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Abstract

Dynamic whole body (DWB) PET acquisition protocols enable the use of whole body parametric
imaging for clinical applications. In FDG imaging, accurate parametric images of Patlak K; can be
complementary to regular standardised uptake value images and improve on current applications or
enable new ones. In this study we consider DWB protocols implemented on clinical scanners with a
limited axial field of view with the use of multiple whole body sweeps. These protocols result in
temporal gaps in the dynamic data which produce noisier and potentially more biased parametric
images, compared to single bed (SB) dynamic protocols. Dynamic reconstruction using the Patlak
model has been previously proposed to overcome these limits and shown improved DWB parametric
images of K;. In this work, we propose and make use of a spectral analysis based model for dynamic
reconstruction and parametric imaging of Patlak K;. Both dynamic reconstruction methods were
evaluated for DWB FDG protocols and compared against 3D reconstruction based parametric
imaging from SB dynamic protocols. This work was conducted on simulated data and results were
tested against real FDG dynamic data. We showed that dynamic reconstruction can achieve levels of
parametric image noise and bias comparable to 3D reconstruction in SB dynamic studies, with the
spectral model offering additional flexibility and further reduction of image noise. Comparisons were
also made between step and shoot and continuous bed motion (CBM) protocols, which showed that
CBM can achieve lower parametric image noise due to reduced acquisition temporal gaps. Finally, our
results showed that dynamic reconstruction improved VOI parametric mean estimates but did not
result to fully converged values before resulting in undesirable levels of noise. Additional regularisation
methods need to be considered for DWB protocols to ensure both accurate quantification and
acceptable noise levels for clinical applications.

1. Introduction

Positron emission tomography (PET) imaging is well known and established in clinical applications and
pathways, with an important role towards the delivery of precision medicine (Subramaniam 2017). The
established clinical practices rely on static imaging after a certain uptake period and semi-quantitative measures,
such as the standardised uptake value (SUV). But these measures are vulnerable to many unknown factors that
can vary between PET examinations, such as body composition, retention clearance, inconsistencies in uptake
time and imaging practices (Boellaard 2011). On the other hand, dynamic PET imaging can be used to fully
characterise underlying tracer kinetics and provide fully quantitative measures that could overcome many
limitations of current static imaging practices and enable the use of PET for new applications in clinical practice
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(Lammertsma 2017, Meikle et al 2020, Dimitrakopoulou-Strauss et al 2021). Current clinical scanners are
limited in coverage by their axial field of view (A-FOV), with values ranging from 15 to 26 cm (Vandenberghe

et al 2020). This is sufficient for single organ dynamic studies but cannot directly provide synchronous whole-
body coverage, which is essential for some clinical applications such as tumour staging in oncology. In practice
for static imaging whole-body coverage is achieved using multiple bed positions at different axial locations to
provide the desired axial coverage (Schubert et al 1996), or alternatively via continuous bed motion (CBM)
during the acquisition (Panin et al 2014). Recently scanners with increased A-FOV have been developed (Karp
etal 2020, Siegel et al 2020), even with nearly 2 m long A-FOV which provides total-body coverage (Cherry et al
2018). But these scanners are still not widely adopted in the clinic. Using similar methods as in static whole-body
imaging, dynamic whole body (DWB) protocols have been developed using multiple bed positions and repeated
whole-body passes (Karakatsanis et al 2011, 2013, Rahmim et al 2019). These types of acquisition protocols have
also been incorporated into clinical products (Hu et al 2020), and it has been shown that their use in clinical
practice is feasible (Fahrni et al 2019, Dias et al 2020).

The immediate effect of transition from single bed (SB) dynamic studies to multi-bed dynamic studies is the
introduction of temporal gaps in the acquired data of any given bed position. These are introduced at each bed
position by the time spent on imaging other bed positions and by scanner system delays due to the time required
to move the bed to the next position and prepare for the next acquisition. These gaps cause a significant
reduction in the sensitivity of the acquisition, with fewer total counts collected for each axial location when
compared to SB dynamic acquisitions. Furthermore, estimation of fast temporal changes in tracer uptake is
compromised as the early time points of the acquisition are not fully sampled for all beds. Finally, the established
clinical protocols that make use of image derived input function (IDIF) to ease integration in clinical practice
further sacrifice imaging time in the studys early phase, which is spent in acquiring fast frames over a SB location
centred over the heart and the aorta (Hu et al 2020).

The generation of parametric images from dynamic data requires the fitting of the dynamic model of interest
on time activity curves (TAC) for every voxel in the image. Due to the poor statistics and high noise associated
with TAC measurements at the voxel level, in particular for DWB acquisitions, parametric image estimates can
be heavily corrupted by noise and potentially biased. The use of direct dynamic reconstruction has been
proposed to improve on this task by making use of dynamic models directly in the reconstruction. These
techniques allow for more accurate modelling of the noise from the raw PET data in the generation process of
parametric images and can improve parametric image noise and reduce bias (Reader and Verhaeghe 2014). For
DWB acquisitions specifically, it has been shown using simulated and real data that direct dynamic
reconstruction provides reduced noise, bias and improved parametric image contrast when compared to post-
reconstruction parametric imaging (Karakatsanis et al 2016). So far, dynamic reconstruction has been used in
DWB applications using the Patlak model and a generalised Patlak model for K; parametric imaging, using only
frame data after sufficient time from injection to satisfy the steady state conditions of the Patlak model.

In this work, we evaluate the performance of dynamic reconstruction algorithms for DWB
fluorodeoxyglucose (['*F]JFDG) PET imaging for various dynamic reconstruction methods and different DWB
acquisition protocols. The novelty in this work is the application of a spectral analysis based dynamic
reconstruction on DWB data for Patlak K; parametric imaging, which enables the use of all acquired DWB data
from injection in the reconstruction. The evaluation is based on simulations of a unique bed position for a SB
and various multi-bed dynamic acquisition protocols and results are illustrated in a real dynamic FDG PET
study. An additional novelty in this work is the comparison of DWB results against SB dynamic data to assess the
degradation effect of the temporal gaps, which are introduced in the transition from SB studies to multi-bed
DWaB studies, and to assess the potential of dynamic reconstruction in counteracting these effects. Our work also
evaluates the use of different optimization methods for dynamic reconstruction in the setup of DWB imaging.

