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Abstract

PTEN-induced kinase 1 (PINK1) is a Parkinson’s disease gene that acts as a sensor for

mitochondrial damage. Its best understood role involves phosphorylatingubiquitin and

the E3 ligase Parkin (PRKN) to trigger a ubiquitylation cascade that results in selec-

tive clearance of damaged mitochondria through mitophagy. Here we focus on other

physiological roles of PINK1. Some of these also lie upstream of Parkin but others rep-

resent autonomous functions, for which alternative substrates have been identified.

Weargue that PINK1orchestrates amulti-arm response tomitochondrial damage that

impacts on mitochondrial architecture and biogenesis, calcium handling, transcription

and translation.We further discuss a role for PINK1 in immune signalling co-ordinated

at mitochondria and consider the significance of a freely diffusible cleavage product,

that is constitutively generated and degraded under basal conditions.
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INTRODUCTION

The protein PTEN-induced kinase 1 (PINK1) was associated with early

onset Parkinson’s disease (PD) around the turn of the millennium.[1,2]

It was shortly thereafter linked to a second PD associated gene, the

ubiquitin E3 ligase PRKN (Parkin), usingDrosophilamodels.[3–5] Whilst

a genetic association was established, the cellular pathway governed

by these two genes remained unknown, until the pioneering work of

Richard Youle and co-workers demonstrated PINK1 accumulation and

activation at damaged or depolarised mitochondria.[6] This leads to

the recruitment and activation of Parkin, resulting in wide scale ubiq-

uitylation of mitochondrial proteins followed by selective autophagy

of the damaged mitochondria, otherwise known as mitophagy.[7] The

explanatory power of these findings and the dazzling array of subse-

quent studies, which have filled in many of the details, have taken the

limelight. After briefly describing this pathway, here we will focus on

Abbreviations: ETC, electron transport chain; ISR, integrated stress response;MDV,
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other aspects of PINK1 function, linked to mitochondrial quality con-

trol and beyond.

PINK1 is constitutively imported into mitochondria. Upon pas-

sage through the outer mitochondrial membrane (OMM) via the

TOMM complex, PINK1 is cleaved by the inner mitochondrial mem-

brane protease PARL.[8,9] Cleaved PINK1 is either released from

mitochondria, or retained in part, and degraded via the N-end

rule and ERAD pathways respectively.[10,11] If mitochondrial mem-

brane potential is disrupted, experimentally through ionophores or

OXPHOS inhibitors, PINK1 is stabilised on mitochondria in associ-

ation with the TOMM complex.[12,13] Homo-dimerisation and trans-

autophosphorylation then promotes the kinase activity of PINK1.[14]

Activated PINK1 phosphorylates ubiquitin on mitochondria, and the

E3 ligase Parkin at its ubiquitin-like domain.[15–18] Phosphorylated

ubiquitin acts as a receptor for Parkin, recruiting it to mitochon-

dria and Parkin phosphorylation by PINK1 fully activates its E3 lig-

ase activity.[19] The combined activity of PINK1 and Parkin result in

a feed-forward loop: Parkin introduces more ubiquitin substrates for

PINK1 phosphorylation, which in turn recruits more Parkin.[20] Accu-

mulated ubiquitin and phospho-ubiquitin on mitochondria recruits
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autophagy receptors triggering engulfment of mitochondria in an

autophagosome.[21–24]

Defects in mitophagy, owing to PINK1 or Parkin loss of function

mutations, provide a compelling link to PD. A popular idea is that this

leads to increased oxidative stress, whose effectsmay accumulate over

time. Dopaminergic neurons are thought to be particularly vulnerable

to mitochondrial dysfunction due to their large number of synapses

and high energy demand.[25,26] Accordingly, depletion of PINK1 sensi-

tises neurons to the mitochondrial poison MPTP. Viability can be res-

cued by re-expression of wild-type PINK1, but not by PD associated

mutant forms. However, a soluble form of PINK1 lacking the mito-

chondrial targeting motif also restores neurotoxic protection.[27,28]

Thus, a major pathophysiological consequence of PINK1 function can

be uncoupled from its role in mitophagy. One may take this as a

first indication that there are other strings to PINK1, at mitochondria

and elsewhere. A second point for consideration is that the bulk of

basal mitophagy occurring in animals is actually independent of PINK1

and Parkin.[29,30] The PINK1 mitophagy pathway is most prominent

under artificial conditions of acute mitochondrial depolarisation, often

accompanied by over-expression of Parkin in tissue culture cell lines.

