of vertical displacements. The receptor-bearing sample is
deposited on a receptor-coated block (dotted surface S) driven by a piezoelectric device that is moved
up and down. (B) Real-time determination of the force applied on the tip. Contact is achieved during
an upward move (2), and the surface is, thus, lowered, resulting in a progressively increasing force
(3) until the bond is broken (4).

The biomembrane force probe (BFP) allowed to increase the sensitivity and resolution of
force studies performed with the AFM. The basic principle consisted of replacing the AFM
cantilever with an inflatable vesicle that might be viewed as a tunable spring, as depicted in
Figure 4. This allowed to vary the loading rate over a very wide range of nearly 10 orders of
magnitude. The analysis of the dependence of unbinding force on loading rate, later dubbed
“dynamic force spectroscopy”, yielded some information of the shape of the energy/distance
curve of the ligand receptor complex [81]. This point will be discussed below.



Curr. Issues Mol. Biol. 2022, 44 514

Figure 4. Biomembrane force probe. A ligand-derivatized microsphere B (gray disk) is glued to a
soft vesicle, such as an erythrocyte (V), and sucked with controlled pressure into a micropipette (P1).
A receptor-bearing cell C is held with a piezoelectric-driven micropipette (P2) and driven against the
microsphere. The force is derived with high sensitivity from the microsphere displacement, since the
vesicle acts as a soft and tunable spring.

The laminar flow chamber (LFC, Figure 5) has been used for nearly three decades to
study the formation and rupture of single molecular attachments between surface-bound
molecules. This technique was extensively described in a previous review [82] and important
results obtained with the LFC were recently reviewed [61]. Briefly, receptor-bearing cells or
microspheres are driven along surfaces sparsely coated with ligand molecules with a low
shear hydrodynamic flow, which imparts to them a typical velocity on the order of tens of
µm/s. Particle movement is tracked automatically with a system typically yielding a space
and time resolution of tens of nm for position (if particles are microspheres) and 20 ms (using
standard video cameras), respectively. A single molecular bond is sufficient to stop the particle
since the applied hydrodynamic force may be as low as a few piconewtons. The duration of
contact between ligand and receptor molecules may be estimated as a function of molecular
length. Varying the flow velocity allows to derive quantitative relationships between the
contact duration, force on the bond, binding frequency, and distribution of arrest duration.

Figure 5. The laminar flow chamber. (A) a receptor-derivatized microsphere (blue disk) is driven
along a surface coated with very low ligand densities with a low shear laminar flow. The hydrody-
namic force on a bond maintaining the microsphere at rest may be as low as a few piconewtons [82].
An automated tracking system yields a plot of cell movement (B). Periods of constant velocity dis-
placements are interspersed with arrests of varying duration. Arrest frequency and duration are
tightly related to the molecular rate of bond formation and dissociation.
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The laminar flow chamber provided an efficient means of obtaining large statistics
on the formation and dissociation of weak bonds with a subsecond lifetime. A common
problem with AFM, BFP, and LFC is to ensure that monitored binding events are indicative
of single molecular bonds [83]. This is easily achieved with LFC by checking that sequential
dilutions of the density of binding sites on the chamber floor result in decrease of bond
formation without bond lifetime alteration.

3.2.3. Additional Parameters May Be Obtained with Computer Simulation

The continuous improvement of molecular dynamics in the last few decades [84] has
made it possible to obtain extensive information on the formation and rupture of bonds
between proteins subjected to controlled forces that were introduced at will as constraints.
While it is not yet feasible to monitor a molecular complex for several seconds, clever
tricks, such as steered molecular dynamics or umbrella sampling, made it possible to obtain
accurate information on the conformational changes and intermediate states displayed by
receptors and ligand molecules during the binding and unbinding process. This provided
a highly valuable help to achieve a quantitative understanding of molecular interactions.
However, the very abundance of experimental and simulated data [17] now raises two
important questions: (i) which set of parameters can give a sufficiently exhaustive and still
manageable account of the binding process and (ii) which information is actually needed to
achieve a reasonably accurate understanding of cell function. These key points, which are
dependent on available tools for data gathering and data processing, will be considered in
the following section. Interestingly, the insufficient incorporation of structural information
in systems biology was recently emphasized [85]

