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Abstract: Assessment of renal function relies on the estimation of the glomerular filtration rate
(eGFR). Existing eGFR equations, usually based on serum levels of creatinine and/or cystatin C,
are not uniformly accurate across patient populations. In the present study, we expanded a recent
proof-of-concept approach to optimize an eGFR equation targeting the adult population with and
without chronic kidney disease (CKD), based on a nuclear magnetic resonance spectroscopy (NMR)
derived ‘metabolite constellation” (GFRnmR)- A total of 1855 serum samples were partitioned into
development, internal validation and external validation datasets. The new GFRnyr equation used
serum myo-inositol, valine, creatinine and cystatin C plus age and sex. GFRxr had a lower bias to
tracer measured GFR (mGFR) than existing eGFR equations, with a median bias (95% confidence
interval [CI]) of 0.0 (—1.0; 1.0) mL/min/1.73 m? for GFRymR vs. —6.0 (—7.0; —5.0) mL/min/1.73 m?
for the Chronic Kidney Disease Epidemiology Collaboration equation that combines creatinine and
cystatin C (CKD-EPIyp12) (p < 0.0001). Accuracy (95% CI) within 15% of mGFR (1-P15) was 38.8%
(34.3; 42.5) for GFRNMR Vs. 47.3% (43.2; 51.5) for CKD-EPIyg12 (p < 0.010). Thus, GFRnvr holds
promise as an alternative way to assess eGFR with superior accuracy in adult patients with and
without CKD.

Keywords: glomerular filtration rate; eGFR; filtration markers; metabolite; NMR; chronic kidney
disease; CKD; eGFR equation; serum creatinine; cystatin C

1. Introduction

Renal function is generally assessed by estimating the glomerular filtration rate (GFR)
using endogenous filtration markers, most often serum creatinine. Equations to estimate
GFR (eGFR) are widely used in routine medical care, and generally include age, sex,
and race together with creatinine and/or cystatin C [1-6]. The current Kidney Disease
Improving Global Outcomes (KDIGO) guideline recommends a first-line determination
of eGFR based on serum creatinine, and a confirmatory testing based on equations using
cystatin C (either alone or in combination with creatinine) [7,8]. Yet, these equations
present limitations, either under- or overestimating tracer measured GFR (mGFR) in
various patient groups [4-6], such as liver cirrhosis, transplant recipients, patients with
extreme body composition, or when accuracy of GFR estimation is of special importance,
such as potential kidney donors or pharmacokinetic drug dosing in patients with impaired

Diagnostics 2021, 11, 2291. https://doi.org/10.3390/diagnostics11122291

https:/ /www.mdpi.com/journal /diagnostics


https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-2841-0610
https://orcid.org/0000-0002-0202-5944
https://doi.org/10.3390/diagnostics11122291
https://doi.org/10.3390/diagnostics11122291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11122291
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11122291?type=check_update&version=2

Diagnostics 2021, 11, 2291

20f16

renal function [7,8]. Generally, filtration markers such as creatinine are influenced by non-
GFR determinants. It has been recently acknowledged that the use of multiple filtration
markers, such as metabolites, in combination with serum creatinine might be one way to
overcome these limitations [4,6,9-11].

With this in mind, we recently employed a nuclear magnetic resonance spectroscopy
(NMR) based metabolomics approach to identify a ‘metabolite constellation” (GFRnMR)
to reflect more accurately GFR among individuals with and without chronic kidney dis-
ease (CKD). This proof-of-concept study, integrating myo-inositol as marker for reduced
filtration, valine as indicator of acid-base metabolism, and dimethyl sulfone as marker
of oxidative stress in combination with serum creatinine, allowed accurate assessment of
eGFR [12]. The observed accuracy exceeded that of serum creatinine and of serum cystatin
C alone, and matched the accuracy of their combination in pediatric, adolescent, adult, and
geriatric patients with various nephrological conditions [12].

In the present study, we further refined this approach with the goal to design a more
accurate and robust eGFR equation, relative to tracer measured GFR as gold standard refer-
ence, for an adult population, which encompasses the highest risk group for CKD [13,14].

2. Materials and Methods
2.1. Study Design and Participants

Bio-banked serum samples from adult individuals > 18 years old from Rochester (MN,
USA), Lyon (France) [12], and Berlin (Germany) [15] were used for NMR metabolite quan-
tification. All individuals gave informed consent before undergoing GFR measurement.
This study was approved by the respective institutional review board at each institution in
adherence to the Declaration of Helsinki (Mayo Clinic IRB# 19-003513, dated 16 May 2019).
Samples were stored at —80 °C and underwent no more than one freeze-thaw cycle before
NMR analysis. Qualified NMR spectra were obtained from 1855 serum samples in total.
Samples underwent partitioning into “Development”, “Internal Validation” and “Exter-
nal Validation” datasets (Table 1) stratified by mGEFR range, liver disease status, sex and
clinical indication. The development set was used for equation formulation, training and
pre-selection. The internal validation set was applied for selection and internal testing of
pre-selected candidate equations. The external validation set was used for confirmation of
performance on an independent dataset. The development and the external validation sets
consisted of samples from Rochester (1 = 816 and n = 600, respectively) with a homogenous
reference standard to minimize potential reference bias, whereas the internal validation set
was populated with samples from all three centers (Rochester, n = 269; Lyon and Berlin,
n =170) with heterogeneous reference methods to maximize generalization of the selected
equation (Table 1). This partitioning was supported by the fact that we observed larger bias
of the CKD-EPI equation in samples from Lyon and Berlin, compared to the cohort from
Rochester. Hence, the applied partitioning appeared particularity suited to minimize the
risk to overjudge superiority of models against CKD-EPI benchmarks due to a systematic
bias in the external validation set by samples from Lyon and Berlin.

Table 1. Study samples’ characteristics.

Development Set Internal Validation External Validation p-Value

Set Set

N 816 439 600
Age in years, mean + SD (range) 55 + 14 (18-86) 58 4+ 15 (18-88) 56 + 14 (19-88) 0.0269 !
Height in cm, mean + SD (range) 170 £ 10 (142-199) 170 =+ 10 (143-199) © 170 £+ 10 (121-196) 0.4929 1
Weight in kg, mean + SD (range) 84 + 21 (23-195) 80 £ 19 (38-164) 86 + 21 (31-160) <0.0001 !
BMI in kg/ m?2, mean + SD (range) 29 + 6 (7-68) 28 + 6 (15-52) © 30 £ 6 (16-58) 0.0005 !
Male, N (%) 431 (52.8%) 143 (55.4%) 334 (55.7%) 0.5479 2
Black, N (%) 17 (2.1%) 5 (1.1%) 17 (2.8%) 0.1575 2

mGFR
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Table 1. Cont.

