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Time-varying associations between an
exposure history and a subsequent health
outcome: a landmark approach to identify
critical windows
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Abstract
Background: Long-term behavioral and health risk factors constitute a primary focus of research on the etiology of
chronic diseases. Yet, identifying critical time-windows during which risk factors have the strongest impact on disease
risk is challenging. To assess the trajectory of association of an exposure history with an outcome, the weighted
cumulative exposure index (WCIE) has been proposed, with weights reflecting the relative importance of exposures at
different times. However, WCIE is restricted to a complete observed error-free exposure whereas exposures are often
measured with intermittent missingness and error. Moreover, it rarely explores exposure history that is very distant
from the outcome as usually sought in life-course epidemiology.
Methods: We extend the WCIE methodology to (i) exposures that are intermittently measured with error, and (ii)
contexts where the exposure time-window precedes the outcome time-window using a landmark approach. First, the
individual exposure history up to the landmark time is estimated using a mixed model that handles missing data and
error in exposure measurement, and the predicted complete error-free exposure history is derived. Then the WCIE
methodology is applied to assess the trajectory of association between the predicted exposure history and the health
outcome collected after the landmark time. In our context, the health outcome is a longitudinal marker analyzed
using a mixed model.
Results: A simulation study first demonstrates the correct inference obtained with this approach. Then, applied to
the Nurses’ Health Study (19,415 women) to investigate the association between body mass index history (collected
from midlife) and subsequent cognitive decline (evaluated after age 70), the method identified two major critical
windows of association: long before the first cognitive evaluation (roughly 24 to 12 years), higher levels of BMI were
associated with poorer cognition. In contrast, adjusted for the whole history, higher levels of BMI became associated
with better cognition in the last years prior to the first cognitive interview, thus reflecting reverse causation (changes
in exposure due to underlying disease).
Conclusions: This approach, easy to implement, provides a flexible tool for studying complex dynamic relationships
and identifying critical time windows while accounting for exposure measurement errors.
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Background
Long-term lifestyle, environmental or occupational expo-
sures may have a major impact on the occurrence of
chronic diseases. Yet, identifying critical time-windows
during which risk factors have the strongest impact on
disease risk is challenging. Chronic diseases often result
from a long and accumulating pathological process that
evolves over years before diagnosis [1]. In such context,
the exposure time-windows close to the clinical event may
be less meaningful in terms of etiology and, importantly,
may be obscured by reverse causality (which occurs when
behaviors or exposures change as the disease progresses in
infra-clinic stages). For example, while obesity in midlife
is a risk factor for subsequent dementia, it is consis-
tently reported as a protective factor later in life; indeed
advanced neuropathology, by altering olfactory function
and taste, potentially leads to malnutrition and weight
loss in late-life [2–5]. Thus, the only valuable approach to
evaluate causal associations linking cumulative unhealthy
body weight to cognitive aging might be to estimate the
relationship between the entire history of exposure that
precedes and begins well upstream of the period at risk of
the event.
Exposure history metrics have been developed to esti-

mate the cumulative effect of time-varying exposure on
disease endpoints [6, 7]. However, to be relevant in life-
course epidemiology, such methodologies absolutely need
to handle: (i) associations that can vary according to the
age during exposure or the distance between the exposure
and the disease endpoint, (ii) exposures that are mea-
sured only at sparse time points and with error, and (iii)
exposure and disease endpoint time-windows that do not
necessarily coincide. Finally, they should also apply to lon-
gitudinal disease outcomes (not only survival or binary)
and their change over time such as cognitive decline that
is a strong predictor of dementia. This work specifically
aimed at extending the methodology of exposure history
metrics to address all these important issues.
Themost common exposure historymetric is the cumu-

lative index of exposure (CIE) [6, 7]. Computed as the
un-weighted sum of all past exposures, CIE assumes that
past values of exposure are of equivalent importance (see
Fig. 1, Scenario A) which may induce etiologically inad-
equate conclusions when the effect of the exposure on
health outcomes likely varies according to the age or
timing of exposures (see Fig. 1, Scenarios B and C). To
address this challenge, Breslow et al. [8] and Thomas [9]
introduced the concept of weighted CIE (WCIE), that
combines information about duration, intensity and tim-
ing of the exposure. WCIE represents the time-weighted
sum of past exposures, with weights reflecting the rela-
tive importance of exposures at different times. Therefore,
unlike CIE, the estimated effects of the exposure his-
tory on health status are time-varying, a key aspect for

