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Abstract 

This study sets out to establish the suitability of saliva-based whole-genome sequencing (WGS) 

through a comparison against blood-based WGS. To fully appraise the observed differences, we 

developed a novel technique of pseudo-replication. We also investigated the potential of 

characterising individual salivary microbiomes from non-human DNA fragments found in saliva.  

We observed that the majority of discordant genotype calls between blood and saliva fell into known 

regions of the human genome that are typically sequenced with low confidence; and could be 

identified by quality control measures. Pseudo-replication demonstrated that the levels of 

discordance between blood- and saliva-derived WGS data were entirely similar to what one would 

expect between technical replicates if an individual’s blood or saliva had been sequenced twice. 

Finally, we successfully sequenced salivary microbiomes in parallel to human genomes as 

demonstrated by a comparison against the Human Microbiome Project. 

Keywords: WGS; Saliva kits; Microbiome; Sequencing error; Reproducibility 
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Introduction  

Whole-genome sequencing in humans has become widespread in the exploration of genetic variation 

between and within populations as well as in genetic epidemiology. Reduced costs have made such 

sequencing far more attainable. For the majority of large panels of human genetic variation, for 

example those that have been gathered to for the Haplotype Reference Consortium (the Haplotype 

Reference Consortium et al., 2016), genomic data has been generated through whole-genome 

sequencing (WGS) of DNA extracted from blood. Quoted error rates for most WGS technologies are 

generally very low (Escalona, Rocha, & Posada, 2016), yet even apparently tiny error rates can 

represent hundreds and thousands of erroneous calls across entire genomes. Errors may well 

congregate in regions that are particularly complicated to sequence as the accuracy of WGS has been 

shown to vary in different regions of the genome (Eberle et al., 2017; Li et al., 2018; Zook et al., 

2014). Hence, when planning the creation of a new large whole-genome sequencing dataset using a 

methodology that is in some sense alternative, it is vital to establish that it does not introduce 

unexpected and problematic patterns into the data that would render the new dataset incomparable 

to existing WGS datasets. 

Saliva has many advantages over blood in terms of the logistics of data collection and individual 

participation levels (Hansen, Simonsen, Nielsen, & Hundrup, 2007; Sun & Reichenberger, 2014). The 

POPGEN project in France envisages the creation of a French genomic reference panel by gathering 

DNA samples using Oragene OG-600 saliva kits. These are to be sent out, completed by participants 

and returned through the post. A similar approach was used in a recent study in the USA which took 

advantage of both social media and the use of saliva kits to increase the engagement with vast 

numbers of individuals (Brieger et al., 2019), and to facilitate the creation of a large population based 

study with individuals spread evenly across a large region. This last point is of great importance if a 

full representation of a population’s genetics is to be recorded and also to avoid potential 

geographical selection biases that have recently been highlighted by Haworth et al. (2019) and by 
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Munafò et al. (2018) in the ALSPAC cohort (Boyd et al., 2013) and in the UK Biobank (Sudlow et al., 

2015), respectively.  

DNA extraction from saliva is by no means a new concept, and has been demonstrated to be a 

successful technique for genotyping and sequencing studies. The quality and quantity of attained 

DNA had been shown to be superior in saliva as compared to buccal swabs (Hansen et al., 2007; 

Quinque, Kittler, Kayser, Stoneking, & Nasidze, 2006; Rogers, Cole, Lan, Crossa, & Demerath, 2007), 

likely due to the higher prevalence of leukocytes in saliva (Thiede, Prange-Krex, Freiberg-Richter, 

Bornhauser, & Ehninger, 2000). Limiting factors for saliva for sequencing were however presented in 

(Hu et al., 2012) where the presence of non-human DNA and subsequent low quantities of attained 

human DNA was postulated as resulting in large observed differences in the number of markers that 

could be called (significantly less in saliva than in blood); this was an observation that also made by 

Herráez and Stoneking (2008). Indeed, even in a recent study that compared WGS data between 

blood and saliva (Yao, Akinrinade, Chaix, & Mital, 2020), the most problematic characteristics 

regarding data from saliva included a large number of samples failing an initial agarose gel quality 

control test (suggesting poor quality DNA) and the potential for the presence of a large proportion of 

non-human DNA. The possibility for low quality (Zhu et al., 2015) and low quantity (Kidd et al., 2014) 

of human DNA in certain saliva samples has also been presented in the sequencing data generated 

via exome-capture kits.  