Internal Validation

External Validation

Development Set Set Set p-Value
mean =+ SD (range) ° 67 + 28 (3-183) 67 + 28 (5-166) 68 + 27 (3-166) 0.7280 1
Iothalamate, N (%) 816 (100.0%) 269 (61.3%) 600 (100.0%)
Iohexol, N (%) 0 (0.0%) 92 (21.0%) 0 (0.0%) A
Inulin, N (%) 0 (0.0%) 77 (17.5%) 0 (0.0%) -
S1Cr-EDTA, N (%) 0 (0.0%) 1(0.2%) 0 (0.0%)
CKD stage, N (%)
Gl 170 (20.8%) 92 (21.0%) 135 (22.5%)
G2 291 (35.7%) 156 (35.5%) 214 (35.7%)
G3 304 (37.3%) 158 (36.0%) 211 (35.1%) 0.7989 3
G4 46 (5.6%) 26 (5.9%) 36 (6.0%)
G5 5 (0.6%) 7 (1.6%) 4 (0.7%)
eGFR
GFRyyr, mean + SD (range) 66 = 25 (7-151) 66 = 26 (7-175) 67 =+ 25 (9-158) 0.5685 1
CKD-EPly09, mean + SD (range) > 63 & 26 (5-165) 68 + 28 (4-146) 64 + 24 (8-142) 0.0027 1
CKD-EPly;5, mean + SD (range) ° 60 + 26 (6-144) 63 + 27 (6-145) 62 + 25 (8-150) 0.12611
CKD-EPlcys, mean £ SD (range) 3 59 + 28 (7-136) 60 + 28 (7-148) 61 + 28 (9-144) 0.3902 1
EKFC, mean =+ SD (range) ° 61 + 23 (6-130) 65 + 25 (5-136) 62 + 22 (8-120) 0.0074 1

1 Two sided ANOVA; 2 Fisher’s exact test; 3 Pearson’s Chi-squared test; 4 For the comparison of used mGFR tracer no classical test was avail-
able, as the tracer method for the Internal Validation Set was different by design (mixture of European and US cohort); > mL/min/1.73 m?
of body-surface area; 6 Calculated from 399 samples, due to 40 samples with missing height data. Abbreviations: BMI, body mass index;
CKD, chronic kidney disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPIyg9 [1], CKD-EPIyg;2
and CKD-EPIcys [2]); eGFR, estimated GFR; EKFC, European Kidney Function Consortium equation [3]; GFR, glomerular filtration rate;
mGFR, measured GFR.

2.2. Laboratory Methods
2.2.1. mGFR, Serum Creatinine and Cystatin C Measurements

The study samples contained iohexol [16], inulin [17], SICr-EDTA [18] or iothala-
mate [19] as a reference standard for GFR measurements (mGFR). All mGFR methods
were reported to have sufficient accuracy compared with inulin clearance [20]. Measured
GFR was normalized to body surface area according to the Dubois equation (body surface
area = height0'725 X Weight0'425 x 0.007184) and expressed as milliliter per minute per
1.73 m? body surface (mL/min/1.73 m?). Enzymatic serum creatinine measurements
were performed with methods traceable to the National Institute of Standards and Tech-
nology and were isotope-dilution mass spectrometry calibrated [21]. Serum cystatin C
measurements were performed at Mayo Clinic using Gentian Cystatin C Immunoassay
ERM-DA471/IFCC standardized (Gentian ASA, Moss, Norway). The Berlin cohort was
measured at Labor Limbach Heidelberg using the PENIA N Latex® assay on the BN™
II System (Siemens Health Care Diagnostics, ex-Dade-Behring, Marburg, Germany). For
samples from Lyon cystatin C was measured with the Human Cystatin C ELISA from
Biovendor (calibrated to standard reference material ERM-DA471/IFCC, Laborarztpraxis
van de Loo, Schwébisch Gmiind, Germany).

2.2.2. eGFR

GFRnMR was compared to the standard serum creatinine-based and/or cystatin
C-based eGFR equations according to KDIGO recommendations [7,8,22]. Serum creatinine-
based eGFR was calculated using the CKD-EPI 2009 creatinine equation (CKD-EPIygn9) [1],
the CKD-EPI 2012 cystatin C equation [2] was used for calculating eGFR from cystatin
C (CKD-EPIcys) and the 2012 CKD-EPI creatinine—cystatin C equation [2] was applied to
calculate eGFR from both (CKD-EPI;;2). For an age-independent serum creatinine-based
eGFR, the European Kidney Function Consortium (EKFC) equation [3] was used.

2.2.3. NMR Analysis and Biomarker Quantification

NMR analysis was performed as described elsewhere [12]. Briefly, 630 uL serum were
mixed with 70 pL of Axinon® serum additive solution and 600 pL were transferred to a
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5 mm NMR tube. Samples were pre-heated at 37 °C for 7.5 min before NMR measurement
in a Bruker Avance III 600 MHz and a 5 mm PATXI probe equipped with automatic Z
gradients shimming. A modified version of the CPMG pulse sequence was used [23].
"H-NMR spectra (Figure S1) were recorded using a spectral width of 20 ppm, with a
recycling delay of 1.5 s, 16 scans and a fixed receiver gain of 50.4. A cycling time d2
of 8 ms was used together with a corresponding T2 filter of 112 ms. The mixing time T
between two consecutive spin echoes was 400 us. NMR data were automatically phase-
and baseline-corrected using the lactate doublet at 1.32 ppm as reference.

Metabolite quantification used curve-fitted pseudo-Voigt profiles, as previously de-
scribed [12]. For analytical validation of markers (creatinine, creatine, dimethylamine,
dimethyl sulfone, glycerol, isoleucine, leucine, myo-inositol, and valine), precision, linear-
ity and bias were analyzed as described in detail elsewhere [12]. Total analytical imprecision
for all markers was validated to be below 15%. Higher imprecision of <20% was only
accepted for serum levels at limits of quantification of approximately 10 umol/L. For all
metabolites, Pearson correlation was verified to be >0.95. The NMR platform allowed
accurate and precise quantification of the serum biomarkers over a linear range covering
physiological and pathophysiological levels.