In detail, we evaluate for WB Patlak K; parametric imaging (1) the benefits of using direct Patlak dynamic
reconstruction in DWB protocols against SB dynamic protocols and indirect parametric imaging from regular
3D reconstruction, (2) the use of the Spectral analysis dynamic model (Cunningham and Jones 1993) in dynamic
reconstruction for indirect parametric K;imaging, (3) the use of two different optimization algorithms for
dynamic reconstruction and finally (4) the impact of different DWB acquisition strategies.

2. Methods

2.1. Simulated acquisition protocols

A SB dynamic protocol (continuous in time with no temporal gaps) and three DWB acquisition protocols of five
bed positions (with temporal gaps) were considered for the simulation study, using the geometry characteristics
of the GE Signa PET /MR scanner (Grant et al 2016). With the provided 25 cm A-FOV per bed and a bed overlap
of 3.34 cm, axial coverage of 110.3 cm can be achieved with five bed positions. The relatively small overlap
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(approximately half compared to routine clinical protocols) was selected to reduce the number of beds and
subsequently the acquisition temporal gaps. A total study duration of 60 min was used in the design of all
protocols, including an initial SB dynamic phase of 3 min centred over the aorta to mimic requirements for IDIF
estimation.

+ The first DWB protocol (DWB-1) considers a step and shoot (S&S) acquisition using measured system delays
from an experimental DWB protocol on the Signa PET /MR, resulting in a delay of 6 s between adjacent bed
positions and 36 s between whole-body sweeps, for a total of 8 whole-body sweeps in the duration of the study.
As the system has no dedicated DWB protocol, a large fraction of the system delays between whole-body
sweeps is caused by data transfers and internal processes.

+ The second DWB protocol (DWB-2) differs from DWB-1 by use of system delays that mimic a CBM
acquisition of the same length, with no delays between adjacent bed positions and 12 s delay between whole-
body sweeps to account for bed speed and acquisition overscan (used to obtain reasonable axial sensitivity at
the edges of the acquisition (Panin et al 2014)). This protocol results in 9 whole-body sweeps. In this protocol
it was assumed that the CBM acquisition is dedicated and optimized for DWB acquisitions. The physical time
required for translation of the bed between whole-body sweeps was deduced by measurements of table
movements on the Signa PET /MR scanner. In this work, the actual simulation for DWB-2 did not make use
of CBM within the simulation process but made use of the accurate timings that reflect the reduction of delays
and framing achievable with CBM on the same system geometry.

+ The third DWB protocol (DWB-3) replicates the timing properties of DWB-2 for CBM acquisition but utilises
abi-directional acquisition that reduces delays between sweeps to the time spent for the over-scan. This
acquisition motion provides more sweeps in the same study duration but results in non-uniform sampling.
This protocol results in 10 whole-body sweeps.

In this study we assumed that individual bed positions of the DWB studies are to be reconstructed and
processed independently and the result K; parametric maps to be combined after reconstruction for the creation
of WB parametric K; maps, as proposed by Karakatsanis et al (2016). Due to practical limitations in
reconstruction time, the simulation study was focused on a SB position from the assumed DWB protocols of five
bed positions. The second bed position from the top was selected, centred over the upper chest as seen in
figure 1. Different bed positions will result in different sampling of frames, resulting in an offset in sampling for
the S&S and uni-directional CBM DWB protocols, but most importantly resulting in sampling uniformity
differences for bi-directional CBM acquisition. These sampling uniformity differences are eliminated at the
central bed position and maximised at the edge positions (first and last bed positions) of the assumed 5-bed
DWB protocol. The choice of the second bed position was made as a compromise between the central and edge
bed positions, to include non-uniformity effects in the analysis of the DWB-3 protocol results. The PET data
simulations were conducted solely for this bed position using the framing of the DWB protocols described
above. The exact framing information is available in the supplementary material.

2.2. Digital phantom and analytical simulation

The Zubal brain phantom (Zubal et al 1994) was chosen for the simulations of PET ['®F]FDG data, even though
its anatomy doesn’t correspond to the anatomy that would be found in the axial location of the simulated bed
position. The choice of the phantom was made to incorporate higher complexity structures than those offered
from common lung/chest phantoms. Furthermore, the placement of the brain phantom in the centre of the
FOV resulted in no area of the phantom falling in the overlapping regions of the DWB acquisition protocols.
Therefore, the simulation of adjacent bed positions was not necessary for this study. The behaviour of structures
falling in the overlapping regions of DWB studies as well as the treatment of the overlap data during and after
reconstruction is yet another subject for investigation. The Zubal brain phantom was segmented into 19 unique
regions and a non-reversible two tissue compartment model was assigned uniformly to each region to simulate
realistic FDG kinetics, with Ky, k,, k3 and V}, values drawn from the literature and a real measured input function.
A selection of the simulated kinetic parameters is provided in the supplementary material. An analytical
simulator was used to generate raw PET sinogram data (Stute et al 2015). The simulations included attenuation
and detector resolution effects, scattered and random coincidences, while Poisson noise was added to the
sinogram data. The same attenuation coefficients and random and scattered coincidences analytical
distributions used in the simulation (that is, the analytical distributions that were used in the simulation before
adding Poisson noise) were used in the reconstruction, resulting in unbiased corrections. In addition, the exact
input function used within the simulation process was used for all dynamic reconstructions. The simulation did
not include time of flight (TOF) information in the data. Fifty different noise realisations were simulated for each
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Figure 1. Dynamic whole-body acquisition protocols considered for simulation.

DWSB protocol. For the SB protocol the number of noise realisations was reduced to twenty for practical reasons,
asitinvolves a much higher number of frames resulting in substantially longer reconstruction time.