the identification of critical windows of exposure in life-
course epidemiology. Weights may be assigned a priori by
using a known parametric weight function in the presence
of biologically/clinically relevant assumptions [10–12] or
when assessing very specific assumptions such as differ-
ent life course hypotheses (e.g., progressive accumulation,
critical period, recent period) [13, 14]. Nevertheless, in
most cases, the form of the weight function is not known
and needs to be directly determined from the data. WCIE
models are found in a wide range of applications with
binary and time-to-event outcomes, such as concentra-
tion of occupational asbestos in relation to mesothelioma
[15, 16] or drug use linked to fall-related injuries [17]. In
environmental health research, complex associations have
been explored through distributed lagmodels (DLM) [18],
which are very similar to WCIE models in the context
where long-term exposure and outcome are collected at
identical times across individuals.
A major limit of CIE, WCIE and even DLM method-

ologies is that they always require the exposure history
to be complete. Yet, intermittent missing data on indi-
vidual exposures are frequently reported in case-control
and cohort studies, in particular when follow-up is long,
thus preventing any analysis using these metrics. Second,
although measurement error is inevitable, CIE and WCIE
metrics also require the exposures to bemeasured without
error and the violation of this assumption (which is likely
in most epidemiological contexts) may lead to biased
exposure-risk relationships [19]. To overcome these limi-
tations,Mauff et al. [20] introduced a weighted cumulative
association structure within a joint model to assess the
impact of an endogenous time-varying exposure mea-
sured intermittently and with error on the risk of a
time-to-event outcome; the exposure model accounted
for independent centered Gaussian measurement errors
through a standard linear mixed model. However, in this
approach, exposure and outcome have to be evaluated
during the same time-window, while as introduced previ-
ously, in some contexts the interest is in the cumulative
effect of an exposure history that precedes evaluation of
disease risk. In environmental health research, Chen et al.
[21] proposed a reverse DLM, which models the expo-
sure trajectory as a function of the health outcome rather
than the inverse. By doing so, the reverse DLM naturally
accounts for measurement errors and missing values in
exposures. However, as a counterpart, this model con-
ditions on the health outcome and thus considers it is
measured without error. Finally, all these methodologies
have been developed for survival or cross-sectional con-
tinuous or binary outcomes when we are interested in a
longitudinal health outcome. To date, we are aware of only
one pharmaco-epidemiological study applying the WCIE
in association with a longitudinal outcome [22]. Nonethe-
less, it considered a complete error-free exposure history
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Fig. 1 Three examples of trajectories of association between an exposure history from time −S to time 0 and a subsequent health outcome: (A)
constant association, (B) time-varying with remote association or (C) time-varying with opposing remote and recent associations. The dashed
horizontal lines represent the 0 association

measured concomitantly with the outcome, and it only
assessed its association with the level of the longitudinal
outcome while in etiological studies, the interest lies in the
change over time of the longitudinal outcome.
In this manuscript, we propose to extend the WCIE

methodology to address life-course epidemiology
research questions. We rely on a landmark approach
which consists in limiting the analysis of the outcome of
interest after a certain time of interest, called landmark,
and considering as predictors the exposure history up to
the landmark. Although mainly developed in dynamic
prediction context [23, 24], it also addresses the issue of
non-concurrency between the exposure and the outcome
time-windows central in life-long epidemiology.
In “Methods” section, we first introduce the proposed

methodology, and describe the estimation procedure.
In “Application to body mass index history starting at
mid-life and subsequent cognitive trajectories after age
70” section, we apply the method in the Nurses’ Health
Study to investigate the association between BMI history
starting in midlife and repeated cognition assessed after
age 70. In “Simulation study” section, we demonstrate
that the estimation procedure provides correct inference
in a simulation study. Finally we discuss the results and
methodology, and conclude.

Methods
A landmark approach for assessing the dynamics of
association between an intermittently evaluated
time-varying exposure and a subsequent health outcome

General study framework
Within a prospective cohort study, we consider a sam-
ple of N individuals present in the cohort at a landmark
time of interest from which the health outcome is to be
studied, hereafter called time 0 (see Fig. 2). The tempo-
ral framework of the study consists in repeated measures

of the exposure prior to the landmark time, that is from
a negative time −S (e.g., time of entry in the cohort)
up to time 0, as well as repeated measures of the out-
come collected at and after the landmark time. Following
the landmark framework [23], exposures data collected
after time 0, if any, are not included. Both exposure and
health outcome are collected at discrete and individual-
specific occasions with error. The design of the Nurses’
Health Study used in the application (“Application to body
mass index history starting at mid-life and subsequent
cognitive trajectories after age 70” section) naturally fol-
lows the landmark framework since the exposure was
assessed several decades before the first assessment of
outcome. In this manuscript, we will focus mainly on
a longitudinal heath outcome and an exposure history
constructed based on the time preceding the first out-
come assessment. Nevertheless, the proposed approach
also applies to other types of event, such as time-to-event
and binary endpoints, and different timescales sur as age
for the exposure and landmark age for the outcome (e.g.,
age at menopause).