2.3. Biostatistical Methods

All calculations, model training, performance evaluation and statistical tests were
performed within R 3.5.3 [24]. Most metrics were calculated with the ModelMetrics [25] and
auditor [26] packages. Data structures were handled with data.table [27] and archivist [28]
packages. Bootstrap procedures were implemented via the boot package [29,30]. Visualiza-
tion was performed with ggplot2 [31] and auditor [26].

2.3.1. Metrics for Performance Evaluation and Benchmarking

Bias was assessed by median signed bias and the significance of differences was calcu-
lated via the Wilcoxon-signed rank test [32,33]. Precision was evaluated by the interquartile
range (IQR), whereas significance of differences was assessed via the bootstrap method.
Accuracy of eGFR was assessed by the percentage of samples with an eGFR prediction
within 30% (P30), 20% (P20) or 15% (P15) of mGFR. Accuracy data were expressed as 1-P30,
1-P20 and 1-P15, respectively, representing the percentage of samples outside the given
tolerance range relative to mGFR. Accordingly, the lower the 1-P30, 1-P20 and 1-P15 values,
the higher the eGFR accuracy. Statistical significance of differences in P30, P20 and P15
accuracy was assessed by the McNemar’s test [34]. Error was reported as mean absolute
error (MAE) and confirmed by root-mean-square logarithmic error (RMSLE; not shown).
Since MAE has the same unit as mGFR and eGFR, it is more easily interpretable than
RMSLE. Furthermore, MAE is unambiguous compared to RMSLE [35]. Significance of
differences in MAE was assessed via the Wilcoxon-signed rank test [32,33]. In all analyses,
p-values < 0.05 were considered statistically significant.

In order to evaluate improvement in CKD staging gained by using GFRymr Vs.
CKD-EPIg09 or CKD-EPI1; relative to a gold standard (mGFR-based CKD staging), we
calculated the net reclassification index (NRI) [36-38]. NRI was calculated as the difference
between the percentages of correctly reclassified and incorrectly reclassified samples by
GFRNMR VS. CKD-EPIZOOQ or CKD-EPIZOlz.

2.3.2. Development of Equations and Model Training

Model formulas were constructed from a feature pool consisting of 10 serum metabo-
lites: nine measured by NMR (creatinine, creatine, dimethylamine, dimethyl sulfone,
glycerol, isoleucine, leucine, myo-inositol, and valine), and one measured by clinical
analyzer (cystatin C). From this pool of 10 parameters, each could contribute either un-
transformed or natural log-transformed, which increased the pool of possible features for
a model building up to 20 parameters. To guide the construction of the model formulas,
we introduced a set of four constraints. First, each model was allowed to include two
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to five features. Second, a maximum of one out of five features could be an interaction
term. Third, if an interaction was part of a given model, at least one of the parameters
involved had to be already included in the model as a main effect. Fourth, no parameter
was allowed to occur with two different transformations of itself in the same model (e.g.,
no co-occurrence of creatinine and log-transformed creatinine within the same model).
All possible model formulas under these constraints were subsequently trained by linear
regression with mGFR or log-transformed mGFR as response on the development datasets.
Furthermore, a five-time repeated fivefold cross-validation was performed for all models.

2.3.3. Selection, Model Engineering and Internal Validation of Equations

The selection of candidate models went through four different selection stages: a
pre-filtering phase, a model selection phase, a model engineering phase, and a final selec-
tion phase.

Instead of selecting the best performing models on a certain key performance indicator
(KPI), a stepwise deselection of models not fulfilling a minimum of performance over a
set of multiple KPIs was applied. The pre-filtering phase was performed on the training
performance in the development dataset in 14 iterative steps. Filtered-out models included:
models performing poorly with regard to MAE and P30, models showing unstable coef-
ficient of variation for the MAE in cross-validation, models that were not able to predict
the upper range of the GFR (i.e., GFR > 90), or models with high heteroscedasticity in the
residuals. With further model optimizations in mind, we elected to only keep models that
were comparable enough to current benchmarks to benefit from the planned optimizations.
Finally, we closely inspected related models. For nested models, for instance, we tested
whether the additional parameter was really providing significant improvement (H;) or
not (Hp) (Vuong’s test) [39,40]. To further reduce redundancy, we removed the worst
performers in terms of MAE and P20 within closely related models.

The second model selection phase was performed on the remaining models from the
pre-filtering phase and aimed to remove low performing models in portions of the internal
validation dataset. Hereto, the internal validation dataset was further split up into three
subsets, one of which was not to be used in this phase. The selection phase consisted of
eight iterative filtering steps, with the goal to focus on specific CKD etiologies and CKD
stages. All decisions on deselection were guided by subject matter experts.

The remaining models after the second selection phase were then subjected to several
modifications during the model engineering phase. These modifications were aimed at the
contributions of creatinine and cystatin C in the model formulas. Similarly to CKD-EPI
formulas [2,3], we found in initial experiments that adding a sex dependency and a cutoff
dependency to creatinine and cystatin C (i.e., cutoffs for high and low serum concentrations)
could be beneficial for more accurate prediction of eGFR. Allowing different coefficients
based on sex as well as on creatinine and cystatin C levels was therefore tested. Moreover,
age was added as a linear term in a separate step.

As the number of models resulting from the model engineering phase was increased
again, a third and last selection phase was applied. The best metabolite constellation that
optimized P20, P30 and MAE was selected on the full internal validation dataset, while
considering the complexity of the models after model engineering.

2.3.4. External Validation of the New Equation

Final model performance was tested on an independent dataset. All KPIs were
assessed on the external validation dataset (n = 600; Table 1). For all KPIs, 95% confidence
intervals (CI) were calculated via bootstrap (percentile method, n = 1000). All reported
p-values were adjusted for multiple testing according to Benjamini-Hochberg [18,19].
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3. Results
3.1. Characteristics of Participants

The clinical characteristics of the development, internal validation and external val-
idation datasets are shown in Table 1. Measured GFR (mGFR) was comparable in the
three datasets (mean [+SD] of 67 [£28], 67 [+8] and 68 [£27] mL per minute per 1.73 m?
of body-surface area, respectively). Mean & SD [range] age in the development, inter-
nal validation and external validation datasets was 55 + 14 (18-86), 58 + 15 (18-88) and
56 + 14 (19-88), respectively. Sex and CDK stage distributions were comparable in the
three datasets (Table 1).