2.3.Reconstruction and kinetic modelling

Both 3D and dynamic iterative reconstructions were used in this study. All reconstructions were run within an
OSEM framework, for 40 iterations and 28 subsets, using the open source fully quantitative reconstruction
platform CASToR (Merlin ef al 2018). All reconstructions were performed with a voxel size of

2.2mm X 2.2 mm X 2.8 mm and included resolution modelling as well as corrections for attenuation and for
random and scattered coincidences (generated from the simulation). Dynamic reconstructions are made by
combining dynamic models that describe the tracer kinetics with the tomographic reconstruction process.
When the dynamic model of interest is used this technique results in direct reconstruction of parametric images
of interest and allows for accurate modelling of the raw data noise in the estimation process (Carson and

Lange 1985, Matthews et al 1995, Kamasak et al 2005, Wang et al 2008). The use of generic dynamic models can
also be made for dynamic reconstruction, where dynamic models impose temporal regularisation in the frame
activity estimation process. Post-reconstruction (indirect) estimation of parametric images can then be made
and indirectly benefit from the use of dynamic reconstruction (Reader and Verhaeghe 2014, Novosad and
Reader 2016). Linear dynamic models can be directly implemented within the system matrix (Matthews et al
1995, Wang et al 2008, Reader and Verhaeghe 2014) but result in algorithms with substantially slower overall
convergence properties. Instead a nested optimization framework (Wang and Qi 2010, Matthews et al 2010) can
be used, which decouples the dynamic model fitting process on image space data from the tomographic update
process over the raw PET data. This allows for multiple nested sub-iterations of dynamic model fitting to be run
within each tomographic iteration of the reconstruction process, resulting in convergence acceleration and
reasonable computing time requirements. The separation of the two processes allows for various optimization
algorithms to be implemented in the nested dynamic model fitting process (Matthews et al 2010). One particular
method of interest is the non-negative least squares (NNLS) algorithm (Lawson and Hanson 1995), which
enforces non-negativity and is commonly used in post-reconstruction kinetic modelling. The NNLS algorithm
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is self-terminating and for dynamic reconstruction it has been shown that a single execution of nested NNLS
results in parametric images with similar root mean square (rms) error to that of 15 iterations of nested MLEM
(Matthews et al 2010). Therefore the use of nested NNLS optimization has the potential for reduced overall
reconstruction time. In this work we made use of both nested MLEM and NNLS optimizations to compare their
performance and reconstruction time requirements for their implementation within CASToR. The nested
MLEM optimization was used with 20 sub-iterations of the dynamic model fitting process after each subset of
the OSEM tomographic update process, which has been found to be the optimal number of sub-iterations in a
previous similar study (Karakatsanis et al 2016). Hereafter we will refer to nested dynamic reconstruction simply
as 4D reconstruction.

In this work we evaluated two different linear dynamic models for 4D reconstructions, the Patlak model and
the spectral analysis model.

+ 4D Patlak: The Patlak model describes the activity in tissue C
(1) as

Cr(t) = K; j;t Co(m)dr + Vo Cp(1), £ >t ey

where Cpis the activity concentration in arterial blood plasma at time point ¢, K; is the steady state trapping
rate and V,, is the apparent volume of distribution. The Patlak model is valid once steady state conditions have
been reached (denoted as t,;). For a PET measurement the observed activity is

Cper (1) = (1 — V) Cr(2) + VpCp(1), (@)

where conventionally it is assumed that the blood fraction Vis small ( < 0.05) in most tissues. If we assume
for FDG that the total blood activity concentration Cy is proportional to Cp with Cg = rCp, define the Patlak
slope 8, = (1 — Vp)K;and the Patlak intercept 8, = V,, + rVp, then the observed activity of acquisition frame f
between time points f,,, and t,,,;is modelled according to the Patlak model as

Lend

tond T tend
Cppr (7)dr = 6, f j; Co(mydndr + 6, [ Co(r)dr, 3)
t.

Estart start tstart

where Cppr(t) is the observed activity map. Using this representation a linear model of two basis functions can
be constructed, which when fitted to TAC data provides parametric images @ = [0, 8,]. 4D dynamic
reconstruction with the Patlak model directly results in parametric images of 8; and 8,. In our study 4D Patlak
reconstruction was applied using frame data after the first 15 min, from where we assumed steady state
conditions (t,; = 15 min).

Itis important to note that a limitation of the Patlak model is that the estimated K; from the Patlak slope 6, is
susceptible to systematic errors in its estimation and can deviate from the true underlying

Ki(= Kiks/(k, + k3)). In addition, V is not necessarily known a priori and Patlak analysis can not distinguish
between K;and (1 — V). In this study we use the Patlak slope 6, as the K; value of interest for parametric
imaging.

* 4D spectral: The spectral analysis method has been proposed by Cunningham and Jones (1993) for the
analysis of TAC data from dynamic PET studies. The method makes use of a pre-defined set of exponential
functions, convolved with the input function, to describe the measured TAC data and therefore relies on few
assumptions. It can be used to analyse and compare data, while also allow for the deduction of information of
the underlying kinetic behaviour (Gunn et al 2002). It was first used in dynamic PET for parametric imaging
by Meikle et al (1998) and later as a generic temporal regularisation method within dynamic reconstruction in
various works (Reader et al 2007, Matthews et al 2010, Wang and Qi 2010). In the latter, the resulting
temporally regularised activity data per frame can be used for post-reconstruction parametric imaging. This
process provides improved estimates, compared to post-reconstruction analysis from regular 3D frame
reconstructions. This has been shown previously for post-reconstruction analysis using a two-tissue
compartmental model (Novosad and Reader 2016). In this work, we propose a novel use of the spectral model
in dynamic reconstruction for regularisation of activity frame data, followed by post-reconstruction Patlak
analysis for parametric K;imaging. We will refer to this dynamic reconstruction method as the 4D Spectral
reconstruction. The expected benefit of this practice is that the spectral model can make use of all frame data
within the reconstruction, allowing all the dynamic acquisition statistics to be indirectly used within post-
reconstruction Patlak analysis. By contrast, the Patlak model based dynamic reconstruction is limited to frame
data after steady state conditions have been reached. In the proposed practice, the 4D Spectral reconstruction
for parametric K; imaging can be regarded as indirect dynamic reconstruction.