Neurons are dependent on OXPHOS for ATP production and cannot

tolerate a switch to glycolysis.[31] For this reason, they may be prohib-

ited from large scale sacrifice of their mitochondrial network. Studies

in neurons have suggested that their particular bioenergetics inhibit

Parkin translocation following acute mitochondrial depolarisation.[32]

In one report visualisation of mitophagy in human fibroblasts could be

achieved by over-expression of Parkin, but not in IPS-derived neurons

over-expressing similar levels of Parkin.[33] Nevertheless, there are

now multiple studies that have been able to directly visualise PINK1

and Parkin dependent mitophagy in a neuronal context.[34]

The PINK1 mitochondrial damage sensor signals earlier distress

calls, before a commitment to mitophagy is made, enlisting other arms

of mitochondrial quality control. PINK1 phosphorylation of ubiquitin

and activation of Parkin also proves key to several of these other path-

ways, but there are other outlets for PINK1 kinase activity. Proteomic

screenshave identifiedother candidatePINK1substrates. In onemajor

study, a sub-set of RAB family proteins were shown to be phosphory-

lated in a PINK1 dependent manner, although they are not believed to

be direct substrates.[35] This is especially interesting as someRAB fam-

ily members are also phosphorylated by another PD associated gene

LRRK2,[36] albeit at an adjacent site.[37] Further examples from more

directed studies will be discussed below.

PINK1 linkage to mitochondrial biogenesis and
dynamics

The cell responds to mitochondrial damage and associated mitophagy

through active replenishment ofmitochondrial mass and function. Per-

oxisome proliferator-activated receptor gamma (PPARγ) co-activator
1α (PGC-1α) is a master regulator of mitochondrial biogenesis. It

functions as a transcriptional co-factor for numerous mitochondrial

proteins. Expression of PGC-1α is itself repressed by a KRAB and

Zinc Finger protein, Parkin interacting substrate (PARIS/ZNF746), that

accumulates in PD brains and in models of Parkin inactivation.[38]

Knock-down of PARIS has been shown to correct defects in respi-

ration and restore mitochondrial mass in the ventral brain of adult

knock-out Parkin mice.[39] In Drosophila, the accumulation of PARIS in

dopaminergic neurons recapitulates the neuronal survival and motor

deficits associated with PINK1 or Parkin loss and can be reversed by

their over-expression.[40] PARIS is a direct ubiquitylation substrate of

Parkin, which thereby governs its turnover. Thus, PINK1 activation of

Parkin will impact on PARIS. However, recent data indicate that PARIS

is also a direct phosphorylation substrate of PINK1 at Ser322 and

Ser613 and that mutation of these sites abrogates Parkin-dependent

ubiquitylation.[41] Therefore, PINK1 has a dual function in control of

PARIS turnover, as both a ‘priming kinase’ and more canonically as an

activator of Parkin (Figure 1).

Mitochondria are double membrane bounded organelles that form

a reticular network. The connectivity within this network is gov-

erned by a balance of fusion and fission events that are mediated

by specific GTPases.[42] The mitochondrial fusion protein, mitofusin

2 (MFN2), is co-ordinately extracted from mitochondrial membranes

and degraded in a PINK1 and Parkin dependent manner.[43–45] PINK1

directly phosphorylatesMFN2 and this in turn dictates Parkin binding,

representing a similar priming mechanism to that described above for

PARIS.[44]

Fission provides a means to isolate defective areas of the network

and toprovidediscrete structures for autophagic engulfment. InPINK1

and Parkin mutant Drosophila, mitochondria appear swollen, consis-

tent with a defect in fission or with an up-regulation of fusion.[46,47]