3.2. Formulation and Selection of Candidate Equations

Systematic, exhaustive modelling resulted in the formulation of 487,408 distinct equa-
tion candidates. In 14 iterative steps solely based on performance characteristics in the
development dataset, pre-filtering reduced the number of candidate equations down to
44. By verification of generalizability of their observed performance characteristics into
the internal validation set, the set of 44 candidate equations was further selected down to
five candidate equations. Manual fine-tuning of these five candidate equations resulted
in 49 engineered equation variants. Selection of the new GFRnyr equation from those
49 engineered variants was based on the comparability of performance levels in the devel-
opment and the internal validation datasets. The resulting GFRnyr equation was based
on myo-inositol, valine, creatinine and cystatin C serum levels plus age and sex. Table 2
shows the GFRnpr equation according to cystatin C cutoff levels and sex.

Table 2. GFRyR equation according to serum cystatin C cutoff levels and sex.

Sex Serum Cystatin C [mg/L] GFRnMR Equation 1
Fermal <1.02 257 x cystatin C~0411% x creatinine 03798 x valine®1628 x .9979myo-inositol . 0 996325e
emaie >1.02 258 x cystatin C~06443 » creatinine 03798 x valine?-1628 x (.9979myo_inositol . () 996338e
Mal <1.22 288 x cystatin C99867 x creatinine 03798 x valine?1628 x 0.9979myo-inositol . () 9963age
aie >1.22 291 x cystatin C~06419 x creatinine 03?8 x valine?1628 x 0.9979myo_inositol ) g963age

1 Coefficients were rounded to four digits; the sex- and cutoff-dependent intercept was rounded to 0 digits; coefficients are brought to the
scale of the respective metabolite serum concentration (umol for valine, creatinine and myo-inositol; mg/L for cystatin C).

3.3. The New GFRnymr Equation and Its Performance in the External Validation Dataset

The performance of the GFRNMr equation was evaluated in the external validation
set and compared to that of other equations (CKD-EPIpop9, CKD-EPly12, CKD-EPIcys and
EKFC; [1-3]) (Table 3). The GFRnumr equation showed the best performance in the overall
external validation set in terms of median bias (median difference, 0.0 mL/min/1.73 mz),
precision (interquartile range [IQR] of the difference, 13 mL/min/1.73 m?), error (mean
absolute error [MAE], 10 mL/min/1.73 m?) and accuracy (1-P15, 38.8%; 1-P20, 28.5%; 1-P30,
12.8%). The GFRNMr equation also performed best in the eGFR range < 60 mL/min/1.73 m2,
which is defined as ‘decreased GFR’ according to the KDIGO guideline [7,8] and is therefore
clinically relevant (Table 3).

The overall precision of GFR\yr (IQR 13 mL/min/1.73 m?) was significantly greater than
that of CKD-EPl,0q9 (16.4 mL/min/1.73 m?; p = 0.0167), CKD-EPI¢ys (18.1 mL/min/1.73 m?;
p = 0.0167) and EKFC (17.0 mL/min/1.73 m?; p = 0.0167), but not significantly greater than
that of CKD-EPI,g1, (14.0 mL/min/1.73 m?; p = 0.7333) (Table 3). The overall error for
GFRymr (MAE 10 mL/min/1.73 m?) was significantly lower than that for CKD-EPI,gg9
(11.9 mL/min/1.73 m?; p < 0.0001), CKD-EPIygy5 (11.1 mL/min/1.73 m?; p < 0.0001), CKD-
EPlIcys (13.3 mL/min/1.73 m?; p <0.0001), and EKFC (12.8 mL/min/1.73 m?; p <0.0001)
(Table 3).
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Table 3. Performance of eGFR-estimating equations in the overall external validation set (n = 600) and according to

eGEFR ranges.
Variable Estimated GFR Range
Overall <60 60-89 >90
n =600 mL/min/1.73 m? of Body-Surface Area
Bias—median difference (95% CI) [mL/min/1.73 m?]
CKD-EPIyg09 —4.0 (—4.8; —2.9) *** —4.6 (—5.8; —3.3) —4.0(—6.2;, —1.7) —2.3(-5.3;1.1)
CKD-EPIyg12 —6.0 (—7.0; —5.0) **** —7.0 (—8.0; —5.0) —7.0(—9.0; —4.0) —2.0(—6.0;2.0)
CKD-EPlcys —7.0(-8.1; =5.8) ****  —10.1 (—11.5; —8.2) —5.8(—7.9; -2.7) 45(-1;7.5)
EKFC —6.5 (—8.0; —5.0) **** —6.0 (—8.0; —5.0) —8.0 (—10.0; —5.0) —4.0 (—10.0; 2.0)
GFRNMR 0.0 (—1.0; 1.0) —1.0 (—2.0; 1.0) 0.0 (—3.0; 1.0) 3.0 (0.0; 5.0)
Precision—IQR of the difference (95% CI) [mL/min/1.73 m?]
CKD-EPIg09 16.4 (15.1;17.7) * 14.4 (12.5;15.9) 18.5 (15.5; 22.3) 25.6 (20.4; 34.6)
CKD-EPlIyg1 14.0 (12.0; 16.0) 11.0 (10.0; 13.0) 16.0 (13.0; 19.0) 21.5 (14.5; 27.5)
CKD-EPlcys 18.1 (16.4;19.9) * 14.4 (12.4;16.1) 20.4 (16.3; 22.9) 23.3 (15.5; 27.3)
EKFC 17.0 (15.0; 19.0) * 15.0 (12.0; 16.0) 20.0 (17.0; 24.0) 32.0 (22.0; 42.0)
GFRNMR 13.0 (10.0; 14.0) 11.0 (10.0; 13.0) 15.0 (13.0; 19.0) 20.0 (15.0; 26.0)
Error—mean absolute error (95% CI) [mL/min/1.73 m?]
CKD-EPIg09 11.9 (11.0; 12.7) **** 9.4 (8.5;10.4) 12.8 (11.3; 14.4) 16.6 (14.2;19.3)
CKD-EPIyo12 11.1 (10.3; 11.9) **** 9.6 (8.8; 10.6) 12.0 (10.6; 13.5) 14.0 (11.7; 16.5)
CKD-EPlcys 13.3 (12.3; 14.2) **** 129 (11.7;14.1) 13.2 (11.4; 14.9) 14.4 (12.1; 16.9)
EKFC 12.8 (11.9; 13.7) **** 10.3 (9.3;11.2) 14.3 (12.6; 16.1) 18.5 (15.5; 21.6)
GFRNMR 10.0 (9.2; 10.8) 7.6 (6.8; 8.5) 10.6 (9.4; 11.8) 14.1 (11.9; 16.4)