Mixedmodel for the exposure
Let Uil denote the exposure values collected for individ-
ual i (i = 1, ..., N) at the retrospective measurement time
tUil (l = 1, ...,mi) before the landmark time so that tUil ∈
[−S, 0] (see Fig. 2). The times and the total number mi of
repeated measures can differ from one individual to the
other thus implicitly handling intermittent missing val-
ues. Although the methodology could apply beyond, we
consider here a continuous exposure and describe its tra-
jectory via a standard linear mixed effects model [25]:

Uil = U∗
i (tUil) + εil

= Xi(tUil)�β + Zi(tUil)�bi + εil
(1)
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Fig. 2 Temporal representation of the non-concomitant measurement times of the exposure and the subsequent health outcome considered in
our study framework. For both exposure and health outcome, measurements are collected at discrete and individual-specific occasions with error.
The exposure history is constructed according to the time tU prior to the first outcome assessment at time 0 (−S ≤ tU ≤ 0). The longitudinal health
outcome Y is modeled prospectively according to time t (t ≥ 0)

where U∗
i (tUil) is the true underlying exposure value at

measurement time tUil, Xi(tUil) and Zi(tUil) are two vec-
tors of covariates at time tUil associated with the vectors
of fixed effects β and of random effects bi, respectively;
bi ∼ N (0,B). We consider random Gaussian measure-
ment errors εil with mean 0 and variance σ 2

ε ; bi and εil are
independent. The objective of this linear mixed model is
to accurately model the underlying true exposure U∗

i (tU)

at any time tU in [−S, 0] for inclusion in the WCIE.
As such, both Xi(tU) and Zi(tU) should include flexible
functions of time, for instance a basis of splines [26] or
fractional polynomials [27].

Weighted cumulative index of exposure
WCIE is defined as the weighted sum of the underly-
ing true exposures during the period of interest. Without
loss of generality, we consider the entire window [−S, 0]
although any sub-window could be considered instead:

WCIEi =
0∑

tU=−S
w(tU)U∗

i (tU) (2)

where w(tU) is the weight function assigned to the his-
tory of the true exposure U∗

i (tU) during the S + 1 time
units (e.g., years) preceding the initial assessment of the
outcome (see Fig. 1). Note that for ease of epidemiologi-
cal interpretation, we chose to define WCIE as the sum of
exposure levels at discrete times (e.g., every year) but the
methodology also applies to WCIE defined as the integral
of the exposure levels in [−S, 0].

Model for the health outcome
Although transposable to cross-sectional or time-to-event
outcomes, our primary interest was to estimate the time-
varying effects of a past exposure history on a subsequent
longitudinal health outcome (see Fig. 2). Thus, let’s denote
Yij the measure for individual i (i = 1, ...,N) collected at
time tij ≥ 0 with j = 1, ..., ni. The times and the total num-
ber ni of repeated measures can differ from one individual

to the other. Change over time of Y is modeled using a
linear mixed model [25]. For ease of presentation, we con-
sider here a linear trajectory over time, and thus introduce
two time-varying effects of the exposure, one on the level
at the landmark time (denoted WCIEI ) and one on the
change over time of Y (denotedWCIES):

Yij = α0 + X̃i(tij)�α1 + WCIEIi γI + c0i

+
(
α2+X̃i(tij)�α3+WCIESi γS + c1i

)
× tij + ε̃ij

= α0+ X̃i(tij)�α1+
0∑

tU=−S
γI wI(tU)U∗

i (tU)+ c0i

+
⎛

⎝α2+X̃i(tij)�α3+
0∑

tU=−S
γS wS(tU)U∗

i (tU)+c1i

⎞

⎠

× tij + ε̃ij

(3)

where X̃i(tij) is a vector of covariates at time tij associated
with the vectors of fixed effects α1 and α3; WCIEIi and
WCIESi are the weighted cumulative exposure covariates
associated to the initial level and to the slope of Y, respec-
tively. They are defined according to Eq. 2 with different
weights wI(tU) and wS(tU), and are associated with fixed
effects γI and γS; c0i and c1i are correlated individual ran-
dom intercept and slope, respectively, with ci ∼ N (0, B̃);
ε̃ij are the independent Gaussianmeasurement errors with
mean zero and variance σ 2

ε̃
.

Identification of the trajectories of association
The linear mixed model of the health outcome defined in
Eq. 3 provides two trajectories of association (i.e., time-
varying effects) of the history of past exposure on the
subsequent health outcome, one for the initial level (noted
γ ∗
I (tU)), one for the slope (noted γ ∗

S (tU)):

γ ∗
I (tU) = γIwI(tU)

γ ∗
S (tU) = γSwS(tU)

(4)
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They represent the mean difference of initial level (i.e.
γ ∗
I (tU)) or of change per unit of time (i.e. γ ∗

S (tU)) when
the exposure increases of 1-unit at time tU , adjusted for
other covariates and when the exposure history is stricly
similar at any other time in [−S, 0].