At time of writing, comparisons of genomic data between samples of DNA from blood and saliva 

have largely concluded that saliva is an adequate substitute for blood; producing data with high but 

not perfect concordance to genotype calls from blood (Abraham et al., 2012; Bahlo et al., 2010; 

Bruinsma, Joo, Wong, Giles, & Southey, 2018; Fabre et al., 2012; Feigelson et al., 2007; Hansen et al., 

2007; Paynter et al., 2006; Rylander-Rudqvist, Håkansson, Tybring, & Wolk, 2006; Trost et al., 2019). 

If concordance rates of the order of 95-99% between genotypes obtained from blood and saliva 

samples are to be considered satisfactory, it is important to realize that at the scale of a whole 
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genome sequence where  3 million genetic variants are expected per individual, this could 

represent as many as 150,000 differences. Such reported statistics, we felt, are worrisome 

considering they could predict very high error rates in saliva-based sequencing data and could predict 

unwanted artefacts that could significantly inhibit the utility of a large population-wide WGS dataset. 

Furthermore, many of the current publications that compare blood against saliva have employed 

very small sample sizes (<10) and few have examined WGS data.  

In this study, we compare WGS data derived from blood and saliva DNA from 39 individuals. Without 

gold-standard genomes to evaluate the quality of the sequencing in GAZEL-ADN, we have leveraged 

information on intrinsic difficulties in sequencing certain regions of the genome set out in a collection 

of studies from the Genome in a Bottle (GiaB) project (Zook et al., 2016, 2014, 2019). Furthermore, 

we introduce a novel technique of pseudo-replication. This is a data-driven method to generate, in 

the absence of gold standard genomes, specific baselines for sequencing reproducibility from within 

a study. We also show that whilst the treatment of our samples followed the protocol of sequencing 

human DNA, we were able to sequence and identify large numbers of non-human DNA fragments in 

order to give a characterisation of individual salivary-microbiomes in our sample of 39 individuals. 

This presents an added bonus of the experimental design of using saliva-kits for data collection as 

one can sequence both good quality human and microbiome data in parallel. 

Results 

Comparison of blood and saliva derived WGS data at the individual level 

Details of the recruitment of individuals, the DNA extraction, sequencing, alignment, and genotype 

calling for blood and saliva are given in the Methods. We examined similarities between single 

sample WGS variant calls from blood and saliva for each of the 39 individuals. In Supplementary 

Figure 1, the number of called variants, the mean individual read depths, and the mean genotype 

quality scores are presented. We also calculated per-individual statistics from BAM files; 
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Supplementary Figure 1 includes results for mean insert length of reads, estimated base error rates, 

and mean read quality. We saw similar numbers of variants being called (mean of 4,619,812 for 

saliva against a mean of 4,615,935 for blood) but higher statistics regarding the depth and quality in 

saliva. In saliva the mean read depth was 40.2× (range of 28.2× to 54.2×) compared to 35.0× for 

blood (range of 29.2× to 39.0×). Following a similar trend, the mean Genotype Quality (GQ) observed 

in saliva was 95.3 (range of 90.2 to 97.0) compared to 93.5 (range of 89.8 to 95.2) for blood. Within 

individual BAM files, we observed that saliva samples had longer average insert lengths, lower 

estimated error rates, and higher average read quality scores. Between each pair of variant call files 

(for each individual) the mean percentage of sites that overlap (matched for chromosome, position 

and both reference and alternative alleles) out of the total number of variants observed in either 

blood or saliva was 96.3% (range 95.8% to 96.7%). On average per-individual, 86,591 variants are 

only found in the WGS data coming from saliva against 82,714 found only in WGS data from blood. 