Accuracy—1-P15 (95% CI) [%]

CKD-EPlygg9 49.5 (45.0; 53.7) **** 54.1 (48.6; 60) 44.4 (37.9; 51.0) 46.4 (37.5; 55.4)
CKD-EPLy1, 47.3 (43.2; 51.5) ** 57.7 (52.3; 63.2) 37.7 (30.9; 45.0) 33.3 (24.2; 43.4)
CKD-EPICys 56.0 (51.8; 60.0) **** 68.3 (63.1; 73.5) 43.4 (35.2; 51.6) 38.1(29.2; 46.9)
EKFC 53.0 (49.0; 57.0) **** 57.7 (52.1; 63.2) 46.8 (40.3; 53.7) 51.9 (40.3; 62.3)
GFRyMR 38.8 (34.3; 42.5) 43.5 (37.4; 49.6) 35.4 (29.5; 41.4) 35.9 (27.4; 44.4)
Accuracy—1-P20 (95% CI) [%]
CKD-EPIygo 37.2 (33; 41.3) *** 42.1 (36.6; 47.9) 30.3 (24.2; 36.4) 36.6 (28.6; 45.5)
CKD-EPLy» 33.3(29.3; 37.2) * 419 (36.1; 47.4) 24.6 (18.8; 30.9) 23.2 (15.2; 32.3)
CKD-EPlcys 44.0 (39.7; 48.0) *+++ 57.0 (51.5; 62.5) 32.1 (24.5; 39.6) 23.0 (15.9; 31.0)
EKFC 40.5 (36.3; 44.7) **** 45.3 (39.7; 51.1) 33.3 (26.9; 40.3) 41.6 (31.2; 51.9)
GFRNMR 28.5 (24.7; 32.2) 32.1(26.4; 37.8) 26.2 (20.7; 32.1) 25.6 (17.9; 34.2)
Accuracy—1-P30 (95% CI) [%]
CKD-EPIyggo 15.5 (12.5; 18.7) 17.6 (13.4; 22.1) 13.1 (8.6; 18.2) 14.3 (8.0; 21.4)
CKD-EPLy» 13.2 (10.2; 16.0) 17.7 (13.5; 22.3) 7.9 (4.2; 12.0) 9.1 (4.0; 15.2)
CKD-EPlcys 22.8 (19.3; 26.2) **** 32.6 (27.4; 38.1) 11.9 (6.9; 17.0) 9.7 (4.4; 15.9)
EKFC 16.3 (13.2;19.5) 18.9 (14.7;23.4) 13.9 (9.3; 18.5) 13.0 (5.2;20.8)
GFRNMR 12.8 (9.8; 15.5) 17.5 (13.0; 22.4) 9.3 (5.5;13.1) 10.3 (5.1;16.2)

Bold numbers highlight the best performance results in each analysis. 1-P15, 1-P20 and 1-P30 denote the percentage of eGFR values lying
outside the tolerance range of 15%, 20% and 30% of measured GFR, respectively. Symbols *, **, *** and **** indicate the level of significance
for p-values < 0.05, <0.01, <0.001 and <0.0001, respectively, in the pairwise tests against GFRnmr for each KPI. Abbreviations: CI, confidence
interval; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPIxgg9 [1], CKD-EPI012 and CKD-EPleys [2]);
EKFC, European Kidney Function Consortium equation [3]; GFR, glomerular filtration rate; IQR, interquartile range.

The overall median bias of GFRxwmr (0.0 mL/min/1.73 m?) was significantly lower
than that of CKD-EPIyp9 (—4.0 mL/min/1.73 m?; p < 0.0001), CKD-EPIy,
(—6.0 mL/min/1.73 m2; p < 0.0001), CKD-EPIcy, (~7.0 mL/min/1.73 m?; p < 0.0001),
and EKFC (—6.5 mL/min/1.73 m?; p < 0.0001) (Table 3). When evaluated according to
the eGFR range, the median bias of GFRnyr was closest to zero between 15-29, 30-59
and 60-89 mL/min/1.73 m?, among all eGFR equations (Figure 1A). Moreover, the 95%
confidence interval (CI) of GFRyyvr was the narrowest in the 30-59 mL/min/1.73 m? eGFR
range. The median bias < 15 mL/min/1.73 m? showed higher 95% CI for all equations,
as expected in this range of lower measurement precision of mGFR, and probably due to



Diagnostics 2021, 11, 2291 8 of 16

the low 7 values (1 = 3 to 6). At eGFR > 90 mL/min/1.73 m?, CKD-EPI,y;, showed the
lowest median bias, closely followed by CKD-EPI,p09 and GFRxumr (Table 3). However,
GFRnMR showed the lowest 95% CI among all formulas in that upper eGER range (Table 3
and Figure 1A). Overall, while the median bias of GFRxpyr was consistently close to zero
across all eGFR ranges, that of other equations indicated a consistent underestimation of
GFR. In addition, the CKD-EPIcys equation showed fluctuating results, underestimating
GFR < 90 mL/min/1.73 m? while overestimating it > 90 mL/min/1.73 m? (Figure 1A).
Finally, the low bias achieved by GFRnvr was emphasized by comparing the distribution
of the absolute and relative bias values of the eGFR equations in the external validation set
(Figures S2 and S3).
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Figure 1. Performance of the eGFR-estimating equations. (A) Median bias + 95% confidence intervals (CI) according to
different ranges of eGFR (mL/min/1.73 m? of body-surface area) for the GFRnymr, CKD-EPIpgp9, CKD-EPlyg15, CKD-EPlcys
and EKFC equations. (B) Accuracy (1-P20 & 95% CI) according to different ranges of estimated GFR (mL/min/1.73 m? of
body-surface area) for the GFRNmRr, CKD-EPIpgg9, CKD-EPlyg12, CKD-EPIcys and EKFC equations. 1-P20 is the percentage
of eGFR values lying outside the tolerance range of 20% of measured GFR. In (A,B), the range of n values per eGFR
subgroup are as follows: 3 to 6 for eGFR < 15 mL/min/1.73 m?2, 30 to 68 for 15-29 mL/min/1.73 m?, 213 to 271 for
30-59 mL/min/1.73 m?, 159 to 237 for 60-89 mL/min/1.73 m?, and 77 to 117 for >90 mL/min/1.73 m?.