Specification of weights
In some applications, the form of the weight function
w.(tU) (where subscript . refers either to I or S in Eqs. 3
and (4)) is known. However, most often, it has to be
estimated directly from the data. As others previously
[22, 28, 29], we chose to estimate the weight function by
regression using a basis of splines [26], which are flexible
enough to capture a variety of clinically plausible shapes
[30]. Thus, the weight function can be written:

w.(tU) = θ.0 +
K∑

k=1
θ.kBk(tU) =

K∑

k=0
θ.kBk(tU) (5)

where (Bk)k=1,...K refers to the K basis of splines functions
and (θ.k)k=1,...K the coefficients to estimate. For ease of cal-
culation, we denote the intercept θ.0B0(tU) with B0(tU) =
1, ∀ tU .
Although any type of splines could be considered, we

favored natural cubic splines that limit erratic behavior
at the boundary of the time window thanks to linearity
constraints [31]. In that case, the basis of splines is built
from K + 1 knots which are to be chosen inside the time
window [−S, 0]. The number of knots has to be care-
fully determined from the data. A large number of knots
implies high flexibility but it may lead to overfitting. On
the contrary, a small number of knots may result in an
oversmooth estimate that is prone to under-fit bias [31]. In
our work, we considered between one and five inner knots
(i.e., K ∈[ 2, 6]) and relied on the Akaike information cri-
terion [32] to select the final splines basis. In addition, in
the absence of prior knowledge, we considered equidistant
knots.
One additional advantage of approximating the weight

function using splines is that the WCIE can be rewritten
as a linear combination of K + 1 components:

WCIE.i =
0∑

tU=−S
w.(tU)U∗

i (tU)

=
0∑

tU=−S

K∑

k=0
θ.kBk(tU)U∗

i (tU)

=
K∑

k=0
θ.k

0∑

tU=−S
Bk(tU)U∗

i (tU)

︸ ︷︷ ︸

=
K∑

k=0
θ.k Hki

(6)

where Hki (for k=0,. . . ,K) denote intermediate summary
covariates of the exposure history [22, 29, 33].

Identifiability constraints
The time-varying effects of the exposure history defined
in Eq. 4 is overparameterized; coefficients γI and γS,
and the weights wI(tU) and wS(tU) cannot be simultane-
ously estimated from the data without further constraint.
Hauptmann et al. [28] proposed in a case-control study
to estimate the total effect of the history of exposures γ.

and constrain w.(tU) with the constraint
0∑

tU=−S
w.(tU) =

S+ 1. Following Sylvestre et al. [29] and Danieli et al. [22],
we directly estimated the time-varying coefficients with-
out constraining the weights by setting the coefficients γI
and γS to 1. Therefore, the time-varying effects directly
correspond to the weights and Eq. 4 becomes:

γ ∗
I (tU) = wI(tU)

γ ∗
S (tU) = wS(tU)

(7)

With this parameterization, the overall mean effect

of the history of exposure is 1
S+1

0∑
tU=−S

γ ∗
I (tU) =

1
S+1

0∑
tU=−S

wI(tU) and 1
S+1

0∑
tU=−S

γ ∗
S (tU) =

1
S+1

0∑
tU=−S

wS(tU).

Finally, by considering an approximation of the weight
functions by splines (Eq. 6) and by not constraining the
weights (Eq. 7), the linear mixed model defined in Eq. 3
becomes:

Yij = α0 + X̃i(tij)�α1 +
K∑

k=0
θIkHki + c0i

+
(

α2 + X̃i(tij)�α3 +
K∑

k=0
θSkHki + c1i

)

× tij + ε̃ij

(8)

where θIk and θSk are K + 1 unconstrained parameters
to be estimated, and Hki are the intermediate covariates
defined from Eq. 6.

Maximum likelihood estimation using a two-stage
procedure
By sharing the underlying true exposure level U∗

i (tU), the
sub-model for the exposure in Eq. 1 and the health out-
come model in Eq. 3, define a shared parameter joint
model, which would call for the simultaneous estimation
of all parameters in order to avoid any bias [34]. However,
given the peculiar temporal framework of the landmark
approach with the inclusion of subjects present in the
cohort at the landmark time and the distinct windows of
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observation for the two variables, a two-stage estimation
procedure is unlikely to generate any bias – this assump-
tion is confirmed by simulations in “Simulation study”
section.
Let φU = (β , σε , vec(B)) and φY = (α, θ.1, ..., θ.K , σε̃ ,

vec(B̃)) denote the vectors of parameters to be estimated
in the linear mixed model for the exposure (in Eq. 1) and
in the linear mixed model for the outcome (in Eq. 8),
respectively.