However, this is not always faithfully reproduced in human cell

studies.[48–50] Over-expression of dynamin-related protein 1 (DRP1)

promotes fission in both Drosophila and human cell lines, rescuing the

morphological effects of PINK1 depletion. DRP1 can be efficiently

phosphorylated by PINK1 at Ser616 and mutating this residue to ala-

nine but not to a phosphomimetic glutamic acid, impairs its ability to

recover fission in PINK1 defective cells. The ability of wild-type DRP1

to rescue in the face of PINK knock-out suggests that other kinases

may have some level of redundancy with PINK1. Parkin is dispens-

able for the PINK1/DRP1 axis regulation of fission, providing us with

our first clear example of autonomous PINK1 function.[51] Recently

DRP1 has been shown to rupture a fraction of OMM under specific

conditions of compromised mitochondrial translation.[52] Any role for

PINK1 is yet to be established, butwe highlight it here as onemeans by

which the innermitochondrial proteins can be rendered prone to post-

translational modification by exposure to cytosolic enzymes.

Mitochondria are transported to distant sites via microtubules. The

mitochondrial GTPase MIRO recruits motor proteins, such as kinesin-

1, which mediates axonal transport. Both PINK1 and Parkin sup-

press mitochondrial motility and MIRO is specifically degraded in a

PINK1 and Parkin dependent manner.[53] Following acute mitochon-

drial depolarisation,MIRO is degraded prior to the onset ofmitophagy.

There are competing claims as to whether MIRO is a direct substrate

of PINK1.[54–56] In one study, in vitro phosphorylation is observed and

mutation of Ser156 to alanine prevents its degradation in response
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F IGURE 1 Activated PINK1 accumulates on damagedmitochondria and co-ordinates amultilayered response. (A)Quarantine. PINK1
phosphorylation (P) of threemitochondrial GTPases ensures the isolation of damagedmitochondria. Mitochondrial fission is promoted in a Parkin
(PRKN) independent manner through PINK1 phosphorylation of DRP1.Mitochondrial fusion andmicrotubule mediated transport are inhibited
through PINK1 and Parkin dependent ubiquitylation (Ub) and degradation ofMFN2 andMIRO respectively.
(B) Shutdown. At defectivemitochondria inDrosophila oocytes, PINK1 can repress localized translation of mitochondrial proteins (Mito; green)
through inhibitory phosphorylation of LARP, a translational activator that is recruited tomitochondria by the AKAP proteinMDI. Under
depolarising conditions, PINK1 also phosphorylates the stress sensor kinase HRI.We speculate (indicated by dashed line) that this may enhance its
activation of eIF2α. EIF2α inhibits global protein synthesis while promoting translation of ATF4, a master transcription factor of the integrated
stress response (ISR) that can reconfigure cellular metabolism. The coupled activities of PINK1 and Parkin promotemitochondrial biogenesis by
destabilising the transcriptional repressor PARIS, thereby enhancing expression of PGC1-α, the central transcriptional co-activator for
mitochondrial biogenesis. Dashed-lines indicate speculative function.
(C) Removal. Sustained damage of mitochondria leads to accumulation of PINK1 beyond a threshold sufficient to initiate mitophagy. PINK1
phosphorylates both ubiquitin and the E3 ligase Parkin (PRKN). Once fully activated, Parkin ubiquitylates a wide range of OMMproteins providing
more ubiquitin substrate for PINK1, thereby amplifying the ubiquitin signal. The ‘ubiquitin coat’ recruits autophagy receptors promoting the safe
engulfment of damagedmitochondrial fragments in amitophagosomewhich subsequently fuses with, a lysosome. PINK1 and Parkin also promote
the generation of a subset of mitochondrial derived vesicles (MDVs) that traffic oxidisedmitochondrial cargo to the lysosome independently of the
autophagymachinery
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to Parkin over-expression.[54] Mimicking phosphorylation with S156E

mutation enhanced Parkin binding toMIRO, promoting its recruitment

to mitochondria.[57] This results in a trafficking arrest, but is insuffi-

cient to induce mitophagy. Thus, PINK1 kinase activity controls three

means to quarantine damaged mitochondria: promotion of fission via

DRP1, inhibition of fusion via MFN2/Parkin and immobilisation via

MIRO/Parkin.