The overall P30 accuracy of GFRnmvr was significantly higher than that of CKD-EPIcys
(1-P30, 12.8% vs. 22.8% respectively; p < 0.0001), but not significantly higher than that of
the other equations (CKD-EPI,pp9, CKD-EPI01, and EKFC; Table 3). On the other hand, the
overall accuracy at a narrower margin of error (P20 and P15) was significantly higher for
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GFRnMr than for all other formulas (1-P20: 28.5% for GFRnwr Vs. 37.2% for CKD-EPIg09
(p <0.001), 33.3% for CKD-EPIy1> (p < 0.0001), 44.0% for CKD-EPIcys (p < 0.0001), 40.5%
for EKFC (p < 0.0001); 1-P15: 38.8% for GFRnwMR Vs. 49.5% for CKD-EPIg09 (p < 0.0001),
47.3% for CKD-EPlLyy, (p < 0.010), 56.0% for CKD-EPlcys (p < 0.0001) and 53.0% for EKFC
(p < 0.0001) (Table 3).

When evaluated according to the eGFR range, the P20 accuracy was best (lowest 1-P20
value) for GFRnyr between 15 and 59 mL/min/1.73 m?2 (Figure 1B), which represents the
most clinically relevant GFR range when assessing CKD stage classification [7,8]. In that
range, CKD-EPI¢ys exhibited the lowest accuracy (highest 1-P20 value). Notably, GFRnyvr
clearly outperformed all other equations in the 30-59 mL/min/1.73 m? eGFR range, with
the lowest 1-P20 and the narrowest 95% CI (Figure 1B). At eGFR > 60 mL/min/1.73 m2,
GFRnwMr and CKD-EPIyg1, performed equally well (similarly low 1-P20 and narrow 95%
CI). The 1-P20 values < 15 mL/min/1.73 m? could not be interpreted due to the too low n
values (n = 3 to 6).

Figure 2 highlights the improved accuracy of GFRnpmr over all other equations for
error tolerance cutoffs < P30. While at P30, GFRnxyr performed comparably to CKD-
EPI012, GFRNMR outperformed all other evaluated equations below this arbitrary cutoff
(Figure 2).

Error Characteristic Curve — P-Score (External Validation Data)
Red dashed lines indicate error tolerance cutoffs at p15, p20 and p30 {from left to right).
|
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Figure 2. Regression Error Characteristic Curve for all error tolerance Px values for GFRxyr, CKD-
EPlyg09, EKFC, CKD-EPIcys, CKD-EPlyg12. Px denotes the percentage of eGFR values within x% of
measured GFR. The red dashed lines indicate error tolerance cutoffs of (from left to right) P15, P20
and P30, respectively. The y-axis shows the corresponding percentage of samples within the given
error tolerance Px value on the x-axis. Colored curves represent the results of the different equations.

3.4. Performance of the New GFRnyr Equation in Subpopulations of the External
Validation Dataset

A subgroup analysis according to age (<40, 40-65 and >65 years old) showed sig-
nificantly reduced median bias and MAE for the new GFRnyr equation compared to all
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other equations in age groups 40-65 and >65 years (Table S1 and Figure S4). P15 and P20
accuracy of GFRnyr was also significantly improved compared to all other equations in
the >65-year-old group (Table S1). GFRnvr's P15 and P20 accuracy in the 40-65 age” group
were comparable to those of CKD-EPIy;, but significantly higher than those achieved by
other equations (Table S1 and Figure S4).

A subgroup analysis according to sex confirmed that the GFR\vr equation outper-
formed other equations in terms of bias, MAE and P15 accuracy in both males and females
(Table S2 and Figure S4). GFRnywMr's P20 accuracy was comparable to that of CKD-EPIyg1
but significantly higher than that of other equations in males and females (Table S2 and
Figure S4).

A subgroup analysis according to body mass index (BMIL; groups: <20, 20-25, 25-30
and >30 kg/m?) revealed that the GFR\MR equation had a significantly lower median bias
than all other equations for the 20-25, 25-30 and >30 kg/m? BMI subgroups (Table S3 and
Figure 54). GFRnMmr's MAE was comparable to that of CKD-EPIyg1, but significantly higher
than that of other equations in the 20-25 and 25-30 kg/m? BMI subgroups, while GFR\yr'S
MAE outperformed all equations in the >30 kg/m? BMI group (Table S3). GFR\wr's P15
accuracy was comparable to that of CKD-EPIyg1, but significantly higher than that of other
equations in the 20-25 and 25-30 kg/m? BMI subgroups, while it was comparable to that
of CKD-EPl,go but significantly higher than that of other equations in the >30 kg/m? BMI
subgroup (Table S3).

We also performed an exploratory analysis according to ethnicity. Ethnicity was
determined by patient questionnaire and all patients who self-identified as African, African
American or Black were grouped as black, and all others were grouped as non-black.
This analysis suggested comparable bias distribution for GFRnxwr in black vs. non-black
individuals (Figure S5).

Altogether, these subgroup analyses underlined the improved performance of GFRnyr
in clinically relevant populations, such as individuals >65 years of age or with elevated
BMI (>25 kg/m?), compared to other equations.

3.5. Evaluation of the Potential Clinical Benefit of the New GFRnpr Equation

Finally, we evaluated the potential clinical utility of the new GFRnyr equation, by
assessing the proportion of correct and incorrect CKD staging reclassification by GFRxyr
vs. the equations recommended by KDIGO, CKD-EPI,09 and CKD-EPlIyg1; [7,8] (Table 4).
The NRI, corresponding to the difference between correctly and incorrectly reclassified CKD
staging, calculated on the overall external validation dataset, was 8.0% (22.2% correctly and
14.2% incorrectly reclassified) for GFRnwr vs. CKD-EPIyg09 and 7.6% (17.8% correctly and
10.2% incorrectly reclassified) for GFRnmr vs. CKD-EPIygq; (Table 4). This indicates that
the GFRnvr equation globally reclassified more correctly CKD staging than the respective
CKD-EPI equations did (Table 4).