First stage
In the first stage, we classically compute the maximum
likelihood estimators of φU . Then, based on the estimated
fixed effects parameters β̂ and the best linear unbiased
predictors of the random effects b̂i, the individual-specific
true exposure can be predicted at any time tU preceding
the initial assessment of the outcome:

Û∗
i (tU) = Xi(tU)�β̂ + Zi(tU)�b̂i ∀ tU ∈[−S, 0] (9)

Second stage
In the second stage, the true underlying exposure level
U∗
i (tU) is replaced by its individual estimation Û∗

i (tU).
Therefore, in the case of an approximation by splines
(as introduced in “Specification of weights” section),

WCIE.i =
K∑

k=0
θ.kHki in Eq. 6 is replaced by ̂WCIE.i =

K∑
k=0

θ.kĤki with Ĥki =
0∑

tU=−S
Bk(tU)Û∗

i (tU). The model for

the outcome thus becomes:

Yij = α0 + X̃i(tij)�α1 +
K∑

k=0
θIkĤki + c0i

+
(

α2 + X̃i(tij)�α3 +
K∑

k=0
θSkĤki + c1i

)
× tij + ε̃ij

(10)

and parameters φY can be again estimated by classical
likelihood maximization.
In the end, the estimated time-varying effects of the pre-

landmark-time exposure on the level of the outcome at the
landmark time (i.e. γ̂ ∗

I ) and on the change over time of the
outcome after the landmark time (i.e. γ̂ ∗

S ) are:

γ̂ ∗
I (tU) = ŵI(tU) =

K∑

k=0
θ̂IkBk(tU)

γ̂ ∗
S (tU) = ŵS(tU) =

K∑

k=0
θ̂SkBk(tU)

(11)

Standard error estimation
One drawback of two-stage estimation approach is that
the variances of the parameters obtained in the second

stage do not account for the variability of the parame-
ters estimated in the first stage. To properly take into
account this variability of the first stage, we used paramet-
ric bootstrap [35]: instead of including in the second stage
Û∗(tU) computed at the maximum likelihood estimate
φ̂U , we generated M bootstrap replicates φUm (for m =
1, ...,M) from the asymptotic distribution N (φ̂U ,̂V (φ̂U))

and computed the corresponding Û∗m(tU) to be included
in the second stage where φ̂Ym and ̂V (φ̂Ym) were then
obtained. The total variance ̂Vtot(φ̂Y ) of the estimated
parameters φ̂Y was obtained as the sum of the intra- and
inter-replicate variances:

̂Vtot(φ̂Y )= 1
M

M∑

m=1

̂V (φ̂Ym)+ 1
M

M∑

m=1
(φ̂Ym−φ̂Ym)(φ̂Ym−φ̂Ym)�

(12)

The variance of γ̂ .(tU) was then easily derived using the
Delta-method [36].

Implementation
The methodology can be implemented in any standard
statistical software. We chose R programming (version
3.6.0) and function hlme of the R package lcmm (ver-
sion 1.7.8) [37] for estimating the linear mixed models.
The codes of the simulation studies are openly available in
GitHub at https://github.com/MaudeWagner/WHistory.

Application to bodymass index history starting at
mid-life and subsequent cognitive trajectories
after age 70
To emphasize the utility of our methodology, we inves-
tigated in a prospective cohort study the relationship of
BMI history collected since mid-life with subsequent cog-
nitive function and cognitive decline in older ages, where
prior data indicate changing relations over time, with the
possibility of reverse causation at older age [3–5].

The Nurses’ Health Study
We relied on data from the Nurses’ Health study (NHS).
NHS began in 1976, when 121,700 female registered
nurses, aged 30-55 years and residing in 11 US states,
returned a mailed questionnaire about their lifestyle and
health, including their weight and height [38]. Thereafter,
the participants continued to complete biennial question-
naires, with updated data. BMI was computed as self-
reported weight in kilograms divided by height in meters
squared; self-reported weight was highly correlated with
measured weight in a previous validation study in 184
participants [39]. From 1995 to 2001, all nurses who had
reached age 70 or older with no history of stroke were
invited to participate in a telephone-based study of cog-
nitive function; the entry in this sub-study corresponds to

https://github.com/MaudeWagner/WHistory
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our landmark time. Among eligible women, 19,415 (92%)
completed the initial validated Telephone Interview for
Cognitive Status (TICS, score range 0 to 41), a telephone-
based modified version of the Mini-Mental State Exami-
nation [40]. Cognitive assessments were repeated at three
occasions approximately every 2 years, with a high follow-
up rate (>90% among those remaining alive at each follow-
up point).
Following our landmark framework (see Fig. 2), we con-