For the variants in common between the two call sets, on average 99.6% of the calls agree; with 

higher agreement for SNPs (mean of 99.8%) compared to INDELs (98.4%) (Supplementary Figure 2). 

These summary statistics indicate that on this occasion the quality of the data derived from saliva 

was above that of blood. This is not a generalizable observation, simply a characteristic of our 

particular study likely related to the fact that different genome sequencers were used for blood and 

saliva (see Methods). 

Comparison of blood and saliva derived WGS data at the whole study level 

Joint sample calling was performed for blood and saliva for all 39 samples, giving a variant call file 

(VCF) with 78 columns of WGS data that contains 12,085,848 bi-allelic variants across the 22 

autosomal chromosomes. The differences in observable quality in the single sample calls translated 

here to small differences in levels of genotype missingness (per individual) between saliva and blood 

(mean of 0.006 for saliva against 0.011 for blood). For each polymorphic genetic variant present in 

the joint-called VCF, we calculated the F-measure (Dice, 1945; Sørensen, 1948) (also known as the 
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Sørensen-Dice coefficient, see Methods) between the 39 saliva- and blood-based genotypes. The F-

measure ranges between 0 and 1, with a value of 1 indicating complete agreement between calls 

from blood and saliva and lower values indicating diminished agreement of variant calls across the 39 

individuals. Discordances between blood- and saliva-derived genotypes can be assumed to indicate 

genotyping errors in at least one of the two datasets as we should not anticipate any significant 

contribution from somatic mosaicism between saliva and blood at this depth of sequencing (Hall et 

al., 2020). 

In Figure 1(a), the distribution of the F-measures is displayed for all 12,085,848 variants. 93.61% of all 

variants show perfect agreement between blood and saliva. Subsequently in Figure 1(a), we split 

these variants into two genomic region-sets: high-confidence regions indicated by the GiaB project 

and the complementing set of low-confidence regions. Subsequently, we focused only on the 

variants that pass our quality control (QC) thresholds (see Methods). The GiaB high-confidence 

region list was accessed from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release. We observed that a 

high proportion of the variants with disagreements between blood and saliva fell within the low-

confidence regions of the genome. It was also clear that quality control (described fully in the 

Methods) was successful at removing discordant variants in both high and low-confidence regions. In 

Figure 1(b), we plot the F-measure along chromosome 2 as an example of how discordant variants 

cluster into the clearly observable low-confidence GiaB regions and how quality control improves 

concordance. Similar patterns are observed over all chromosomes (Supplementary Figure 3).  

Pseudo-replication 

We have ascertained that the majority of the discordances observed between saliva and blood could 

be segregated using quality control and the GiaB low-confidence region list. This gave a strong 

suggestion that the differences between blood and saliva that we observed were in the majority due 

to readily identifiable sequencing errors. This suggested the saliva-based sequencing produced high 

quality genotype calls (as demonstrated by the high concordance with blood-based sequencing in the 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release
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high-confidence regions). The success in removing a large proportion of the erroneous calls using 

quality control also demonstrated that it should not be problematic to analyse saliva- and blood-

based WGS data side-by-side.  

Yet even after quality control, discordances remain between blood and saliva across our 39 

individuals. The question remains as to whether the remaining discordance was linked to the 

differences between saliva and blood and the respective sequencing pipelines, or falls within the 

range that would be expected were an individual’s DNA to be sequenced twice on the same 

platform. 