10P Publishing

Phys. Med. Biol. 66 (2021) 185017 Z Chalampalakis et al
Table 1. Evaluated reconstruction parameters.

Name Dynamic model Nested optmization Algorithm

3D none n/a OSEM(40it28s)
4D Patlak Patlak MLEM (20sub-it) OSEM(40it28s)
4D Spectral(6bf) Spectral MLEM (20sub-it) OSEM(40it28s)
4D Spectral(9bf) Spectral MLEM (20sub-it) OSEM(40it28s)
4D Spectral(17bf) Spectral MLEM (20sub-it) OSEM(40it28s)
4D Spectral(6bf)-NNLS Spectral NNLS OSEM(40it28s)
4D Spectral(9bf)-NNLS Spectral NNLS OSEM(40it28s)
4D Spectral(17bf)-NNLS Spectral NNLS OSEM(40it28s)

Table 2. Additional reconstructions characteristics.

Additional reconstructions Characteristics

4D Spectral (6bf) t > t
4D Spectral (9bf) t > t

Provided only with data after #,
Provided only with data after #,

For a measurement within an acquisition frame f between time points f,,; and t,,,4, the observed PET
activity can be described according to the spectral analysis method with M + 1 number of parameters, decay
rates Jand their positive weights ¢ as

Tend C dr — M-1 lond 8,7 c P Tend c J
per (T)AT = > @y e * Cp(T)dT + Py p(T)dT. (4)
b=0 g

Lstart start Lstart

Assuming Cpis proportional to Cp then the parametric map ¢, is proportional to the blood fraction Vi, while
for irreversible kinetics the decay rate 5, — 0 and the parametric map ¢, describes tracer trapping. Parametric
maps @;...¢xr_; describe the exchange between compartments, with decay rates (3,...0,,_; chosen to be
logarithmically spaced within a range of values that covers the expected underlying kinetics. In our tests we used
3 different sets of numbers of basis functions (M + 1 = 17,9 and 6), with 3...3x;_1 logarithmically spaced
within the range 0f 3-0.001 min~! . Although post-reconstruction spectral analysis makes use of hundreds of
basis functions, this number is reduced when the model is incorporated in dynamic reconstruction to reduce the
number of estimated parameters and variance of estimates. The choice is commonly set to less than 100 (Reader
etal 2007, Novosad and Reader 2016) and in this study it was chosen to be close to the number of frames per bed
position of the DWB PET data. We made use of three sets of basis, to evaluate the performance of the model
when the number is lower, similar or greater than the number of available frames per bed position in the

DWB data.

Unlike the Patlak model, the spectral analysis model is valid from the start of the acquisition and by default
was applied to all time frames. The parameters ¢, of the spectral model have physiological meaning and in
combination can be used to derive macro-parameters maps such as K; and either K; or Vp, depending on the
irreversible or reversible kinetic behaviour (Gunn et al 2002). However, this derivation implies that the
acquisition starts at the injection time, which is not the case for DWB protocols, except for the bed position
corresponding to the initial dynamic phase used for IDIF estimation. In this sense, the use of 4D Spectral
reconstruction for parametric K; imaging can be regarded as indirect dynamic reconstruction.

As highlighted above the spectral analysis model makes use of all frame data, while the Patlak model uses data
after ;. In order to make a closer comparison between the two models for 4D reconstruction, an additional
comparison was made using only data after £, (reconstructions labelled with ¢ > ¢;).

With the exception of 4D Patlak reconstructions that directly output parametric images of Kj, all other 4D
and 3D reconstruction activity maps were fitted post-reconstruction with the Patlak model at the voxel level,
using the ordinary least squares (OLS) optimization algorithm, to generate parametric K;images. For all 4D
reconstructions and post-reconstruction fitting processes the true input function was used.

The reconstruction’s namings and parameters are summarised in tables 1 and 2.

2.4. Evaluation metrics

The reconstructed and generated parametric K; images were evaluated across noise realisations for voxel based
and VOI based metrics. We define 0, ,, as the image K; value for voxel j in noise realisation #, 0y, the VOI K;
mean value and 67, the ground truth value. The following voxel-based metrics of bias and coefficient of
variation (COV) were calculated, including their rms spatial average within VOIs using equations (7)
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The following metrics were used for VOI-based analysis, with the average VOI value being the parameter of
interest (as opposed to the pixel value)
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The true simulated K; value (K; = K ks/(k, + k3)) was used as the ground truth value 9%1. Because Patlak
analysis provides different fits on the simulated TACs depending on the DWB protocol framing, noiseless TAC
Patlak fits were conducted to estimate these differences. These values are provided in table 4, for comparison
against the findings presented in results section 3.4 on the comparison of DWB protocols.

The cortex and an eroded thalamus VOIs, defined from the respective regions of the Zubal brain phantom,
were evaluated in the analysis. The thalamus VOI was eroded by 2 voxels in order to be less susceptible to partial
volume effects from the surrounding white matter structure. By contrast the cortex VOI was included in its exact
shape, which is subject to partial volume effects, to show the behaviour of these effects with different
reconstruction algorithms. Details of the VOIs are provided in table 3.