sidered the history of BMI from the entry in the cohort
through the first assessment of TICS (at time 0); more
than 95% of participants had information on BMI up to 24
years before the initial cognitive interview. For the current
analyses, among the 19,415 participants of the cognitive
sub-study, we only excluded 34 women who did not have
at least one measure of BMI between enrollment and the
first cognitive interview or with missing data for educa-
tional level (an important potential confounder), leading
to a study sample of 19,381 women.
At enrollment, the mean age of women was 50.5 years-

old (SD=2.5), 77.9% had the registered nurse diploma as
highest educational level and 34.9% were overweight or
obese whereas only 1.3% were underweight. At the land-
mark time of the initial cognitive interview, mean age was
73.3 years-old (SD=2.3), a majority of women was over-
weight or obese (53.4%), average TICS was 33.7 points
(SD=2.8) and 11.2% of nurses had cognitive impairment.
On average, 11.4 (SD=1.7) BMI measurements per per-
son were collected over the 23.7 years (SD=1.2) of the
window of exposure, followed by 3.2 (SD=1.1) TICS mea-
surements collected subsequently over 4.9 years (SD=2.5).
Figure 3 shows the observed individual trajectories of
BMI in the 24 years of the window of exposure preced-
ing the first cognitive interview and those of the TICS
in the 8 years of the window of cognitive assessment
in a subsample of 150 randomly selected women. In
general, BMI tended to increase over time while TICS
decreased.

Specification of the statistical models
We considered the following linear mixed effect models
for the BMI and the subsequent TICS score:

BMIil = β0 + β1age0i + β2educationi + F(tUil)�β3 + b0i + F(tUil)�b1i + εil

TICSij = α0 + α1age0i + α2educationi +
K∑

k=1
θIkHki + c0i + α3V0ij

+
⎛

⎝α4 + α5age0i + α6educationi +
K∑

k=1
θSkHki + c1i

⎞

⎠ × tij + ε̃ij

(13)

where age0 is the age of women at enrollment into the cog-
nitive sub-study in years; education is the highest degree
of diploma (binary variable: Registered nurse versus Bach-
elor’s, Master’s or Doctorate); V0 is an indicator for the

first cognitive assessment which captures a possible first-
passing effect [41]; F(tUil) is a basis of natural cubic splines
with 4 inner knots located at 20th, 40th, 60th and 80th
percentiles of the elapsed time of exposure (the number
of knots was determined by the AIC); and Hki are the
intermediate covariate summarizing BMI history: Hki =

0∑
tU=−S

Bk(tU)BMI∗i (tU). The weight function of the WCIE

was approximated using natural cubic splines withK−1 =
2 inner knots located at 33th and 66th percentiles (the
number of knots was determined by AIC). β , α, bi, ci, εil,
and εij have been previously defined in “Methods” section.
In order to facilitate the interpretation of the results and
as introduced in the methods, we assumed linear trajec-
tories of cognitive decline. This choice seemed reasonable
since cognition was evaluated in the NHS over a short
follow-up.

Results
Figure 4 represents the trajectory of association of BMI
pre-landmark-time history in the 24 years with the initial
level of TICS (left panel) and its change over time (right
panel). Each point represents the association coefficient of
BMI at a specific year adjusted for age, educational level,
and all BMI history at any other year.
The overall mean association of BMI history over the

whole 24 year period of exposure was significant with
a negative relation to cognition for both the initial level
(-0.0013 [95% CI: -0.0014;-0.0012]) and the annual slope
of decline in TICS (-0.00016 [95% CI:-0.00019;-0.00015]).
In addition, as expected, the association between BMI
exposure history and cognition was non-constant, with
shapes of associations on both the initial level and the
slope of TICS suggesting opposite remote and recent
effects. For the initial level (see Fig. 4, left panel),
higher BMI from -24 to -20 years prior to cognitive
assessment, corresponding to mid-life, were significantly
associated with lower mean TICS at the first cogni-
tive interview assessed after age 70. For example, for
similar confounders (i.e., age and education level) and
BMI trajectories at any times except at -24 years, a 1-
kg/m2 increase of BMI was associated with a lower ini-
tial TICS level of 0.025 point on average (95% CI =
-0.039; -0.009). Between -20 and -12 years, for similar
confounders and BMI trajectories at any times except
at the year evaluated, BMI levels were no longer sig-
nificantly associated with initial TICS level whereas,
from -12 to -5 years, higher BMI levels were again
associated with worse cognitive function, consistently
with that observed earlier in midlife. In contrast, start-
ing around 5 years before cognitive assessment, higher
BMI levels became significantly associated with higher
initial level of TICS (likely reflecting reverse causa-
tion).
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Fig. 3 Observed individual trajectories of body mass index in the 24 years of the window of exposure preceding the first cognitive interview (left
panel) and of Telephone Interview for Cognitive Status (TICS) score over the window of cognitive assessment (right panel) for 150 randomly
selected women from Nurses’ Health Study, United States (1976-2008)