PINK1 controls inner mitochondrial membrane
architecture and function

The inner mitochondrial membrane invaginates into the matrix to

form cristae. These tubular structures are open towards the inter-

membrane space at so called crista junctions. The specific topology of

cristae is critical to mitochondrial function.[58] Tsai et al. identified a

fraction of PINK1 within the inter-membrane space in Drosophila and

discovered that the inner mitochondrial membrane protein and major

component of the mitochondrial contact site and cristae organising

system (MICOS), dMICC60, is a PINK1 substrate. Phosphorylation of

MICC60 is proposed to stabilise its oligomerisation, which is crucial

for the formation of cristae junctions. Rare mis-sense mutations in

the mitochondrial targeting sequence of MICC60 were identified in

people with sporadic PD. When these are expressed in Drosophila,

mitochondrial cristae junction formation is impaired in a dominant

negativemanner.[59]

The mitochondrial cristae harbour the components of the electron

transport chain (ETC) and the ATP synthase. A robust phenotype of

PINK1 loss, across humans, mice and flies, is an enzymatic defect

in mitochondrial complex I and reduced membrane potential (Δψm)
and ATP levels.[60] Phosphoproteomic analysis of mouse complex I

revealed a single PINK1-sensitive phosphorylation site at Ser250 in

NDufA10. Stable transfection of a phosphomimetic form of NDufA10,

but not wild type could rescue Δψm, ATP levels and PINK1–/– synaptic

phenotypes in Drosophila, without improving mitochondrial morphol-

ogy, muscle degeneration or flight defects.[61] The phosphorylation

of NDufA10 is required for reduction of ubiquinone. Intriguingly, an

alternative electron carrier, Vitamin K2, can rescue mitochondrial and

systemic defects in a PINK1 defective Drosophila line.[62] Definitive

evidence for direct phosphorylation of NDufA10 by PINK1 is lacking,

but mitochondrial targeting of PINK1 is required. Furthermore, in

common with the work of Tsai et al. discussed above,[59] the authors

note that a fraction of PINK1 at mitochondria is protected from pro-

teinase K, implying that it is not directly accessible from the cytosol.

Other studies have not clearly identified a proteinase K insensitive

fraction of PINK1.[63] We believe this is an important issue which

needs further clarification.

One provocative mass spectrometry study of mitochondrial pro-

tein turnover in Drosophila indicates that in both PINK1 and Parkin

defective animals, there is a selective deficiency in turnover of ETC

components.[64] The PINK1 and Parkin dependent turnover of these

proteins was also independent of the canonical autophagy (and hence

mitophagy) machinery. How can this be? One explanation may lie in

the budding of small double membrane entities from mitochondria

which have been named mitochondrial derived vesicles (MDVs).[65]

Several types of MDVs have been proposed with differing cargoes

and destinations.[66] At least some MDVs require PINK1 expression

and Parkin function and are delivered directly to the lysosome. Little

is known about cargo selection for these vesicles, but it appears that

oxidation may be a key factor. Addition of a complex III inhibitor,

antimycin A, to mitochondria in vitro led to the generation of MDVs

carrying the complex III subunit core2, without any enrichment in the

OMMprotein, VDAC.[67]