To answer this question, ideally, we would re-sequence each individual’s blood DNA sample in order 

to compare discrepancies of blood against blood with blood against saliva. However, such 

resequencing was not possible in this study and could well have led to further batch effects given 

that there would have been a significant length of time between sequencing runs. Not having access 

to repeated sequencing data, we decided on an innovative in silico approximation of such a round of 

re-sequencing, creating context-specific baselines for the comparisons of variant calling between 

saliva and blood. This pseudo-replication process is described fully in the Methods. The approach 

involved returning to the raw FASTQ files which contain lists of each individual’s raw read data from 

the sequencer. These lists of reads for blood and saliva were each divided into two non-overlapping 

groups to give four separate lists of raw reads for each individual. These four lists were then 

processed separately and identically to produce four variant call sets for each individual; two from 

blood and two from saliva.  

Having four variant call sets for each individual allowed us to make six pairwise comparisons; two 

comparisons between pairs of pseudo-replicates derived from either both from blood or saliva 

(‘blood – blood’ and ‘saliva – saliva’, respectively), and four comparisons between blood and saliva. 

The same quality control criteria were applied to the 156 (39 4) pseudo-replicates as had been 
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applied to the 78 (39 2) WGS samples previously. For a pair of pseudo-replicates, we calculated a 

single F-measure across the 22 autosomal chromosomes.  

In Figure 2 we present boxplots of the F-measures for the three potential configurations of pairwise 

comparisons. For each individual, we selected one of the four possible ‘blood – saliva’ comparisons in 

order that each boxplot consists of 39 F-measures. Results given are split between high- and low-

confidence GiaB regions and were calculated post QC. When concentrating on the sets of variants 

that are in high-confidence regions (Figure 2), we observed near perfect agreement (F-measures 

close to 1). In both high- and low-confidence regions, there was no clear separation between the 

different types of pairwise comparison for each variant set. The ‘blood – blood’ and ‘saliva – saliva’ 

comparisons provide benchmarks for reproducibility of WGS in our study; serving as approximations 

of the F-measures that would have been seen if the same individuals had been sequenced twice (but 

at lower depth). Hence as the ‘blood – saliva’ comparisons gave F-measures in the same range, the 

differences in tissue, sequencing machines, and other steps of the data preparation did not result in a 

batch effect between our two sets of WGS data. Furthermore, this demonstrated that WGS of saliva 

leads to very similar accuracy to WGS of blood. Slightly higher F-statistics for the ‘saliva – saliva’ 

comparisons (blue boxplots in Figure 2) reflect the slightly higher sequencing quality in saliva in this 

study.  

A single individual was a distinctive outlier in the analysis of Figure 2 for the ‘saliva – saliva’ 

comparisons (lowest blue points on 3rd and 6th boxplots). The low F-statistics for this individual 

suggests a higher number of genotyping errors in the two saliva pseudo-replicates. Though the 

individual did not have the lowest genomic coverage or average genotype quality among the saliva 

samples, the quantity of DNA extracted for the individual was close to the threshold for exclusion 

DNA (only 34.0 ng/µL compared to an average of 63.4 ng/µL across all individuals). Retracing the 

steps of the DNA extraction period of GAZEL-ADN, we noticed that this individual’s sample was the 

last to arrive and was processed the same day that their saliva sample arrived in the post. Therefore, 
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the recommendation of Maxwell (PROMEGA) that storing the collectors containing saliva samples for 

more than two days after collection may improve extraction was not followed and so could explain 

the slightly lower F-measure for this individual in Figure 2. 

Salivary Microbiome 

We constructed a pipeline to investigate the possibility of sequencing salivary microbiomes from the 

raw sequencing data derived from saliva. This was necessitated as our raw data had been generated 

using technology designed for sequencing human DNA while studies of microbiome data typically 

involve different molecular sequencing approaches (Fricker, Podlesny, & Fricke, 2019). Our goal was 

to identify reads that were not of human origin and to map such reads to known bacterial reference 

genomes. The pipeline we used is described fully in the Methods. Applying this to the 39 individuals 

of the pilot study, we successfully captured an average of 40 million reads that passed quality control 

measures and could be identified as non-human (Supplementary Figure 4).  