For the slope of TICS (see Fig. 4, right panel), results
showed no significant association with BMI levels from
-24 to -13 years preceding the first cognitive interview.
However, higher BMI levels between -12 and -5 years and
lower BMI levels between -5 years and the first cognitive
interview were associated with worse cognitive decline,
similarly to what observed with the initial level of TICS
(but to a lesser extent).
To help interpret these complex trajectories of associ-

ation, we examined hypothetical BMI trajectories (e.g.,
stable BMI of 25 kg/m2 over the 24 years of exposure) in
relation to subsequent changes in TICS (see Fig. 5). As
observed with the trajectories of association, these predic-
tions by profile of BMI generally showed that women with
greater BMI over time had higher (better) initial mean lev-
els of TICS compared to women who had a stable or a
decreasing BMI with age, reflecting as expected the major
influence of reverse causation. Overall, this application
provides additional evidence that relationships between
BMI and cognition are complex and largely depend on

careful consideration of the window of exposure when
BMI is assessed.
When considering piecewise constant weights instead

of weights approximated by natural cubic splines, the
trajectories of time-varying effects remained similar (see
eFigure 1) suggesting that the splines function well reflec-
ted the data. Moreover, results remained generally the
same after adjusting the linear mixed model of the out-
come for additional potential confounders (i.e., chronic
disease history, smoking status or postmenopausal hor-
mone therapy) categorized as binary variables and col-
lected over the same period as BMI history. Likewise, we
observed similar trajectories of associations of BMI on
cognitive function when we stratified analyses for these
factors (results not shown).

Simulation study
Overview of the simulation design
To validate our methodology and its two-stage estimation
procedure, we generated cohort data that mimicked the
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Fig. 4 Trajectories of associations between body mass index (BMI) history in the 24 years prior to the first cognitive interview on the initial level (left
panel) or the change with time (right panel) of the Telephone Interview for Cognitive Status (TICS) score in the Nurses’ Health Study (N=19,381),
United States (1976-2000). 95% confidence intervals were obtained by parametric bootstrap with 500 replicates. A negative estimate indicates that
increased BMI is related to worse cognition/more cognitive decline and a positive estimate indicates better cognition/less cognitive decline

NHS design and temporal framework of Fig. 2, accord-
ing to a joint model with the shared true exposure as
introduced in “A landmark approach for assessing the
dynamics of association between an intermittently eval-
uated time-varying exposure and a subsequent health out-
come” section. In the main simulation study, we genera-
ted individual-specific visit times for exposure, using a
uniform distribution in [-6, 6] months around theoreti-
cal visits every 2 years from -24 years to landmark time
0. At each visit time, we simulated the observed value of
the exposure U according to a mixed model as defined in
Eq. 13 and considered a 10% proportion of missing visits
completely at random (as observed in NHS). The trajec-
tory of U was modelled according to natural cubic splines
(with 4 inner knots at 20th, 40th, 60th and 80th percentiles
of the observation times) at both the population and indi-
vidual levels (with correlated individual random intercept
and slope which modelled the within-subject correlation
over time), and was adjusted for two covariates mimicking
age at study entry (normal distribution: mean 51, standard
deviation 3) and binary education level (0.25-probability
Bernoulli distribution).
We also generated individual-specific visit times for the

outcome with a uniform distribution in [-6, 6] months
around theoretical visits every 2 years from 0 to 7 years.
We then generated the values of the health outcome Y
according to themixedmodel as defined in Eq. 13 adjusted
for age and education (on both the intercept and the slope)
and the indicator for the first outcome assessment, and
considering a 3% proportion of missing visits completely

at random (as observed in NHS). In this model, the true
underlying exposure level was considered.

Scenarios
Parameters in these generating models corresponded
roughly to those obtained in the application data for
BMI and TICS (parameters provided in eTables 1 and
2) with exception for the trajectory of association with
BMI history for which we assumed three different relevant
scenarios plotted in Fig. 1:

• Scenario A: constant negative association over the
time window of exposure (this corresponds to a
standard CIE) with γI(tU) = −0.05 and
γS(tU) = −0.01 for all tU ∈[−24, 0];

• Scenario B: negative association far upstream of the
outcome assessment and null association at the
approach of the initial assessment using a truncated
centred normal distribution:
γI(tU) =

(
	

(
tU+24

6

)
− 1

)
× 0.1 and

γS(tU) =
(
	

(
tU+24

6

)
− 1

)
×0.03 with tU ∈[−24, 0];

• Scenario C: trajectories of association obtained in the
application between BMI history and TICS trajectory
(see Fig. 4).