PINK1 regulation of protein translation

Mitochondrial dysfunction activates the integrated stress response

(ISR), which controls phosphorylation of eukaryotic translation initi-

ation factor 2 Alpha (eIF2α) by virtue of four known kinase sensors

(PERK, PKR, GCN2, HRI).[68] Phosphorylation of eIF2α reduces global
protein synthesis,[69] whilst promoting the translation of specific

mRNAswhich act to generate the ISR.[70] This strikes us as interesting,

not least because the mitochondrial surface itself is an active site of

protein translation. Many ribosomes can be seen directly interacting

with the TOMM complex and strong evidence for co-translational

import has been provided.[71,72] ATF4, the key transcription fac-

tor controlling the ISR, is elevated in PINK1 and Parkin mutant

Drosophila.[73] Moreover, a pathway has recently been elucidated that

links stress-induced release of the inner mitochondrial membrane

protein DELE1 to activation of HRI and consequent induction of

ATF4.[74] Thus, under basal conditions, PINK1 most likely suppresses

the ISR by virtue of maintaining healthy mitochondria. The phospho-

proteomic screen that discovered the PINK1-dependent, but indirect,

phosphorylation of RAB proteins, also uncovered PINK1-dependent

phosphorylation of the ISR sensor, HRI at Ser41, under conditions of

acute depolarisation.[35] The functional relevance of this needs further

investigation, but it is intriguing given that the conditions which lead

to PINK1 accumulation correlate with ISR activation.

As well as global control of protein synthesis, there are contexts

when itmay be advantageous to regulate local protein production. This

is in fact exemplified by PINK1 itself. Its short half-life is incompati-

ble with mitophagy in neurons at sites distant from the soma. PINK1

mRNAhitches a rideonmitochondria and is transported todistant sites

by association with synaptojanin 2 in complex with SYNJ2BP.[75]

The nuclear encodedmRNAs for respiratory chain proteins (nRCCs)

are specifically repressed in the cytosol. ThesemRNAs canbe recruited

to the mitochondrial surface in a manner dependent on TOM20. This

is facilitated by PINK1 binding of the nRCC mRNAs, which competes

with their binding to translational repressors.[76] The same study finds

that PINK1 physically associates with the mRNA 5′ cap structure in

a RNA-independent manner and that this interaction is impaired by

the PD mutation, G309D. Some aspects of this derepression are also

associated with Parkin ubiquitylation, such as themono-ubiquitylation

ofmRNA repressor protein hnRNP-Glo. Thus, the PINK1 pathwaymay

be linked to a further line of mitochondrial quality control by boosting

local translation of ETC components, which may precede both the
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F IGURE 2 PINK1 safeguards against calcium overload.
Mitochondria buffer calcium released from the endoplasmic reticulum (ER). ER tomitochondria calcium flow occurs at distinct
mitochondria—endoplasmic reticulum contacts (MERCs). In the absence of functional PINK1, enhancedMERCS and reduced calcium efflux work
together to cause intra-mitochondrial calcium overload and ultimately cell death. PINK1 is proposed to prevent calcium overload in a Parkin
independent manner by phosphorylating and thereby activating the LETM1H+/Ca2+ exchanger. In addition, PINK1may also positively regulate
the NCLXNa+/Ca2+ exchanger indirectly by activating PKA. The topology suggests a functional pool of PINK1may be accessible to the inner
mitochondrial membrane. Dashed-line arrows indicate suggested function

transcriptional effects following PARIS degradation and mitophagy.

Mildly damaged mitochondria may benefit from a local increase in

production of respiratory chain proteins to reinvigorate oxidative

phosphorylation.

During oogenesis in Drosophila there is a strong selection against

defective mitochondria, amidst a high degree of mitochondrial prolif-

eration. In distinction to observations in somatic tissues and cultured

cells,[77,78] Parkin is not required for selective inheritance of mtDNA

in theDrosophila female germ line.[79] However, PINK1 is required and

preferentially accumulates on germ cell mitochondria, which carry a

deleterious mtDNAmutation. Zhang et al. suggest that PINK1 thereby

selects for healthy mitochondria, through the inhibitory phosphory-

lation of the mitochondrial translational activator La Ribonucleopro-

tein 1 (LARP1).[80] How might these findings fit together? Perhaps

they indicate a graded response. Under basal conditions or contained

damage, PINK1 localizes and activates transcription of specificmRNAs

maintaining mitochondrial homeostasis. Once a certain threshold is

crossed, PINK1 activity switches off local translation through LARP1

and activates the ISR pathway (Figure 1B).