3.3. Physical and Biological Significance of Parameters Allowing to Account for
Biomolecule Interactions
3.3.1. The Equilibrium Constant

The law of mass action has long been considered as a fundamental basis for under-
standing atomic and molecular association, and it was the subject of whole books [86].
Indeed, three decades ago, the concept of affinity was considered to dominate most think-
ing about complex biological reactions [87]. It is well known that when two molecular
species A and B forming a complex AB are mixed and left to reach equilibrium, the final
concentrations of A, B, and AB are related by the following simple equation:

[AB]eq/[A]eq.[B]eq = Ka = 1/Kd (1)

where Ka is the affinity constant and Kd the dissociation constant, which are usually ex-
pressed in M−1 and M, respectively. Ka is close to the (dimensionless) quantity exp(−∆F◦/RT),
where ∆F◦ is the standard free energy, R is the perfect gas constant, and T is the absolute
temperature (see [70] for details). Importantly, ∆F◦ contains a term accounting for the
structural reorganization of A and B during complex formation and a so-called connection
term accounting for the loss of some degrees of freedom of A and B (such as translational
and rotational motion) after bond formation.

The dissociation constant Kd of biomolecular bonds may vary over more than ten
orders of magnitude (from millimolar values reported on ultraweak interactions [67] to
femtomolar affinity of the streptavidin-biotin couple [70]). It might seem reasonable to
hypothesize that there is a need to know the affinity of reported interactions to understand
their function. However, the utility of quantitative affinity data is hampered by two
important limitations.

1. It is difficult to use Equation (1) to assess the biological significance of a reported inter-
action. Indeed, it would reasonable to conclude that an interaction AB is significant
if either Ka[A] or Ka[B] is not too close to zero. But this would require to know the
value of [A] close to a molecule [B] or [B] close to [A], which is not always the case.
As a striking example, it was recently shown that spatio-temporal cAMP signaling
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is under precise control of nanoscale domains [88]. Additionally, local molecular
crowding may alter effective concentrations [89]. More generally, the in vivo affinity
of a reaction may differ significantly from the affinity measured in a standard buffer.
Thus, the qualitative demonstration of a physical interaction between two molecules
within a cell as evidenced with AP-MS [21] may be more informative than quantitative
in vitro affinity measurement.

2. Many biomolecule interactions involve surface-bound molecules. Indeed, as was
recently emphasized [90], nearly 30% of human genes encode membrane proteins.
Unfortunately, as already explained [75], the affinity between surface-bound molecules
is difficult to derive from 3D affinity, and even to define: the outcome of an encounter
between two bound molecules is dependent on a number of parameters independent
of binding sites such as molecular length and flexibility [91], lateral mobility, and
distance between surfaces [92].

In conclusion, the affinity constant may not be the most useful parameter to assess the
influence of a given interaction on cell function.

3.3.2. Kinetic Rates Provide an Informative Means of Accounting for
Biomolecule Interactions

The simplest way of describing the time-dependence of association between molecules
A and B is to use the well-known two-parameter equation [70]:

d[AB]/dt = kon [A] [B] − koff [AB] (2)

where the rate of bond formation (on-rate) kon and the rate of complex dissociation (off-rate)
koff are related to the equilibrium constants as:

Ka = kon/koff; Kd = koff/kon (3)

As was recently reviewed [61], this kinetic description provided a substantial help
to the analysis of complex biological phenomena. An early example is the attachment of
blood leukocytes to the vessel walls as an early step of inflammation. This was found to
proceed as a two-step phenomenon. Leukocytes first move along the inflamed endothelium
with a jerky motion called rolling, and then stop. Rolling is essentially mediated by
selectin molecules, whereas integrins make cells stop. This difference was ascribed to
a rapid binding kinetics of selectins as compared to integrins [71]. Another example is
the triggering of immune responses by T lymphocytes detecting a foreign antigen such
as a viral protein exposed by an infected cell [93]: the task of a lymphocyte consists of
recognizing an antigen out of a few tens of copies of complexes (pMHC) made of a major
histocompatibility complex molecule (MHC) and a viral oligopeptide (p) that is buried
among nearly 100,000 pMHCs differing by only a few amino-acids. Detection must occur
during an intercellular contact lasting only few minutes, and the detection specificity was
claimed to approach the physical limits of the specificity of molecular interactions [93]. An
early finding was that the lifetime of pMHC interaction with T lymphocyte receptors (TCRs)
was a key parameter for recognition. These two examples support the intuitive assumption
that kinetic parameters may help us determine the significance of a molecular interaction.
Stable bonds may be expected to play a key role in cell structure. Transient interactions are
expected to drive the diffusion of intracellular molecules, signal formation and propagation,
cell displacement, and detection of specific molecular patterns on neighboring surfaces.