These groups of non-human reads were then aligned to known bacterial 16S rRNA gene reference 

libraries. Across all 39 individuals we qualified a specific taxon to be present in GAZEL-ADN if more 

than 50 reads aligned to that taxon’s reference 16s ribosomal gene. The Operational taxonomic unit 

(OTU) groups in GAZEL-ADN were compared to 290 publicly available salivary microbiome samples of 

the Human Microbiome Project (HMP) (Human Microbiome Project Consortium, 2012) [35] (Figure 

3a). The majority of salivary phyla that are strongly represented in HMP (nodes close to the center of 

the taxonomic tree) were found in GAZEL-ADN and only a small proportion of rare genera present in 

the HMP data were not detectable in GAZEL-ADN reads (grey nodes). These results show that the 

salivary microbiomes characterized in this study have realistic profiles as no major taxonomy groups 

from the HMP are missing. Furthermore, many phylogenetic families and genera that were detected 

in GAZEL-ADN were in fact not present in the HMP data (taxonomic tree edges in blue). This might 

suggest that the deep shotgun sequencing performed in GAZEL-ADN was potentially more sensitive 

than the 16S analysis of the HMP. However, it is not possible to compare the relative proportions of 
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reads in each OTU group between GAZEL-ADN and the HMP due to the differences in DNA 

amplification methods and the fact that meta-genomic microbiome studies cannot be assumed to 

reflect a linear transformation of true microbial population sizes in the body [36,37]. Hence, these 

results should be interpreted with caution. The proportions of reads that match to the main 

phyla presented in Figure 3a (11 branches that lead out from the center) for each individual of 

GAZEL-ADN are presented in Figure 3b where notable difference between individuals can be 

observed. The numbers of reads per-individual that were mapped to the 16S reference library of 

each principal taxon are available as supplementary data files (see Data Availability section). 

Discussion 

In this study, we have compared WGS variant calls derived from 39 paired saliva and blood samples. 

We have demonstrated that a majority of the discordances that are observed between blood and 

saliva occur in regions of the genome where sequencing is known to be least accurate. We could 

observe such discordances congregating in these regions due to the relatively large sample size that 

we had access to for this study. Furthermore, it was clear that recommended quality control 

measures successfully indicated and excluded a very high proportion of the genotypes that displayed 

disagreement between blood and saliva. 

To fully establish whether the remaining differences after quality control between saliva and blood 

were remarkable or not, we used a novel method of splitting FASTQ files and creating sequencing 

pseudo-replicates. This enabled us to confidently establish that the differences between blood and 

saliva were entirely similar to the differences that one should expect if either an individual’s blood or 

saliva had been sequenced twice. Thus, while high concordance between sequencing data in blood 

and saliva has previously been reported (Kidd et al., 2014; Trost et al., 2019; Wall et al., 2014; Yao et 

al., 2020; Zhu et al., 2015), we have been able to better contextualise such a result. This has afforded 

the conclusions that the WGS data generated from the saliva collection kits is of high quality; and 

that it will be possible to analyse the prospective POPGEN dataset alongside existing datasets (for 
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analyses such as common or rare variant association studies) without fear of harmful batch effects. 

Technical bias due to differences is technology being used within a study is a non-negligible problem. 

The large scale of many recent genetic studies and the time required to assemble genomic datasets 

may result in different sequencing techniques being used at the start and at the end due to evolving 

guidelines and technology. The herein proposed novel method of pseudo-replication represents a 

valuable tool for assessing the potential impact of technological bias within a study as it can provide 

good approximations for benchmarks of whole-genome sequencing reproducibility. 

In our study, we have concentrated on appraising the suitability of saliva for WGS in humans for the 

calling of SNPs and INDELs. In both Yao et al. (Yao et al., 2020) and Trost et al. (2019) the question of 

the accuracy of the calling of copy-number variations (CNVs) from saliva is also discussed where 

greater discordance (than for SNPs or INDELs) between blood and saliva has been presented. 