The impact of PINK1 upon cellular calcium signalling

Mitochondria can influence Ca2+ signalling indirectly through the pro-

duction of metabolites. A more direct mechanism involves the import

of Ca2+ via a Calcium uniporter and its release by means of Na+/Ca2+

and H+/Ca2+ exchangers. Mitochondria buffer Ca2+ released by the

endoplasmic reticulum and this can be made highly efficient by the

interaction between the two organelles. siRNA screening in Parkin

over-expressingRPE1cells uncovereda role for IP3-receptormediated

transfer of Ca2+ from the ER to mitochondria, in the mitophagy path-

way downstream of Parkin.[81]

Substantia nigra pars compacta (SNc) dopaminergic (Da) neu-

rons are particularly reliant upon Ca2+ fluxes for their pace mak-

ing activity.[82,83] Defective Ca2+ signalling has been implicated in

PD,[82,83] but towhat extent can this be linked toPINK1? Loss of PINK1

in mouse neurons leads to higher levels of Ca2+ in mitochondria. In

the face of repetitive increases in cytosolic Ca2+, mitochondrial Ca2+

overload occurs. This leads to opening of the permeability transition

pore, causing cell death.[84] This pathway has been linked to defects

in the Na+/Ca2+ exchanger (NCLX) and can be rescued through PKA

phosphorylation of NCLX.[85] Note that PINK1 has itself been shown

to activate PKA.[86,87] PINK1 has also been shown to phosphorylate a

H+/Ca2+ exchanger, (LETM1) onmitochondria. The absence of PINK1-

dependent phosphorylation at T192 of LETM1 is proposed to lead to

a reduction in its activity and consequent mishandling of Ca2+ (Fig-

ure 2).[88] This provides a further example, beyond MICC60 (and pos-

sibly NDufA10) where PINK1 phosphorylates an inner mitochondrial

membrane protein.

Calcium is transferred from the ER to the mitochondria at specific

ER-mitochondrial junctions, also known asmitochondria–endoplasmic

reticulum contacts (MERCs).[89] These contact sites are disrupted
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in neurodegenerative disease models.[90,91] PINK1 has been pro-

posed to localise to MERCs upon its accumulation on mitochondria

following depolarisation.[92] Furthermore, PINK1 and Parkin

degradation of MFN2 leads to rapid dissociation between ER and

mitochondria.[45] However, PINK1 arrests at the TOMM complex,

whose components are not evidently enriched at ER contact sites.

The exception is the receptor subunit TOM70, which has alternative

functions in regulating calcium transfer into mitochondria.[93] Direct

evidence for PINK1 interaction with TOM70 is currently lacking and

conventional wisdomwould say that PINK1 interacts with the TOM20

receptor sub-unit. In Drosophila PINK1 mutants, SNc Da neurons have

enhanced MERCs and elevated intra-mitochondrial Ca2+ levels. Inter-

estingly this phenotype can be recapitulated byMIRO over-expression

and rescued byMIRO depletion.[91]

The increase in intra-mitochondrial Ca2+ associated with defec-

tive PINK1 is observed across multiple studies and models.[84,88,91]

Increased ER contact sites provide a satisfactory explanation, con-

sistent with the predominant topology of PINK1. If Ca2+ stress is a

frequent cause of mitochondrial damage and/or depolarisation, then

enlisting PINK1 to uncouple mitochondria from the source of Ca2+,

would be a simple way of maintaining homeostasis.

PINK1 is linked to innate and adaptive immune
signalling

In adaptive immunity, antigens of intracellular proteins are expressed

on the cell surface bound to MHC molecules, allowing for the detec-

tion of infected or cancerous cells by cells of the immune system.[94]

It has been shown that autophagy can lead to antigen presentation

on both Class I and Class II MHC molecules.[95] Conceptually, pro-

moting mitophagy via the PINK1 and Parkin pathway could provide

a means to enable presentation of mitochondrial antigens (mitAP).