When evaluated according to the eGFR range, GFRnyr more correctly reclassified
CKD staging for eGFR > 45 mL/min/1.73 m?, i.e., for ranges 45-59 (CKD stage G3a), 60-89
(CKD stage G2) and >90 (CKD stage G1) mL/min/1.73 m?, with NRI of 9.1, 14.9 and 3.7,
respectively, vs. CKD-EPIgp9, and NRI of 9.9, 14.5 and 6.7, respectively, vs. CKD-EPI,¢15.
In the 30-44 mL/min/1.73 m? eGFR range (CKD stage G3b), CKD-EPI,y9 performed better
than GFRymr (NRI —3.8), while GFRyyr and CKD-EPlIyg1o performed equally well (NRI
0.0). In the 15-29 mL/min/1.73 m? eGFR range (CKD stage G4), GFRnwmRr performed better
than CKD-EPIgn9 in CDK staging reclassification (NRI 5.6), while CKD-EPI,¢1, performed
better than GFRxpmr (NRI —16.6). As before, no proper evaluation could be conducted
for eGFR < 15 mL/min/1.73 m? (CKD stage G5), due to too low sample number (1 = 4)
(Table 4).



Diagnostics 2021, 11, 2291

11 of 16

Table 4. Net reclassification by GFRxymR vs. CKD-EPIyg09 or CKD-EPIyg;p; in the overall external validation set (n = 600) and
according to eGFR ranges and CKD Stages.

Estimated GFR Range (mL/min/1.73 m?)

Overall <15 15-29 30-44 45-59 60-89 >90
CKD stage - G5 G4 G3b G3a G2 Gl

Observed mGFR range (mL/min/1.73 m?) 3-166 3-14 16-29 30-44 45-59 60-89 90-166
Number of samples 600 4 36 79 132 214 135

Total reclassified, N (%) 218 (36.4) 0(0.0) 10(27.8) 19(241) 64(485) 76(355) 49 (36.3)

CKD-EPI Correctly reclassified, N (%) 1 133 (22.2) 0(0.0) 6 (16.7) 8 (10.1) 38 (28.8) 54 (25.2) 27 (20.0)

2009 Incorrectly reclassified, N (%) 2 85 (14.2) 0 (0.0) 4(11.1)  11(139) 26(19.7) 22(103) 22 (16.3)
NRI (%) 8.0 0.0 5.6 3.8 9.1 149 3.7

Total reclassified, N (%) 168 (28.0) 1(25.0)  8(222)  32(405) 59 (447) 49(22.9) 19(14.1)

CKD-EPI Correctly reclassified, N (%) 1 107 (17.8) 0(0) 1(2.8) 16 (20.3) 36 (27.3) 40 (18.7) 14 (10.4)

2012 Incorrectly reclassified, N (%) 2 61 (10.2) 12500 7(194) 16(203) 23(174)  9(4.2) 5(3.7)
NRI (%) 7.6 —25.0 ~16.6 0.0 9.9 145 6.7

1 CKD Stage according to GFRyyR is the same as the one according to mGFR, while CKD-EPI-based CKD stage is different; 2 CKD Stage
according to CKD-EPI is the same as the one according to mGFR, while GFRnyr-based CKD stage is different. Abbreviations: CKD,
chronic kidney disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPIyyg9 [1], CKD-EPIy1, [2]); GFR,
glomerular filtration rate; mGFR, measured GFR; NRI, net reclassification index; N, number of samples.

4. Discussion

GFRnMR as described here outperformed established creatinine and/or cystatin C-
based equations (CKD-EPIy09, CKD-EPIpg12, CKD-EPlcys, and EKFC; [1-3]) in terms of
bias and accuracy toward mGFR. The median bias of GFRnyr remained consistently
close to zero over the entire eGFR range, whereas the other equations exhibited greater
fluctuations and tended to systematically underestimate mGFR especially for eGFR below
60 mL/min/1.73 m?. The accuracy of GFRxyr Was significantly improved compared
to that of other equations, both overall and especially at eGFR < 60 mL/min/1.73 m?,
regardless of the limits of agreement with mGFR chosen (P15, P20, or P30, respectively).
The fact that GFRyyRr performed better than other equations at narrower error bounds
(P15 or P20) is of high clinical relevance because P30, which has previously been used as a
standard measure of accuracy [1-3], has recently been questioned as an unacceptably wide
margin of error [6]. Improved performance of GFRyyr was also reflected by its ability to
better reclassify CKD staging than the other equations did, compared to mGFR-based CKD
staging. Therefore, our data suggest that GFRNMR is an accurate and robust GFR equation
in the adult population with and without CKD and provides clear benefits for patients at
risk for inaccurate serum creatinine-based GFR estimates due to increased age or BML

As the risk of death increases with diagnosis of CKD associated with an estimated
GFR below 60 mL/min/1.73 m? [41], KDIGO recommends using serum creatinine-based
GEFR estimation for initial assessment of GFR and to use additional tests (such as cystatin C
or clearance method) for confirmatory testing once eGFR is <60 mL/min/1.73 m2. GFR esti-
mates making use of cystatin C in addition to serum creatinine are more powerful predictors
of clinical outcomes than creatinine-only eGFR [42]. The advantage of equations that com-
prise cystatin C includes greater prognostic values for mortality and cardiovascular disease
events and is most apparent among individuals with GFR of 45-59 mL/min/1.73 m? [42].
Patients with both serum creatinine eGFR and combined creatinine- and cystatin C-based
eGFR < 60 mL/min/1.73 m?, had markedly elevated risks for death, coronary vascu-
lar disease, and end-stage renal disease endpoints compared to individuals with GFR
> 60 mL/min/1.73 m? [42]. However, depending on the chosen equation, studies have
shown that as many as 30-60% patients are misclassified by CKD stage [6]. The mini-
mal bias of the new GFRnMr equation is especially suited to prevent CKD confirmation
from systematic underestimation, misclassifying many patients with serum creatinine
eGFR < 60 mL/min/1.73 m? and mGFR > 60 mL/min/1.73 m? as CKD stage G3 rather
than G2.
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Once a diagnosis of CKD has been established, KDIGO, the National Kidney Foun-
dation and the American Diabetes Association recommend assessing CKD progression
based on eGEFR classification (“CKD stage”). Changes in eGFR leading to changes in GFR
classification defines CKD progression and CKD progression establishes the patient’s care
plan. Over 70 different eGFR equations have been developed to this end [6]. However,
the eGFR values resulting from these equations often differ from mGFR by £30% or more.
An increasing number of studies are noting populations in which measuring the rate of
progression of CKD using eGFR has been found inadequate due to limited eGFR accuracy.
For example, in a 2013 study of 449 type 2 diabetic patients with mGFR and eGFR values
obtained over a median follow-up period of 4.0 (range 1.8-8.1) years, all estimation for-
mulas failed to provide any reliable estimations of GFR changes over time. Long-term
GEFR decline was largely and uniformly underestimated in the study group [43]. Here
again, an eGFR equation like GRFyyr, with very low bias and improved accuracy, might
allow a more accurate monitoring of CKD progression and thus a better management of
CKD patients.

