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ARTICLE OPEN
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There is overwhelming epidemiologic evidence that the risk of multiple myeloma (MM) has a solid genetic background. Genome-
wide association studies (GWAS) have identified 23 risk loci that contribute to the genetic susceptibility of MM, but have low
individual penetrance. Combining the SNPs in a polygenic risk score (PRS) is a possible approach to improve their usefulness. Using
2361 MM cases and 1415 controls from the International Multiple Myeloma rESEarch (IMMEnSE) consortium, we computed a
weighted and an unweighted PRS. We observed associations with MM risk with OR= 3.44, 95% CI 2.53–4.69, p= 3.55 × 10−15 for
the highest vs. lowest quintile of the weighted score, and OR= 3.18, 95% CI 2.1= 34–4.33, p= 1.62 × 10−13 for the highest vs.
lowest quintile of the unweighted score. We found a convincing association of a PRS generated with 23 SNPs and risk of MM. Our
work provides additional validation of previously discovered MM risk variants and of their combination into a PRS, which is a first
step towards the use of genetics for risk stratification in the general population.

European Journal of Human Genetics; https://doi.org/10.1038/s41431-021-00986-8

INTRODUCTION
Multiple myeloma (MM) is the third most common hematological
malignancy with a worldwide incidence rate of 2.1/100,000 new
cases each year (https://gco.iarc.fr/today/home) [1]. MM is preceded
by monoclonal gammopathy of undetermined significance (MGUS),
an asymptomatic premalignant condition [2, 3], and by smoldering
myeloma (SM), a more advanced precursor of the disease [4].
MM etiology has a strong genetic component, with several

variants associated with its risk [5–21]. In particular, genome-wide
associations studies (GWAS) identified 23 MM risk loci, but as for
many other traits the individual penetrance of each SNP is low,
with odds ratios (OR) per risk allele ranging from 1.11 to 1.38
[5, 7, 14, 15, 17].

Considering also the rarity of the disease, the identified variants
have a poor clinical use in predicting the individual risk, especially if
considering the general population. A possible approach to improve
usefulness of genetic risk markers could be to combine the SNPs in a
polygenic risk score (PRS) in order to have a better estimation of
their cumulative effect on the risk of developing the disease.
This method has been successfully applied to several diseases
including breast, prostate, colorectal, and pancreatic cancer [22–28].
For myeloma, a PRS was briefly mentioned in the latest GWAS
publication [17]. An earlier study compared a 16-SNP PRS in familial
and sporadic MM cases [29]. A PRS including all the known risk SNPs
has been also evaluated in African–Americans [30].
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The aim of this work is to use the International Multiple
Myeloma (IMMeNSE) consortium to establish a PRS for MM and
provide an evaluation of the PRS performance in an independent
set of MM cases and controls.

MATERIALS AND METHODS
Study population
We used DNA samples from 2361 MM patients and 1415 controls from
7 countries (Denmark, France, Hungary, Israel, Italy, Poland, and Portugal)
within the IMMEnSE consortium [6], for whom information on sex and age
was available. Cases were defined by a confirmed diagnosis of MM
according to the International Myeloma Working Group criteria [31].
Controls were selected from the general population, from hospitalized
subjects with different diagnoses excluding cancer, or from blood donors.
Characteristics of the study population are summarized in Table 1.

SNP selection
To build the PRS we used 23 SNPs shown to be associated with MM risk at
genome-wide significance level (p < 5 × 10−8) by previous GWAS
[5, 7, 14, 15, 17]. We did not include variants reported to be associated
with MM risk but not at genome-wide level of significance (e.g., those
reported by Erickson et al. [9]). Characteristics of the SNPs included in the
PRS are summarized in Supplementary Table 1.

Genotyping and PRS computation
Genotyping was performed using TaqMan technology (ThermoFisher
Applied Biosystems, Waltham MA, USA) according to the manufacturer’s
recommendations. TaqMan assays were not available for some SNPs,
therefore we replaced them with surrogates in high linkage disequilibrium
(r2 > 0.9), as detailed in Supplementary Table 1.
For each SNP, the number of alleles associated with higher MM risk were

counted and added up for each study subject, resulting in an unweighted
PRS, which had a theoretical range from 0 (no MM risk alleles) to 46 (all risk
alleles are present at each SNP in homozygosity). In addition, we built a
weighted PRS by using the ORs of the codominant model of the
association of each variant with MM risk in the IMMEnSE population as
coefficients to weight the relative effects of the risk SNPs. For each SNP in
the weighted PRS, a value of 0 was assigned if 0 risk alleles were present,
the ln(OR) of the heterozygous was assigned if one risk allele was present,
and the ln(OR) of the homozygous was assigned if two risk alleles were
present. Then all the values were summed among them for each subject.
We built alternative weighted PRSs by using ORs from the literature, or
values calculated in our dataset. Only a subset of the study subjects
(1426 cases and 969 controls) had a 100% SNP call rate. Therefore, in order
to be able to compute comparable score values for all study subjects, we
also considered “scaled” scores, in which the PRS values for each subject
were multiplied by the ratio between 23 (total number of SNPs) and the
number of effectively genotyped SNPs for the subject in question. For both