2.5.Real data

A SB dynamic examination centred over the lungs region was used to test the performance of the evaluated
algorithms and to compare results against the simulation findings. Approval for the retrospective use of the real
patient data was obtained for this study. The data had been collected with approval from a local ethics
committee. The original dataset was acquired on a Signa PET /MR, starting at the injection of 177 MBq of FDG
tracer to the patient, for a duration of 1 hour. The imaged patient had been diagnosed with a non small cell lung
cancer at the left lung. The raw list-mode dataset was retrospectively reprocessed (replayed) to create two new
datasets. One dataset using the framing of the simulated SB study and one dataset using the framing of the
simulated DWB-1 study (DWB) including temporal gaps. The TOF information available with the original
dataset from the Signa PET /MR was not used in the reconstruction process. An IDIF from the ascending aorta
was measured on activity image data from 3D reconstruction and used for 4D reconstruction and post-
reconstruction analysis. The two datasets were reconstructed using the same 3D and 4D dynamic reconstruction
algorithms that were used in the simulation study using identical parameters. No respiratory motion correction
or gating was applied to the data. Similar to the simulation study, post-reconstruction Patlak analysis at the voxel
level was performed with OLS to generate parametric images of K;. VOIs were drawn over the tumour, the
tumour’s background (left lung) and the liver, as shown in figure 2, to compare between reconstructions and
against the findings of the simulation study. Using these the contrast to noise ratio (CNR) was estimated
according to

etumour - abkg
ebkg SDliver

CNR = )

where SDy ;s the spatial standard deviation of a VOI.

Similarly, CNR was calculated using the simulation study data to enable direct comparison with the real data.
In this case, the eroded thalamus VOI was used as the target region and the white matter as the background for
both contrast and noise estimation.
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|- Background

Figure 2. Real data MIP SUV image (A) and the drawn VOI (B).

Table 3. VOIs used for evaluation.

VOIname Number of voxels Volume (cm?)
Thalamus 915 12.40
Eroded thalamus 218 2.95
Cortex 46 588 631.36

3. Results

3.1. Comparison between SB and DWB protocol data

The VOI and voxel based metrics comparing 3D and 4D Patlak reconstructions for the SB and DWB-1 protocols
are shown in figure 3. For both voxel based and VOI based metrics the 3D reconstruction followed by post-
reconstruction Patlak fitting using DWB data resulted in higher CoV values, compared to 3D reconstruction of
SB data at matched bias. For the first few iterations the 3D reconstructions of both datasets resulted in similar
bias values, while further iterations resulted in a wider range of bias values for the DWB data compared to SB
data within 40 iterations.

The use of 4D Patlak reconstruction on DWB data produced results with lower CoV on both evaluated
metrics and VOIs, compared to the 3D reconstruction of the same data at matched bias, and a shorter range of
bias values within 40 iterations. For the VOI metrics, CoV values of the 4D Patlak reconstruction on both
evaluated regions approach those of 3D reconstruction of SB data. Furthermore, the 4D Patlak reconstruction of
DWAB data resulted in eroded thalamus bias values that evolved towards a steady value of positive bias, at
approximately iteration 12, after which further iterations resulted in small step changes towards lower bias. For
the voxel metrics, similar behaviour is seen on early iterations of 4D Patlak reconstruction on DWB data for the
CoV, with values approaching those of 3D reconstruction of SB data. But at further iterations the CoV for the 4D
Patlak reconstruction in both VOIs surpasses values from 3D reconstruction on DWB data. On the eroded
thalamus this was the case beyond iteration 24, while for the cortex from iteration 22 and beyond. These results
show that there is a risk of increasing parametric image noise, greater than that of 3D reconstructions, when the
4D reconstruction is run at high iterations to achieve more favourable and stable mean VOI behaviour.

The use of 4D Patlak reconstruction with SB data showed similar effects on behaviour for CoV and bias on
both metrics, compared to 3D reconstruction of SB data, and resulted in the lowest CoV values for these
comparisons.

3.2. Comparison between 4D dynamic reconstructions

The VOI and voxel based metrics are shown in figure 4 for comparison of 4D Patlak and 4D Spectral
reconstructions of DWB and SB data. On both metrics and for both regions the use of Spectral reconstruction
with 6 basis functions provided the lowest CoV values at matched bias compared to other 4D reconstructions,
on DWB and SB data respectively. However 4D Spectral reconstruction with 6 basis also provided the highest
respective bias values in the eroded thalamus. On the cortex the difference on bias metrics was relatively small
between all 4D reconstructions of respective DWB and SB data.

The 4D Spectral reconstruction with 9 and 17 basis functions resulted in similar bias and CoV values at both
regions on DWB data. Their use resulted in lower CoV compared to 4D Patlak reconstruction and 3D
reconstruction of SB data, but higher compared to 4D Spectral using 6 basis. Nonetheless, at the eroded
thalamus use of 9 and 17 basis provided improved bias values at matched CoV when compared to the use of 6
basis, closer to bias values from 4D Patlak reconstruction. On SB data, a greater separation in rms Bias is seen
between 4D Spectral reconstructions with 9 and 17 basis functions. When the 4D Spectral reconstructions of
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Figure 3. Simulation: eroded thalamus (left) and cortex (right) noise versus bias trade-off curves for 3D and 4D Patlak reconstructions.
VOI based metrics (top row) and voxel-based metrics (bottom row).

DWAB data were provided with the same frame data as the 4D Patlak reconstructions (4 frames with ¢ > ),
instead of all data (8 frames for DWB-1), it resulted in a noticeable increase of the CoV values with very close
noise versus bias trade-offs between 6 and 9 basis. Their trade-off curves got closer to the one of the 4D Patlak
reconstruction, with lower bias values on both metrics but higher rms CoV compared to the 4D Patlak
reconstruction.

3.3. Comparing between nested optimizations in 4D reconstruction

Results of 4D Spectral and 4D Patlak reconstructions of DWB data using MLEM and NNLS nested optimization
are shown in figure 5. An additional figure comparing the two nested optimization methods on SB data is
provided in the supplementary material. A clear difference in behaviour is seen going from MLEM to NNLS
from early iterations, with 4D reconstructions using nested NNLS optimization resulting in higher CoV values at
matched bias compared to the respective 4D reconstruction using nested MLEM (with 20 nested sub-iterations).
Atthe same time, NNLS nested optimization often resulted in a slight reduction in bias at matched CoV values.
No difference was seen in convergence properties such as convergence speed between the two nested
optimization options. Nevertheless, the use of a single run of NNLS optimization in each nested loop, instead of
20 nested MLEM iterations, resulted in a notable reduction of overall reconstruction time. The average
reconstruction time of DWB-1 data using the two methods on a computer with a 16-core 2.20 GHz processor
and 96 GB of RAM memory is shown in table 5.