These antigens could be delivered to endosomal compartments via

MDVs as depicted in Figure 1C. In fact, the opposite appears to be

the case. Although, a distinct MDV species is proposed for the mitAP

pathway, PINK1 and Parkin repress the presentation of mitochondrial

matrix-targeted antigens[96] (Figure 3). This leads to the proposal that

derepression of autoimmune mechanisms contribute to the aetiology

of PD.

Patients diagnosed with inflammatory bowel disease have an

increased risk of PD in later life.[97] Intestinal infection with Gram-

negative bacteria in PINK1–/– mice is resolved as effectively as in con-

trols, but the PINK1–/– mice exclusively go on to develop PD-like phe-

notypes, which are accompanied by the appearance of CD8+ T cells

in the brain. As the bacterial infection also induces the presentation

of mitochondrial antigens, the immune suppressive role of PINK1 is a

plausible link to the symptoms.[98] In our opinion, it is still not entirely

clear if this effect is specific to mitochondrial antigens or a more global

effect on antigen presentation.

PINK1-Parkin defects have also been linked to the innate immune

system via the activation of the STING pathway. This can be linked

to mitophagy, which acts to limit the release of mitochondrial DNA

after mitochondrial damage.[99] In the absence of efficient mitophagy,

cytosolic mtDNA activates STING, which in turn elicits release of pro-

inflammatory cytokines.[100]

PINK1–/– and Parkin–/– mice show no discernible PD phenotypes

unless additional stresses are applied. When PINK1–/- mice are sub-

jected to exhaustive exercise, and separately in the case of Parkin–/–;

mutator mice (which accumulate mutations in mitochondrial DNA),

a strong inflammatory phenotype is observed. This can be rescued

by the concurrent deletion of STING.[99] The Parkin–/–; mutator mice

show loss of dopaminergic neurons and movement defects that are

also rescued by STING deletion. Thus, there is strong experimental

evidence for the relevance to PD of this pathway, which is normally

repressed by mitophagy. Accordingly, human patients with biallelic

PINK1 and Parkin mutations show elevated levels of IL6 and mtDNA

in the plasma, which could provide useful biomarkers for disease state

and progression.[101]

Mitochondrial Antiviral Signalling Protein (MAVS) is a key compo-

nent of the anti-viral innate response, downstream of RIG-1. RNA

virus infection triggers MAVS to aggregate in prion-like structures,

which then signal to activate the transcription of pro-inflammatory

cytokines.[102,103] Recently PINK1 has been shown to interact with

and inhibit the formation of these MAVS prion-like structures, with

PINK1 deficiency leading to enhanced aggregation, although the exact

mechanism is unclear.[104] TheMAVS pathway can also be activated by

release of mtRNA, recalling the mtDNA/STING connection described

above.[105] There aremultiple establishedmeansof cross-talk between

the STING and RIG-1/MAVS pathways.[106] PINK1 is now serving us

with a further embodiment of this principle

Potential biological functions of cleaved PINK1

As noted previously, under basal conditions newly translated PINK1

is continuously cleaved following mitochondrial import. The 54 kDa

cleavage product (cPINK1) containing the intact kinase domain is

released into the cytosol and degraded.[107] cPINK1 is nevertheless

detectable in multiple physiological contexts and has been shown to

increase during the differentiation of mouse primary cortical neurons,

in which ∼75% of cPINK1 is cytosolic. In these neurons, the basal lev-

els of cPINK1 far exceed full length PINK1.[108] Similarly, in SHSY5Y

neuroblastoma cells, retinoic acid induced neuronal differentiation is

accompanied by increased levels of cPINK1. The unrestricted diffusion

of cPINK1, affords an opportunity to expand its sphere of influence. Is

this significant? Recall that exogenous expression of cytosolic PINK1

provides a protective effect for neurons against the neurotoxin MPTP,

as described in the introductory section.[27,28] One caveat of this

result is that a fraction of ‘cytosolic’ PINK1 may otherwise associate

with mitochondrial localised binding partners such as MIRO.[53] Bio-

chemical sub-cellular fractionation experiments have found that both

phosphorylated ubiquitin and cPINK1 are also present in the nucleus

following mitochondrial depolarisation.[109] Phosphoproteomics sug-

gests that PINK1 phosphorylates nuclear proteins directly and also

enables their modification by phospho-ubiquitin.[109,110]