PRSs (weighted and unweighted), we calculated quintiles based on the
distribution of values in the controls.
The formulas for the unweighted and weighted scores are respectivelyPm
1 aj and

Pm
1 aXj, where a= number of risk alleles (0, 1, 2), m = total

number of SNPs (23), j= jth subject, X= ln(OR). Supplementary Table 2
shows an example of how the scores were generated.

Data filtering and statistical analysis
Samples with call rate less than 80% were not included in subsequent
analysis. Pearson chi square was used to test departure from
Hardy–Weinberg equilibrium (HWE) in the overall control group and in
the individual countries.
To validate the associations between the individual SNPs and MM risk,

we used logistic regression according to the log-additive and codominant
models, using the more common allele in controls as the reference
category.
We analyzed the association between the PRSs and MM risk by logistic

regression. Age-stratified analyses were performed by comparing all
controls with younger or older cases, with cutpoints at 55 (to distinguish
between early onset and non-early onset cases), 61 (median age at onset
of the cases in this study), or 69 years of age (median age at onset of MM,
https://seer.cancer.gov/statfacts/html/mulmy.html) [32]. All analyses were
adjusted for age, sex, and geographic region of origin.
We set up receiver operating characteristic (ROC) curves and calculated

the areas under the curve (AUC), to determine the performance of the PRSs
in discriminating MM cases from individuals without the disease.

RESULTS
We genotyped a total of 3376 subjects (2361 cases and 1415
controls). Controls from Portugal resulted out of HWE for
SNPs rs877529 and rs4325816 in one 384-well plate (using a
Bonferroni-corrected threshold of p < 0.002). Therefore, genotypes
of Portuguese subjects for those two SNPs were dropped from the
dataset. The remaining data were used for further statistical
analyses. Duplicated samples (8% of the total) showed a
concordance rate higher than 99%.
The associations between 12 of the SNPs and MM risk were

replicated in IMMEnSE (p < 0.05) (Table 2). Regardless of statistical
significance, all SNPs showed ORs going in the same directions as
originally reported in the literature.
We observed strong associations between the PRS and MM

risk (Table 3). When we computed the association between the
PRSs and MM risk considering only 1426 cases and 969 controls
with a call rate of 100%, we observed an OR= 3.18, 95%
CI 2.34–4.33, p= 1.62 × 10−13 for the highest vs. lowest quintile
of the unweighted score and OR= 3.44, 95% CI 2.53–4.69, p=
4.86 × 10−15 for the highest vs. lowest quintile of the weighted
score. Results were very similar when we considered the whole
dataset including 2361 cases and 1415 controls and “scaled”
PRSs (Table 3), as well as when we built weighted scores using
ORs for each SNP from the original GWASs (Table 3).
A histogram showing the difference in number of risk alleles

(unweighted PRS) between cases and controls is shown in
Supplementary Fig. 1.
In order to focus on the extreme parts of the risk distribution,

we also calculated the difference in risk of subjects in the 95th
percentile compared to subjects in the 5th percentile, and
we found a substantial difference in risk (OR= 5.77, 95%
CI 2.37–14.06, p= 1.12 × 10−4). Furthermore, we compared the
subjects in the 95th percentile with subjects in the middle of the
score distribution (third quintile) and we obtained an OR= 4.22,
95% CI 2.11–8.44, p= 4.52 × 10−5. All the tail distribution results
are shown in Table 4.
In addition, we performed case-control analyses stratifying the

cases by age at diagnosis. We used three age cutpoints: 55, 61,
and 69. The PRS was associated with MM risk in all strata, without
differences in risk due to age of onset (data not shown).
The AUCs for each score are shown in Table 5. The best

performance was observed for the unweighted PRS when

Table 1. Description of the study population.

Cases Controls Total

Country

Denmark 299 478 777

France 467 176 643

Hungary 104 81 185

Israel 81 68 149

Italy 251 224 475

Poland 1034 267 1301

Portugal 125 121 246

Total 2361 1415 3776

Sex

Male 52.6% 52.4% 52.5%

Female 47.4% 47.6% 47.5%

Median age 61 50 58

F. Canzian et al.
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considering only subjects with 100% call rate (AUC= 0.64, 95%
CI= 0.62–0.67).