3.4. Comparison between DWB protocols

A comparison of 4D Patlak and 4D Spectral reconstructions between the three simulated DWB protocols is
made in figure 6. For VOI based metrics on both regions and 4D reconstructions, data from all three DWB
protocols resulted in bias values within the expected range of the underlying systematic bias in Patlak analysis.
These biases are caused by the sampling differences of the DWB protocols, which result in the values shown in
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Figure 4. Simulation: eroded thalamus (left) and cortex (right) noise versus bias trade-off curves for 4D reconstructions of DWB-1 and
SB protocol data. VOI based metrics (top row) and voxel-based metrics (bottom row).

table 4 for noiseless TAC data. Differences in CoV at matched bias values are more profound in VOI metrics of
the cortex region, where data from protocol DWB-2 resulted in the lowest CoV values and DWB-1 and DWB-3
dataresulted in closer CoV values. This level of reduction in CoV was not seen on the eroded thalamus, neither
on VOI or voxel based metrics. In the eroded thalamus the differences of DWB protocols on CoV at matched
bias were smaller and their ordering was mixed between the two 4D reconstructions.

3.5. Comparison with real data

The comparison of reconstructions using a real FDG dataset, reprocessed and reconstructed with the SB and
DWB-1 protocol framings, is made in figure 7. Results on the real data showed similar evolution of CNR with
increasing iterations for 4D and 3D reconstructions respectively. The 4D Spectral reconstruction using 6 basis
functions provided the highest CNR values throughout all iterations, followed by the 4D Spectral reconstruction
using 9 basis functions and 4D Patlak. Overall, CNR of all 4D reconstructions of DWB data was higher than that
of 3D reconstruction of SB data and 3D reconstruction of DWB data.

The liver SD versus tumour VOI average trade-off curves showed close behaviour between 4D
reconstructions, resulting to SD values in the first 15-17 iterations of 4D reconstructions which were lower
compared to 3D reconstruction of DWB data at matched tumour mean values. Compared to 3D reconstruction
of SB data, all 4D reconstructions of DWB data resulted in higher SD values (for matched tumour mean values
where comparison is possible). Parametric K;images from 3D and 4D reconstructions at iterations with
matched liver SD values of approximately 3.1-10 > min ' are shown in figure 8. The K;images show the
degradation of the tumour’s and heart’s high-intensity definition in the transition from SB to DWB with 3D
reconstruction based parametric imaging. The 4D reconstructions of DWB data improve on these definitions
with 4D Spectral reconstruction providing a similar definition on the heart’s structure to that of SB data with 3D
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Figure 5. Simulation: eroded thalamus (left) and cortex (right) noise versus bias trade-off curves for 4D reconstructions, with MLEM
and NNLS nested optimization. VOI based metrics (top row) and voxel-based metrics (bottom row).

reconstruction. The remaining differences in the heart’s definition can be also attributed to differences in
convergence between the presented iterations of each respective reconstruction.

For comparison against the simulation study, metrics of CNR and SD versus VOI average trade-off curves
from simulation DWB-1 are shown in figure 9. Similar to the real data, values of CNR are highest for 4D Spectral
reconstruction using 6 basis functions, followed by 4D Spectral reconstruction using 9 basis functions. Contrary
to the real data, 4D Patlak reconstruction provided relatively lower CNR values and closer to the values of 3D
reconstruction from SB data. The evolution of CNR with increasing iterations was similar to the real data, with
maximum values attained at approximately 3 to 5 iterations for all reconstructions. Furthermore, the simulation
data SD versus VOI average trade-off curves showed a larger separation of 4D Spectral reconstructions,
compared to the real data, with the reconstruction of 6 basis providing lower SD values compared to 3D and 4D
Patlak reconstruction of DWB data, but at higher bias values from other 4D reconstructions. Finally, a difference
in the bias paths with increasing iteration between the real and simulated data can be seen that is most prominent
for 4D reconstructions. These differences can be attributed to differences in the VOIs used to generate these
curves, between the real data and the simulated data, as well as differences in their surrounding structures.
Nevertheless, in both cases the curves show similar behaviour on bias and SD step changes with increasing
iteration, with bias step changes reducing noticeably after approximately 10 iterations while further iterations
result in small step changes of bias and SD. Parametric K; images of 3D and selected 4D reconstructions at
matched rms CoV values, of approximately 32% as measured at the eroded thalamus VOI, are shown in
figure 10 for a single noise replicate along with images of mean bias over noise replicates. Additional sample K;
images for all evaluated reconstruction algorithms are provided in the supplementary material. The single
replicate images show that structures of the thalamus seen in 3D reconstruction of SB data are better resolved in
DWB when using the 4D Spectral reconstruction. The images of bias show similar behaviour in the thalamus
over reconstructions and demonstrate the partial volume effects at the cortex region.
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Figure 6. Simulation: eroded thalamus (left) and cortex (right) noise versus bias trade-off curves for 4D reconstructions of the
simulated DWB protocol data. VOI based metrics (top row) and voxel-based metrics (bottom row).

Table 4. True K; simulated values for the evaluated VOIs (min~! ) along with Patlak K; values from
noiseless TAC fits for the framing of each simulated protocol and percentage differences from the SB

protocol values.

VOIname K; SB DWB-1 DWB-2 DWB-3

Thalamus 0.0307 0.0305 0.0309 (1.31%) 0.0311(1.97%) 0.0303 (—0.66%)

Cortex 0.0410 0.0390 0.0391 (0.26%) 0.0392 (0.51%) 0.0388 (—0.51%)
4. Discussion

Our simulation study shows that the dynamic reconstruction of DWB FDG data resulted in a substantial
reduction of Patlak K; image noise and more favourable convergence behaviour, compared to 3D reconstruction
based parametric imaging. These results, limited to a single level of noise, are in agreement with the findings of
Karakatsanis et al (2016). Moreover, we directly compared against an SB dynamic protocol, processed with 3D
reconstruction, and showed that comparable values of parametric image noise and bias can be achieved with
DWB protocols by the use of a dynamic reconstruction.