Prospectively, the 39 paired datasets of GAZEL-ADN will provide valuable opportunities for evaluating 

the calling of CNVs from saliva and also for similar investigations for structural variants, transposable 

elements, and mitochondrial variation.  

Here, we have also demonstrated that the sets of non-human reads found in saliva carry sufficient 

information for taxonomical descriptions of the salivary microbiome even when samples were 

treated for human genome sequencing. We were able to show that the principal groups of bacterial 

taxa found in our study matched those found in a large public microbial reference dataset. We could 

also highlight differences between individuals in terms of presence or absence and relative 

abundance of certain taxa in their salivary microbiome profiles. These findings merit further 

investigation and, as a prospective of this study, we plan to continue to determine a best strategy for 

extracting salivary microbiome information from WGS data from saliva and to further develop a 

bioinformatics pipeline for the generation of microbiome data from read data initially generated for 

human whole-genome sequencing.  
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This pilot study enables us to have confidence for the use of home-use saliva kits for the proposed 

new French genetic reference panel POPGEN of the French medical genomics initiative (Lethimonnier 

& Levy, 2018; Lévy, 2016). The WGS data generated from saliva will be an equally good 

approximation of the true genomes of the participants had the project been based on blood 

collection. As using saliva will also come with considerable benefits in terms of the participation rates 

and logistics of such a study, it therefore represents a highly attractive data-collection method. We 

also envisage that it will be possible to study patterns of microbial populations across France in 

parallel to studies of human genetics via the collection of saliva for sequencing in the POPGEN 

project. 

Materials and methods  

Data Collection 

Sixty individuals from the GAZEL cohort (2007) from whom WGS data was already available were 

selected at random and asked to donate saliva for sequencing. WGS data from saliva of 39 of these 

individuals were investigated in this study. We refer to this pilot study of 39 individuals as GAZEL-

ADN. This study was approved by the Ile de France XI Ethics Comittee (approval number 18021) on 

8th March 2018 and all the 39 individuals signed an informed consent. The remaining 21 individuals 

of the original 60 were not analysed for the following reasons: 13 individuals did not return their kits, 

4 individuals returned their kits too late (outside of a pre-specified time limit of the pilot study) and 4 

were removed after failing to meet quality control thresholds for their collected DNA samples. A flow 

chart of the selection of individuals for the GAZEL-ADN pilot study is included as Supplementary 

Figure 5. DNA extraction for saliva samples was performed at the CHU Brest, France on a Maxwell 

(PROMEGA) instrument and using magnetic bead technology. DNA extraction for blood samples was 

performed at the CEPH in Paris, France on an Autopure (Qiagen) automated system using a salting-

out method. All libraries for whole-genome sequencing were subsequently prepared using the 

Illumina TruSeq PCR-free protocol, with an input of 1µg of DNA at the CNRGH in Evry. However, 
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library preparation and sequencing for saliva was performed over two years later than that of blood. 

The saliva samples were processed using an Illumina NovaSeq 6000 sequencer, while blood samples 

had previously been processed using an Illumina HiSeqX5 sequencer. These two sequencers have a 

common underlying technology, and have recently been shown to perform similarly (Zhou et al., 

2019); the main difference being the increased speed and throughput of NovaSeq. Generation of 

sequencing data was performed using the same bioinformatics pipeline for blood and saliva. 

Alignment was performed using the software bwa (v.0.7.15) (Li & Durbin, 2009) to the human 

reference genome hs37d5; a human reference genome from genomic build 37 that includes dummy 

contigs for mapping well-known non-human contaminates. This alignment was followed by genotype 

calling using the GATK Haplotype Caller (v.3.8) (DePristo et al., 2011).  