However, the biological information provided by the on-rate and the off-rate is ham-
pered by two difficulties:

1. First, biomolecular attachments often appear as multistep reactions, the description
of which may require numerous parameters to account for several energy barriers in
reaction paths. The number of required parameters was somewhat reduced when it
was found that the kinetics of bond formation between different antigen and antibody
might be modeled as a progression along a rugged energy landscape, accounted
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for by a single effective diffusion constant, and matched the intuitively appealing
interpretation that bond formation required a minimal contact time that was estimated
as a few milliseconds [94–96]. Thus, in contrast with the predictions of Equation (2),
a fairly long contact may not always be replaced with many transient ones to allow
bond formation.

2. Second, the on-rate is difficult to define under 2D conditions, since it depends on many
properties independent of the molecular binding interface [75,92]. Additionally, the
bond lifetime is certainly as dependent on the disruptive forces exerted by surfaces,
as it depends on the intrinsic bond stability [97].

In conclusion, while there is an absolute requirement for some information on the
kinetic properties of a biomolecule interaction to understand its biological function, there
remains to determine if the use of the on-rate and the off-rate is sufficiently exhaustive to
contain this information. In particular, it might be of interest to explore the predictive value
of the minimal time of bond formation we have just mentioned [96].

3.3.3. Accounting for the Effect of Forces on Bonds

As indicated in the previous section, while the off-rate of a bond involving soluble
molecules under standard conditions may be considered as a well-defined parameter, the
rupture of a bond formed between surface-attached molecules is strongly dependent on
the time dependence [81] and direction [98] of applied forces. This is important since cells
continually apply forces on many molecules, including membrane receptors involved in
adhesion, such as integrins, or communication, such as notch [99,100], T cell receptors [101],
and cytoskeleton-associated molecules [102]. Understanding cell function, therefore, re-
quires a suitable description of the effect of forces on molecular bonds. A number of
parameters were used for this purpose.

The bond strength, i.e., the force needed to “rapidly” break a bond seemed a con-
venient parameter when this was studied with experimental methods described in Sec-
tion 3.2.1. Reported orders of magnitude varied between a few tens of piconewtons, as
exemplified by T cell receptors [80], and hundreds of piconewtons, as exemplified by
selectins [79]. An exceptionally high adhesive strength of over 2000 pN was reported for a
bacterial adhesin [103].

The problem is that while bond strength is an appealing parameter, it is not well
defined. As was clearly noted by George Bell in a widely quoted paper [104], bond rupture
is a random phenomenon, the frequency of which depends on applied forces. Bell suggested
the following formula, which is often referred to as Bell’s equation [105,106]:

koff(F) = koff(0) exp (aF/kBT) (4)

where koff(F) is the off-rate of a bond subjected to a pulling force F, kB is Boltzmann’s
constant, T is the absolute temperature, and a is a parameter with the dimension of a length.
This empirical formula can be made intuitive with a very naïve model: bond rupture
may be viewed as the exit of a particle from an energy well. The exit probability may be
approximated as the frequency of attempts to exit multiplied by the probability of success,
which is expected to be close to the probability that the particle energy is higher than the
energy barrier W. The probability of success should thus be proportional to exp(-W/kBT),
according to Boltzmann’s law. A force F is expected decrease W by the product a.F, where a
is the distance between the energy barrier and the resting position. This simple law was
found to give a satisfactory account of effect of force on selectin-mediated bonds [105], and
the results obtained on other ligand receptor-couples such as antigen-antibody [107] or
streptavidin-biotin [81] could be interpreted by assuming that the reaction path involved
several sequential barriers.