In this study, a SB location was used in the evaluations of reconstructions and comparisons between SB and
DWB protocols. Although this study is limited to a single axial location, we anticipate the results to hold for FDG
Patlak K; parametric imaging of other bed positions on both S&S and uni-directional CBM DWB protocols. We
assume this because all bed positions of these DWB protocols are sampled uniformly with time and differ only by
atime offset in their sampling. This fact, along with the fact that FDG Patlak K; parametric imaging relies on
relatively slow dynamic changes after steady state conditions have been reached, make the assumption of
generalisation to other bed positions reasonable. By contrast, bi-directional CBM introduces non-uniform
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Table 5. Average reconstruction time for 1 full iteration (28 subsets)

over DWB-1 data using CASToR.

Reconstruction Nested MLEM (min) Nested NNLS (min)
4D Patlak 9.6 6.7

4D Spectral(6bf) 14.0 8.2

4D Spectral(9bf) 15.8 8.3

4D Spectral(17bf) 26.6 11.2

frame sampling whose characteristics vary significantly per bed position. In this case we cannot safely generalise

the findings of this SB study to other bed positions of bi-directional CBM, which necessitate simulation of all bed

positions. Furthermore, the results cannot be extended to parametric imaging of other kinetic parameters which
might be more sensitive to fast dynamic changes and hence timing differences between bed positions and

differences due to acquisition temporal gaps.

For this study we have assumed that individual bed positions of the DWB studies are to be reconstructed
independently and the result parametric K; images to be merged after reconstruction into a WB K; map. This
method initially suggested by Karakatsanis et al (2016) combines the reconstructed images, including the
overlapping information, in parametric space. Although this technique is practical in terms of implementation,
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Figure 10. Single slice through parametric K; images of one noise replicate (with 3 mm Gaussian filtering) (top) and their
corresponding Bias images (over noise replicates) (bottom) from SB and DWB-1 data 3D and 4D reconstructions at matched rms CoV
in the eroded thalamus.

it may not be making best use of acquired statistics at the overlap region. Ideally, the combined bed statistics and
timing information at the overlapping regions should be considered directly in the reconstruction process,
either using slice dependent timing information for CBM DWB reconstruction (Hu et al 2020) or with
synchronous use of all bed dynamic information from S&S DWB within a direct multi-bed DWB reconstruction
(Chalampalakis et al 2020). Further research into the behaviour of the overlapping regions within reconstruction
and into methods for use of multi-bed DWB data within the reconstruction process is needed to evaluate these
techniques for parametric imaging over the entire WB FOV.

The simulation study is conducted for a number of noise realisations, that is limited by the computational
requirements of the reconstructions. This limitation results to some uncertainty in the evaluation metrics that is
not explored in this study. Furthermore, differences in the number of noise realisations and noise properties of
the different simulated protocols and reconstruction algorithms can result in different levels of uncertainly,
most notably for rms Bias which had shown to be sensitive to remaining noise on Bias images over replicates.
Nevertheless, comparisons against the use of fewer replicates in our results showed that these effects did not
affect the qualitative findings of our results on the ranking of different reconstructions between SB and DWB
protocol data. Additional work is required to estimate the uncertainty of the used metrics and a practical number
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of replicates at which this uncertainly is minimised for all simulated protocols and reconstructions over all
evaluated OSEM iterations.

The choice of the iteration number to terminate a 4D reconstruction algorithm is not evident. For a VOI-
based analysis, the convergence of the mean K; value in the cortex or the eroded thalamus was not seen in the
range of the 40 evaluated OSEM iterations, in particular for a 3D reconstruction. This behaviour was also
observed for a 4D reconstruction algorithm, but to alesser extend. A high number of iterations of 4D
reconstruction algorithms provided more stable VOI mean values, but at risk of resulting to higher parametric
image noise than that of a 3D reconstructions on the same DWB data. The results obtained with one real dataset
showed similar behaviour, with mean VOI values continuing to slightly increase even after 40 OSEM iterations
and with 4D reconstruction parametric image noise surpassing that of 3D reconstruction at late iterations. This
example illustrates that the relative aspects of 4D to 3D comparisons with simulated data for the tested DWB and
SB protocols have the capacity to translate to studies with different levels of noise. Overall, the risks of excessive
parametric image noise and under-converged K; values will be lesser for 4D based reconstruction methods than
for a 3D reconstruction, which demonstrated considerably more instability with increasing iterations. To ensure
convergence of the K; values while suppressing the increase of parametric image noise, further regularisation
techniques can be used with methods such as 4D MAP reconstruction (Wang et al 2008, Reader and
Verhaeghe 2014) or kernel 4D dynamic reconstruction (Novosad and Reader 2016, Gong et al 2018).

Our nested optimization tests using NNLS instead of multiple MLEM sub-iterations did not provide any
differences in the acceleration of the convergence and showed comparable behaviour to a previous study on the
use of NNLS with the spectral model (Matthews et al 2010). NNLS did provide computing acceleration by a
factor of approximately two for our datasets, but resulted in an increase of the parametric image noise compared
to MLEM sub-iterations for similar bias characteristics. Equivalent or higher acceleration could be potentially
achieved if the nested MLEM optimization was conducted in graphical processing units instead of the CPUs.