DISCUSSION
Twenty-three SNPs affecting risk of MM were identified through
GWAS. Since individually they do not explain a large proportion of
the disease risk, we combined them in a PRS, which showed
association with MM risk with strong statistical significance.
Our results are encouraging, since when comparing the tails of
the PRS distribution we observed a fourfold or more increase in risk.
The best area under the curve associated with the PRS was

modest (AUC= 0.64, 95% CI= 0.62–0.67). However, this test could
show a much better predictive ability in a selected population at

already increased risk, such as individuals with MGUS or SM patients.
We expect that the PRS performance will improve as more variants
associated with MM are discovered, as shown by studies on other
cancer types [23, 26, 27]. A further step to the clinical use of PRS is to
combine them with environmental or lifestyle risk factors, as well as
family history. We can envisage that in the middle/long term an
enhanced MM risk PRS could become a powerful prediction tool for
individualized risk stratification. Genotyping of risk loci will be done
quickly and inexpensively in large groups of the population.
Information on risk loci will be combined with questionnaire data
on non-genetic risk factors, and specialized algorithms will estimate
disease risk in a personalized manner. This will allow to adopt
preventive measures, such as enhanced surveillance or intensified
screening of people at high risk.

Table 3. Associations between PRSs and MM risk with the different types of scores.

Type of score Quintiles ORa 95% CIa pvalue
Unweighted, subjects with 100% call rate 1 1.00 – Ref.

2 0.63 0.46–0.86 0.004

3 3.16 2.31–4.31 4.33 × 10−13

4 2.42 1.81–3.24 3.17 × 10−9

5 3.18 2.34–4.33 1.62 × 10−13

Continuousb 1.43 1.34–1.54 7.00 × 10−23

Unweighted scaled, all subjects 1 1.00 – Ref.

2 1.52 1.17–1.97 0.002

3 1.44 1.13–1.83 0.003

4 2.20 1.73–2.80 1.45 × 10−10

5 2.93 2.28–3.78 9.00 × 10−16

Continuousb 1.29 1.22–1.37 1.00 × 10−17

Weighted, subjects with 100% call ratec 1 1.00 – Ref.

2 1.33 0.95–1.86 0.096

3 1.60 1.15–2.23 0.005

4 2.43 1.77–3.35 4.78 × 10−8

5 3.44 2.53–4.69 3.55 × 10−15

Continuousb 1.37 1.28–1.46 2.00 × 10−18

Weighted scaled, all subjectsc 1 1.00 – Ref.

2 1.29 0.98–1.70 0.068

3 1.53 1.17–2.01 0.002

4 2.24 1.72–2.91 1.68 × 10−9

5 3.12 2.42–4.02 2.00 × 10−17

Continuousb 1.33 1.26–1.41 3.00 × 10−22

Weighted 100% call rate using GWAS ORd 1 1.00 – Ref.

2 1.18 0.84–1.65 0.334

3 1.56 1.12–2.17 0.008

4 2.17 1.59–2.97 1.29 × 10−6

5 3.24 2.39–4.39 3.93 × 10−14

Continuousb 1.35 1.27–1.45 2.00 × 10−17

Weighted scaled using GWAS ORd 1 1.00 – Ref.

2 1.21 0.93–1.60 0.161

3 1.56 1.20–2.04 0.001

4 2.02 1.57–2.62 7.86 × 10−8

5 2.89 2.25–3.71 9.00 × 10−16

Continuousb 1.31 1.24–1.38 9.00 × 10−20

aOR odds ratio; CI confidence interval; all analyses were adjusted for age, sex and geographic region of origin.
bThe unit for the analysis with the continuous variable was the increment of one quintile.
cThe weights used to build this score were the ORs of the associations between the individual SNPs and MM risk observed in the IMMEnSE population.
dThe weights used to build this score were the ORs of the associations between the individual SNPs and MM risk observed in the literature.

F. Canzian et al.

4

European Journal of Human Genetics



A limitation of this work is that the individuals used are all
of European origin, making it difficult to generalize the data
for other ethnicities. The same PRS was recently studied in
African–Americans, with results comparable to those of European
descent people [30]. Another limitation is that we examined only
genetic polymophisms. It would be worth exploring whether a
multifactorial score including also non-genetic risk factors could
have a better predictive power. Unfortunately, we do not have
complete data about known MM risk factors in IMMEnSE,
therefore we can not explore multifactorial risk scores with
meaningful numbers of cases and controls.
In conclusion, we found a convincing association of a 23-SNP

PRS and MM risk. Our work provides additional validation of
previously discovered MM risk variants and of their combination
into a PRS, which is a first step toward the use of genetic
background in the prevention of the disease. Additional risk SNP
discovery will allow to generate PRS with a better accuracy and a
clearer usefulness.
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