Comparing blood and saliva WGS call sets 

To compare the genotype calls between saliva and blood, the F-measure was used as in (Hwang, Kim, 

Lee, & Marcotte, 2015; Telenti et al., 2016). The F-measure is the harmonic mean of two other 

statistics: precision and recall. Precision is equal to TP/(TP+FP) where FP is the number of false 

positive calls (alternative alleles observed in saliva when only reference alleles were observed in 

blood) and TP is the number of corresponding true positives (alternative alleles observed in both 

saliva and blood). Recall is equal to TP/(TP+FN) where FN is the number of false negatives (reference 

alleles observed in saliva when alternative alleles were observed in blood). If conversely calls from 

saliva data are to be considered as ‘true’, this interpretation leads to the precision becoming equal to 

the recall and vice-versa. Hence, the F-measure (which can be calculated per individual or per 

variant) would not change and so gives an indication of similarity between two sets of genotypes 

without prioritising either call set. Throughout, we often contrast comparisons of variant call sets 

calculated before and after applying quality control thresholds. Quality control was performed using 

VCFProcessor (v.1.0.1) (Ludwig, Marenne, & Génin, 2020) and using an in-house set of thresholds 
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(option QC1078) based on GATK recommendations. Full details of the quality control thresholds 

applied are given in Supplementary Materials. 

Pseudo-replication 

Trost et al., (2019) gave a baseline for levels of concordance between blood and saliva from a single 

external repeated sequencing study for comparisons of sequencing from different biological sources 

(blood, saliva, and buccal cells). We developed this idea and introduced a novel technique of pseudo-

replication. We went back to the original FASTQ files for each individual and split these unordered 

lists of raw read data in two (retaining reads with their paired ends). This was simply achieved by 

selecting odd and even groups of four from the line numbers of the two FASTQ files for each 

individual (one file containing the front-end reads, one file containing the corresponding back-end 

reads). Naturally, this reduced the depth by 50% to approximately 20× in our study; this lower depth 

will lead to lower quality in our data, but we should still expect to be able to have well-called 

genotypes at this depth (Kishikawa et al., 2019). Hence, each sequencing run provided two pseudo-

replicates that are an approximation of results from a replication study at half the depth for each 

individual. To create our pseudo-replicates, we first applied the quality control program BBTools 

(v.36.02) (Bushnell, 2015) to our raw read data. Alignment was then performed using bwa (v.0.7.15) 

(Li & Durbin, 2009) on to the most recent human reference genome GRCh38. Using elprep (v.4.0.0) 

(Herzeel, Costanza, Decap, Fostier, & Verachtert, 2019), reads were sorted and both duplicated reads 

and unmapped reads were removed. Finally, we used the GATK HaplotypeCaller (v.3.8) to call 

variants with default parameters. 

Exploring the Salivary Microbiome 

Illumina shotgun reads were filtered using BBDuk (qtrim=rl,  trimq=20, maq=20, minlen=100; BBTools 

(v.36.02) [49]) to remove Illumina adapters, known Illumina artifacts, phiX, and to quality-trim both 

ends to Q20. Resulting reads containing more than one ‘N’, or with quality scores (before trimming) 

averaging less than 20 over the read, or length under 100 bp after trimming, were discarded.  
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Remaining reads were mapped to human indexes with kraken2 (v.2.0.7) (Wood, Lu, & Langmead, 

2019), discarding all human reads. Small subunit (SSU) rRNA gene sequences were reconstructed 

from these non-human reads and classified against the SILVA 138 SSU rRNA gene database (Quast et 

al., 2012) using phyloFlash (v.3.0) (Gruber-Vodicka, Seah, & Pruesse, 2019). Full-length (>70% of the 

target length) 16s RNA genes were then assembled with SPAdes (v3.13.1) (Bankevich et al., 2012) or 

reconstructed with EMIRGE (v.1.3) (Miller, Baker, Thomas, Singer, & Banfield, 2011). Reads from each 

of the two subsequently generated libraries were mapped onto the reconstructed sequences with a 

minimum identity of global alignment of 99% using BBmap (v.36.02) (Bushnell, 2015) to estimate the 

relative abundance of each sequence in the respective dataset. Sequences with a coverage statistic 

of less than 1 were regarded as not present in a sample and removed from further analysis. Taxa 

abundances were summed at the phylum level and the genus level for specific genera. Figures were 

realised using the R-packages ‘phyloseq’ (McMurdie & Holmes, 2013), ‘taxa’ (Foster, Chamberlain, & 