In this work, we evaluated the use of an indirect dynamic reconstruction method based on a generic 4D
Spectral reconstruction algorithm followed by a post-reconstruction Patlak model fitting. The genericity of the
spectral model allows for flexibility in modelling dynamic processes that do not necessarily fall under the
idealised behaviour of the kinetic model of interest. In this simulation study, we were limited to irreversible FDG
kinetics that can be sufficiently described by the Patlak model. In this case, 4D Spectral reconstruction making
use of the full dynamic data outperformed the direct Patlak reconstruction in terms of parametric image noise,
while maintaining similar bias behaviour. The benefit of the 4D spectral reconstruction was less obvious when
fewer frames were used in reconstructions using ¢ > f,, indicating that its favourable behaviour was mostly due
to the use of more temporal frames than the Patlak reconstruction. In real FDG studies, it can be desirable to
account for reversible FDG kinetics and reduce the bias of the estimated macro-parameters arising from poorly
modelled kinetics. The spectral model can allow for more complex compartmental modelling with no strong
prior knowledge or enforcement of a specific model. As such it can account for more complex kinetic
behaviours, including reversibility of tracer, in the reconstruction process and allow for post-reconstruction
exploratory modelling to identify the best model to describe and present the data. Moreover, for DWB studies
where notall body regions and organs will necessarily be adequately described by a single dynamic model of
interest, the proposed indirect method can allow for the assignment of different kinetic models in different
regions of the body to ensure appropriate representation of the dynamic tracer behaviour. Depending on the
availability of early frame data, the fitted spectral model can be used to directly estimate K; (Meikle et al 1998,
Matthews et al 2010), while post-reconstruction micro-parameter estimation could be performed for potential
uses in clinical applications (Novosad and Reader 2016, Zaker et al 2020) and indirectly take advantage of the 4D
reconstruction temporal regularisation. An important parameter to configure for the spectral model is the
number of basis functions. Contrary to post-reconstruction spectral analysis where hundreds of basis functions
are used to finely sample the space of kinetic exchange rates, a smaller number of basis is desirable in
reconstruction to favour reduced image noise. In some cases of our findings the lowest number of basis
functions used (6 basis) resulted in higher bias values which indicates less than adequate modelling of the
underlying kinetics, compared to reconstructions with more basis functions and to 4D Patlak reconstruction.
However, this was not the case when fewer frames were used in reconstructions using ¢ > f,,data. These findings
indicate that the selection of the number of basis functions is important not only for controlling the produced
image noise but also for controlling bias by adequately modelling the kinetics behaviour in reconstruction. For
the higher numbers of basis functions, with 9 and 17, almost identical behaviour was seen on the DWB-1 dataset
(of 8 frames). Overall on the choice of the number of basis functions, results indicate a greater risk in image bias
when using a too small number of basis functions, and a lesser risk in image noise when using more basis
functions than strictly needed to properly model the underlying kinetics. In any case the number of basis needs
to be tuned for every DWB protocol, depending on the number of frames within the dataset and the range of
underlying kinetics as well as the level of noise in the PET data.
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In this study, the investigation between S&S and CBM DWB protocols was limited to aspects of sampling
frequency and uniformity within the total examination time. Our results showed small differences in parametric
image bias but a noticeable reduction in parametric image noise when utilising CBM acquisition with uniform
sampling. Overall differences were inline with previous findings in comparison of S&S and CBM DWB imaging
on areal data study using different metrics (Karakatsanis et al 2015). Furthermore, beyond the aspects of reduced
acquisition delays and higher sampling frequency, CBM acquisition has other desirable properties for DWB
acquisitions as outlined previously (Karakatsanis et al 2015). The most important aspect is the result uniform
axial sensitivity profile at any choice of acquisition speed. That can be of importance in DWB parametric
imaging where multiple regions of interest are expected in the effective FOV. In our study we have not
considered this aspect for the CBM protocols and we did not examine regions in the overlap range of the S&S
protocol. But the observed improvements related to reduced delays in acquisition coupled with uniformity of
axial sensitivity favour the choice of CBM over S&S protocols. We investigated further potential reductions in
system delays by allowing for non-uniform frame sampling using bi-directional CBM. In that case we did not see
the same effects as in the transition from S&S to CBM. But our results on bi-directional CBM are limited to the
specific framing of the evaluated protocol design which offered more total frames but resulted in fewer total
counts compared to the other protocols. As discussed above, the findings of our study are limited to a single axial
bed location. Since non-uniform sampling of the bi-directional CBM protocol is strongly affected by axial
location we cannot generalise the results of the comparison between the two CBM protocols over the WB.
Additional tests are required on the exploitation of the flexibility offered by bi-directional CBM to assess other
potential benefits against uni-directional CBM.

5. Conclusion

4D dynamic reconstruction is necessary in DWB parametric imaging to achieve accurate and stable
quantification. For FDG Patlak K; parametric imaging we have shown results of direct Patlak dynamic
reconstruction with noise and bias values that were comparable to 3D reconstruction based parametric imaging
from SB dynamic studies. In this work, we proposed the use of an indirect method for DWB parametric imaging,
based on the spectral analysis model. This more flexible approach allows for complex kinetic modelling to be
used during reconstruction for temporal regularisation, with minimal assumptions on the underlying kinetics.
In Patlak K; parametric imaging this method outperformed the direct Patlak approach, by making use of all the
acquired data for temporal regularisation from which post-reconstruction parametric imaging benefitted by
further reduction of noise compared to the Patlak approach. Furthermore, the spectral model approach can be
used for more complex post-reconstruction modelling, for example in parametric imaging of FDG micro-
parameters. Finally, we investigated the impact of various acquisition modes (for CBM and S&S) resulting in
different temporal sampling of the data. Benefits of reduced delays and increased acquisition statistics were
partially seen in reduced parametric image noise for the CBM protocol with uni-directional axial sampling. By
contrast, CBM using bi-directional motion resulted in parametric image noise levels that were similar to the S&S
protocol. Further investigation is required to assess the potential benefits from bi-directional CBM against uni-
directional CBM and the effects of non-uniform sampling over the entire FOV of the DWB protocols.

Overall, the use of 4D dynamic reconstruction for DWB parametric imaging offers desirable properties that
enable the transition from SB dynamic studies and common 3D reconstruction parametric imaging practices
without loss of image quality and with additional benefits for accuracy of parametric images. Potential
applications of DWB parametric imaging are expected to rely on the quantification of images and so there
should be no compromise between parametric image accuracy and image noise. Our results showed that 4D
reconstructions need to be sufficiently iterated to ensure accurate quantification, with potential for
improvement in maintaining low parametric image noise by use of additional regularisation methods.
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