However, the conclusion that bond rupture could be adequately described with a two-
parameter equation was disproved by the experimental finding that the force dependence
of the off-rate was not always monotonous. Instead, the off-rate of so-called catch-bonds
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is lowest (and the bond lifetime is accordingly highest) for a value of the pulling force
that is often of order of a few tens of piconewtons [72,108]. While much effort was made
to elucidate the mechanisms of the so-called catch-bond phenomenon with molecular
dynamics [109,110] and/or theoretical studies [106,111,112], no phenomenological equa-
tion gained a wide acceptance to replace Equation (4). Note also that some geometrical
parameters, such as the force direction, are not accounted for by Bell’s equation [98,113].

Another problem was raised by quantitative studies made on biomolecular bonds: an
implicit assumption underlying the aforementioned descriptions was that all studied bonds
had reached an equilibrium state. However, this is not always warranted by experiments.
Experimental studies performed with flow chambers rapidly evidenced the formation
of transient attachments by molecules that were considered as strong binders, such as
antibodies [107], integrins [114], or even streptavidin [115]. Indeed, this finding is fully
consistent with the existence of multiple barriers on reaction paths [81]. Thus, it is not
surprising that the stability of a molecular bond might be dependent on its history. As a
minimal model, it was shown that the dependence of the off-rate on the bond age followed
the following simple phenomenological law [116,117]:

koff(t) = koff(0)/(1 + α t) (5)

The dependence of the so-called strengthening parameter α on forces was approxi-
mated with an affine law for an antibody, and it was found independent of force for another
antibody [117].

Thus, a complete description of the effect of forces on bonds would require to choose
and measure more than one parameter. It is important to ask whether such a task would
be warranted. It is, therefore, useful to discuss available information about the physiolog-
ical relevance of the force dependence of ligand receptor bonds. In addition to a recent
review [61], we shall briefly mention some important examples:

1. Integrin mediated cell adhesion. Integrins are important mediators of cell adhesion. A
well-known peptide ligand of integrins (the RGD tripeptide) was bound to surfaces
with DNA constructs of varying strengths. Cell adhesion required that the linkers be
able to resist a force of at least 40 pN for 2 s [118].

2. Signaling. Similarly, the use of calibrated DNA tethers showed that notch signal-
ing required that the strength of the ligand attachment to a surface be higher than
12 pN [118]. When T lymphocytes were made to contact ligands deposited on a probe
connected to a BFP allowing real-time determination of interaction force, the trigger-
ing of a calcium rise indicative of cell activation was correlated to the application of
a force of about 10 pN on the TCR [119]. Additionally, a force of 10 pN applied on
TCRs with an optical trap was reported to strongly increase signaling [119]. Further-
more, some reports supported the hypothesis that TCR signaling required that the
TCR-ligand bond behave as a catch bond [119,120]. More work is, however, needed
to assess the generality of this requirement [96]. More recently, it was suggested that
talin, a cytoskeleton associated molecules that acted as a force sensor, could filter
mechanical noise as a consequence of specific mechanical properties [102].

3. Ligand discrimination. The capacity of membrane receptors to discriminate between a
high number of potential ligands is an essential requirement for cell function. It is,
therefore, important to emphasize that forces may play an important role in ligand
discrimination. The capacity of B lymphocytes to select and extract antigens bound to
surfaces was shown to rely on forces [121,122]. Forces were also reported to modulate
the preference of αvβ3 integrin for fibronectin or vitronectin [123].

Thus, many important reports support the view that forces play an important role in
cell function and warrant the search for a suitable set of parameters providing a sufficiently
exhaustive and manageable account of the effect of forces on molecular interactions.
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3.3.4. Receptor Length and Conformational Dynamics

In addition to the thermodynamic, kinetic, and mechanical properties of intermolecular
bonds that were thoroughly studied during decades, we shall now briefly mention some loosely
defined properties of receptor molecules that may strongly influence cell function but are not
usually directly included in the description of binding properties. At least three important
processes are not fully accounted for by aforementioned properties of molecular interactions:

1. In addition to the molecular properties of binding sites, the efficiency of the bond
formation between surface-attached molecules is strongly dependent on the length
and flexibility of binding molecules so that binding sites might contact each other
with a suitable orientation [91]. As a well-known example, the remarkable capacity of
P-selectin molecules to tether rapidly flowing leukocytes in blood vessels is partly due
to the unusually high length of the ligand-receptor couple (nearly 0.1 µm). Length
and flexibility also play an important role in modulating multivalent attachments that
are key to the avidity of interactions. Avidity might be loosely defined as some kind
of “functional affinity” [116].