POLLOCK ET AL. 7 of 12

F IGURE 3 PINK1 and Parkin are linked to innate and adaptive immune responses.
Somemitochondrial derived vesicles (MDVs) are proposed to traffic mitochondrial cargo to specialized endosomes, for processing and loading
ontoMHC-II molecules. This, as well as cross-presentation onMHC-I (not shown), allows for mitochondrial antigen presentation (MitAP) on the
cell surface. PINK1 inhibits this process in a Parkin dependent manner. Viral dsRNA is recognised by the receptor RIG-I, leading to aggregation of
MAVS onmitochondria, and upregulation of the inflammatory response via multiple transcription factors including IRF3. PINK1 directly interacts
withMAVS in a Parkin-independent manner, preventing its aggregation and inhibiting the viral dsRNA signalling response. Mitochondrial DNA
(mtDNA) released into the cytosol from compromisedmitochondria likewise induces an inflammatory response. This is mediated throughmtDNA
binding to the cytosolic DNA sensor cGAS and STING, promoting activation of multiple transcription factors, also including IRF3. PINK1-Parkin
mediatedmitophagy is proposed to limit this process by preventing mtDNA release

One feature of PD is the loss of neuronal plasticity in cortical and

limbic structures of the brain.[111] In PINK1-deficient mice, exogenous

expression of a cytosolic form of PINK1 lacking amitochondrial target-

ing sequence, is sufficient to rescue a decrease in dendritic arboriza-

tion of cortical neurons.[86] The intracellular levels of brain derived

neurotrophic growth factor (BDNF), a modulator of dendrite complex-

ity, are correspondingly increased by ectopic expression of a cytoso-

lic form of PINK1, but only marginally by the full length mitochondrial

targeted form. This requires kinase activity and has been attributed to

PINK1-dependent activation of Protein Kinase A (PKA).[108] In a sepa-

rate study, PINK1 was again shown to promote dendritic arborization

and to activate PKA. Here the authors suggest that PINK1 additionally

provides a bridge between PKA and the VCP/p47 complex, leading to

PKA phosphorylation of p47, which underpins the dendritogenesis.[87]

The rapid accumulation of cPINK1 observed under conditions of

proteasome inhibition, renders itwell placed to act as anearly sensor of

proteasomal stress.[107,112] Followingproteasome inhibition, a fraction

of cPINK1 is recruited to ribosomes,where it phosphorylates the trans-

lation elongation factor eEF1A1 and inhibits protein synthesis.[113]

Consequently, fibroblasts from PD patients with mutant PINK1 are

sensitised to cell death by proteasomal inhibitors. Conversely, cyto-

plasmicPINK1over-expressionhas been shown toprotect cells against

proteasomal stress induced cell death.[114,115]

Concluding remarks

PINK1 both controls normal mitochondrial physiology and acts as a

sensor of mitochondrial damage. The PINK1 co-ordinated response

to mitochondrial damage is multilayered and likely operates on dif-

ferent time scales. Activation of the ubiquitin E3 ligase Parkin is well

understood, and critical to some, but by no means all, functions of

PINK1.[116] PINK1 can also regulate mitophagy in cells that do not

contain Parkin.[117] The damage response is co-ordinated from the
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mitochondrial surface but some basal effects of PINK1 may require

access to the inner mitochondrial membrane or be mediated by a

cleaved form released into the cytosol.

The ATP analogue, kinetin triphosphate (KTP), has been shown

to specifically activate PINK1; wild type and at least some defec-

tive mutants.[118] This has opened the way for development of small

molecules thatwill provide interesting tool compounds for researchers

and ultimately potential therapeutic opportunities. Assessing these

compounds in vivo will require a holistic appreciation of the complex

PINK1 biology.
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