Grünwald, 2018), and ‘metacoder’ (Foster, Sharpton, & Grünwald, 2017). Publically available salivary 

microbiomes and relevant metadata were downloaded from the HMP (https://www.hmpdacc.org/) 

in order to provide a comparison dataset and to check quality. OTU representative sequences, OTU 

tables, and mapping files for 16S rRNA V3-V5 sequencing were downloaded from publically available 

HMP QIIME Community Profiling datasets 

(http://downloads.hmpdacc.org/data/HMQCP/otu_table_psn_v35.txt.gz).  

https://www.hmpdacc.org/
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Figure Legends 

Figure 1 

Per-variant F-measure statistics between blood and saliva under different filtering conditions. 

(a) For five different variant sets, the distribution of the F-measure (harmonic mean of precision and recall) is 
given. Yellow represents the variants that are 100% concordant (F-measure of 1) between the 39 blood and 
39 saliva WGS call sets. The percentages of variants with an F-measure of 1 are overlaid for each variant set. 
Darker colours represent lower intervals of the F-measure. The first variant set is all variants observed across 
the 22 autosomal chromosomes (‘All’ - 12,085,848 variants). The second and third set are complementary, 
representing the high- and low-confidence regions of the genome as indicated by the Genome in a Bottle 
(GiaB) project (10,308,126 ‘GiaB High’ variants and 1,777,722 ‘GiaB Low’ variants). The fourth and fifth sets 
show distribution of the F-measure again in high and low-confidence regions but after applying quality-
control thresholds (9,679,699 ‘GiaB high – Post QC’ variants and 983,381 ‘GiaB Low – Post QC’ variants).

(b) For the variant sets ‘All’, ‘GiaB High’ and ‘GiaB High – Post QC’, the F-measures from chromosome 2 are 
plotted against base-pair positions to give an illustration of the congregation of poorly concordant variants 
in low-confidence regions and also the efficacy of quality control. 

Figure 2 

F-measures between pseudo-replicates to mimic a resequencing study.

For all 39 individuals with paired blood- and saliva-based WGS data, four variant call sets were generated by 
creating two pseudo-replicates for both blood and saliva. For each pair of blood- and saliva-based WGS data, 
three comparisons were made, one between the two blood pseudo-replicates (red), one between a randomly 
chosen blood pseudo-replicate and a randomly chosen saliva pseudo-replicates (gold), and one between the 
two saliva pseudo-replicates (blue). The F-measures for these comparisons were calculated for variants in 
high- and low-confidence regions of the genome after quality control had been applied to all 78 pseudo 
replicates (left and right, respectively).  

Figure 3 

Analysis of the salivary microbiome. 

(a) Phylogenetic tree of the Operational taxonomic unit (OTU) assignments of non-human reads in GAZEL-
ADN. Black nodes represent taxonomic groups (Kingdom, Phylum, Class, Order, Family and Genus from the
center to the edge) that were present in both GAZEL-ADN and the publicly available data on salivary
microbiomes obtained from 16S NGS analysis from the Human Microbiome Project (HMP). Blue nodes
represent taxonomic groups only observed in GAZEL-ADN and grey nodes represent taxonomic groups not
observed in GAZEL-ADN but present in the HMP data.
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(b) Proportions of normalized reads mapped to reconstruct 16S rRNA genes showing the 11 different 
bacterial phyla found for the 39 individuals of GAZEL-ADN. 
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