2. Receptor-mediated signaling is also highly dependent on the capacity of binding
molecules to form multivalent attachments, since clustering of membrane molecules
is often a key event of signal generation [61]. Indeed, an early step of the triggering of
a signaling cascade is often the phosphorylation of a dedicated site on a molecule by
a kinase brought close to this site. The molecular reach of molecules such as kinases
or phosphatases is obviously dependent on the size and conformational flexibility of
involved molecules [124]. Another important role of receptor length in the signaling
process is the reorganization of intercellular contact zones as a consequence of the
exclusion of bulky molecules from tight contact zones generated by short ligand-
receptor couples. The importance of this mechanism was well demonstrated since the
exclusion of the bulky CD45 phosphatase was found sufficient to trigger a signaling
cascade in T lymphocytes [125–127].

3. The formation of multimolecular assemblies plays an important role in signal gen-
eration (as related to signalosome formation) as well as cell structural organization.
Conformation flexibility may play a key role in this process [128] if bond forma-
tion results in the transient appearance of docking sites that may recruit additional
molecules. Two points may be mentioned in this respect. (i) For the sake of simplic-
ity, model systems used to study molecular associations most often rely on binary
interactions with the underlying assumption that they are additive, which is not
always warranted [129]. (ii) Recent progress in molecular dynamics may strongly
improve our understanding of reaction paths and transient molecular states, which
may increase our interest in ternary and multimolecular interactions.

4. Discussion and Conclusions: What Is the Take-Home Message?

The purpose of this review was to select a sufficient number of experimental and theo-
retical results to convince the reader that the parameters currently used to feed interactome
databases might be insufficient to support optimal progress in the explanation and predic-
tion of cell function. Indeed, while much effort was made to standardize the description
of biomolecule interactions in order to make information optimally available [130,131] or
facilitate retrieval by automated methods [132], there is no known procedure allowing
to assess the utility of the more and more numerous pieces of information yielded by
experimental studies and simulation of single bond formation and dissociation.

While it was considered important to mention as noticeable examples some properties
such as bond strengthening or the flexibility of binding molecules as potentially useful
features to improve our understanding of cell function, if was obviously not feasible to
present a clear-cut list of parameters that need to be added to interactome databases.
However, the points detailed below might be worth to keep in mind.

A first question is to know whether there is an absolute need to feed interactome
databases with quantitative parameters such as equilibrium or kinetic constants. Indeed,
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the seemingly obvious feeling that cell function is too complex to be liable to a description
by qualitative information was formulated three decades ago in a Nature editorial [133].
Additionally, the complexity of molecular interactions might be considered as less amenable
to qualitative descriptions than DNA sequence. However, as reviewed above, recent math-
ematical use of Boolean networks showed that important conclusions could be obtained
by processing qualitative parameters, and it was emphasized that a strong limitation of
quantitative treatments lies in the impossibility of knowing the precise state of a system [28].
Additionally, a time-series of qualitative set of data [65] might be sufficiently informative
to unravel complex phenomena.

A second point is that different parameters may be needed to predict and to under-
stand cell function. This is exemplified in a spectacular way by the progress of artificial
intelligence, and this is remarkably illustrated by a recent breakthrough in the study of
protein structure. While a quantitative account of intermolecular forces seems an obvious
way of explaining protein structure, spectacular progress was obtained by using deep
learning to take advantage of already known proteins to “guess” the structure of a new
molecule [134].

Third, recent evolution of molecular dynamics may support the long-standing idea that
a thorough description of cell behavior from basic molecular mechanisms should benefit
from the study of intermediate scales (or so-called mesoscale phenomena) [93]. Indeed, the
size limitation of systems that are liable to computer simulation for a reasonably long period
of time was often successfully extended by taking use of coarse-grained descriptions that
consisted of replacing individual atoms by weakly coupled subsystems [135] in addition
to the development of smart sampling methods facilitating the study of rare events [84].
Clearly, different parameters may be required to account for different behavior scales.
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