In terms of clinical utility, GFRnvr performed better than CKD-EPlyg;, in our study,
the latter better than CKD-EPIyg9, and the latter better than CKD-EPIcys. These results
highlight the utility of integrating more than one or two biomarkers. In particular, the
emerging metabolite markers myo-inositol and valine, in addition to creatinine and cystatin
C helped to improve eGFR calculation and CKD staging in our hands. Thus, our data are
consistent with recent reports in the literature indicating the need for multiple filtration
markers to improve GFR estimation [4,9] and also support the results of our previous proof-
of-concept study [12]. Although the current analysis suggests that the GFR\wvr approach is
superior to other measures of eGFR, we are not yet able to explain the complex physiological
mechanisms of the two new biomarkers, which appear to differ in part from the existing
clearance concept. Serum myo-inositol, an essential component of the second messenger
inositol phosphate and a uremic toxin, is inversely correlated with GFR [10,44-50]. On the
other hand, valine, the plasma level of which is reduced in CKD as a result of metabolic
acidosis, correlates positively with GFR [48,51-55]. These two emerging biomarkers turned
out to play an essential role complementing serum creatinine and cystatin C for accurate
GEFR estimation and outbalanced their deficiencies in unbiased estimation of GFR. In that
sense, the new GFRnyr constellation confirmed the results of our proof-of-concept, where
myo-inositol, valine, and dimethyl sulfone in combination with serum creatinine accurately
reflected GFR in pediatric and adult patients [12]. In contrast to the complexity of the
implemented biomarkers’ interplay, the experimental complexity of the NMR-based multi-
parametric test is reduced to a minimum by a high degree of analytical automation and
intact quality checks [12]. The GFRnwr test reports GFR in conventional units adjusted
for body surface area (KDIGO guidelines, https://kdigo.org/guidelines, accessed on 9
July 2021), avoiding the risk of misinterpreting the complex biomarker interplay by health
care providers.

The clinical rationale for considering alternative markers of kidney disease progression
was also provided by the U.S. National Kidney Foundation and the U.S. Food and Drug
Administration in 2012 [56]. Thus, GFRnmRr could address a critical need for equations
with higher accuracy and precision for all groups of renal patients, depending not only on
ethnicity, sex, and age, but especially on etiology, symptoms, CKD stages, histopathologies,
and therapies of renal disease, as well as extra-renal comorbidities [9]. Given the large
heterogeneity of patients, repeated single measurements of eGFR require a highly accurate
eGFR method to develop new paradigms for evaluating the efficacy of therapeutic inter-
ventions aimed at assessing CKD progression in subgroups of adult patients. Moreover,
more accurate and precise eGFR values are clinically necessary for renal function-specific
subsets of the CKD population, for example when using toxic drugs that may have a nar-
row therapeutic range, or donor evaluation in kidney transplantation [7,8]. We conclude
that GFRnpr could also challenge the concept of the costly and time-consuming mGFR
measurements in patients with GFR < 60 mL/min/1.73 m?2,
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The described NMR-based ‘biomarker constellation” approach, combining novel
metabolite markers with established filtration markers to more accurately reflect both
glomerular filtration rate and CKD-associated renal dysfunction, is a promising extension
of the classical concepts of biomarker ‘panels’ or ‘signatures’. The GFRnwvr approach
should allow the development of eGFR equations that are personalized and tailored to
patients and their specific renal diseases, e.g., diabetes mellitus, nephrotic syndrome,
tubulopathies, or after renal transplantation. Because these nephropathies directly or
indirectly affect the diagnostic quality of markers for GFR estimation, a ‘super constella-
tion” or “etiology-specific GFR biomarker constellations” might provide the most accurate
results. Such an approach will most likely require the quantification of multiple novel
renal biomarker components in addition to established markers. As NMR is a multiplex
analyzer capable to quantify precisely multiple unlabeled metabolites in a simultaneous
physical measurement step, it appears to be especially suited to avoid increasing analyti-
cal costs associated with multiple single biomarker assays. Nevertheless, implementing
such a ‘super constellation” will require large cohorts covering all or most relevant CKD
etiologies to generate sufficient data and enable powerful machine learning-based mod-
elling and validation—a major hurdle for individual research groups, requesting future
collaborative approaches.

Despite the numerous discussed strengths of the new GFRnyr equation, our study
has several limitations. First, the adult population used in this study was predominantly
Caucasian, and validation of the new GFRnwMR equation has yet to be performed in other
ethnic groups. Second, the internal validation cohort consisted of samples with heteroge-
neous exogenous renal clearance markers of mGFR as reference standards compared to the
development and external validation cohorts (Table 1). We cannot exclude the possibility
that this heterogeneity introduced a bias into our analysis. Third, external validation
of GFRnmr should ideally be performed by independent investigators. However, this
limitation was compensated using independent internal and external validation datasets
during model selection.

5. Conclusions

GFRnMR is a patient-friendly diagnostic method with superior accuracy and preci-
sion compared to other recommended eGFR equations, both overall and especially at
eGFR < 60 mL/min/1.73 m?. Furthermore, it can be repeated in short intervals to monitor
patients with GFR < 60 mL/min/1.73 m? or patients at risk for inaccurate serum creatinine-
based GFR estimates due to increased age or BMI. The GFRyyr equation might assist in a
more robust diagnosis and monitoring of CKD progression.
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