In the main simulations, we considered a framework
close to NHS with frequent exposure data (roughly
every two years), a small proportion of missing visits
(10% for the exposure and 3% for the outcome), and a
small measurement error for the exposure (σε = 0.9).
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Fig. 5Mean change of the TICS score over the study course following 5 theoretical BMI history profiles defined all over the whole 24 years
preceding the first cognitive interview: (i) linear decrease of 5 points of BMI (purple lines), (ii) linear decrease of 10 points of BMI (blue lines), (iii)
stable BMI (dashed lines), (iv) linear increase of 5 points of BMI (pink lines), (v) linear increase of 10 points of BMI (green lines). For example, on the
top left panel, women who had a BMI of 25kg/m2 24 years prior to the first cognitive assessment and linearly dropped to a BMI of 20kg/m2 at the
initial cognitive interview (i.e. legend labelled “25 >20”) have an initial average TICS level of 33.8 points that decreases over time to 32.4 points after
7 years of follow-up

However, to further evaluate the methodology in less
favorable situations, we also considered cases where (i)
the exposure was measured every 4 years, (ii) the pro-
portion of missing data was larger for the exposure
(20%), and (iii) the error of measurement was larger
(σε = 1.8).

Results
We systematically considered 500 replicates of samples of
1,000 participants each. For each scenario, we focused on
the estimated trajectories of association with both the ini-
tial level and the slope of the repeated outcome, and on
the coverage rate of its pointwise 95% confidence interval
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Fig. 6 Boxplots of the trajectory of association between the exposure history over the 24 years prior to the initial health outcome assessment on the
initial level (top left panel) or the slope (top right panel) of the outcome of interest across 500 simulations of 1000 subjects each, and corresponding
coverage rates of the 95% pointwise confidence interval (lower panels) for Scenario B (distant negative effect)

obtained by parametric bootstrap. As shown in Fig. 6 for
Scenario B, the two-stage estimation approach retrieved
without bias the true generated trajectory of association,
and the parametric Bootstrap provided satisfying cover-
age rate of the 95% confidence interval around the 95%
nominal value. The same conclusions were drawn for
Scenario A and C with other shapes of trajectories of
association (see eFigure 2 and eFigure 3, respectively).
Furthermore, when considering less repeated measure-

ment points for exposure (see eFigures 4, 5, 6), higher rate

of missing data (see eFigures 7, 8, 9), higher measurement
error (see eFigures 10, 11, 12), or higher number of inner
knots of cubic splines in the definition of the BMI history
(see eFigure 13), parameters were again well estimated
with negligible bias and no departure from the expected
95% coverage rate of the 95% confidence interval. Over-
all the simulation study demonstrated that in this specific
temporal landmark framework, the two-stage procedure
combined with parametric bootstrap provided a correct
inference.
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Discussion
We proposed a flexible approach for estimating the tra-
jectory of association between a time-varying exposure
of any kind (e.g., related to lifestyle, occupation, environ-
mental toxins), and a subsequent health outcome when
exposure and outcome are assessed non-concurrently. We
relied for that on the WCIE methodology [8, 9] that
we incorporated within a landmark approach to handle
the non-concurrent windows for the exposure and out-
comes. We followed previous works in WCIE and directly
estimated the weights assigned to past exposures from
the data using flexible natural cubic splines [31]. How-
ever, in contrast with most previous WCIE approaches
that are restricted to complete error-free exposure, our
approach considers that the exposure is endogenous,
prone to measurement error, and assessed at discrete
and individual-specific times; this naturally handles the
intermittent missing visits usually encountered in cohort
studies and limits the biases induced by neglecting the
measurement error that is most likely present in many
epidemiological contexts. Mauff et al. [20] had previously
extended WCIE to handle endogenous exposure data.
However, their method was limited to concomitant expo-
sure and outcome assessments while in life-long epidemi-
ology, exposures remote from the outcome risk-period are
also of great interest. In addition, they had only considered
time-to-event outcomes while we wanted to also con-
sider repeated outcomes that are frequently encountered
in longitudinal studies. Danieli et al. [22] have just pro-
posed a WCIE methodology for repeated outcome data.
However, their method is limited to exogenous complete
error-free exposures, and evaluates the cumulative effect
of the exposure on the current level of the outcome while
in etiological studies such as ours, the interest is usually in
the effect of the exposure on the rate of change [42].
Other methods were proposed in the literature to assess

the association between two longitudinal processes. By
modeling the association through correlated individual
random effects, the bivariate mixed-effect model [43]
can describe the correlation structure between the expo-
sure and the outcome but usually fails at providing a
proper evaluation of the association of the exposure on
the outcome. Cross-lagged models (CLM) [44] and causal
dynamic models (CDM) [45] circumvent this problem by
directly analyzing the effect of the exposure assessed at a
current time on the subsequent trajectory of the outcome.
While CLM focuses on the outcome level and is intrin-
sically linked to the discrete visit process, CDM focuses
on the change of the outcome in continuous time and is
thus to be favored in etiological studies. However, to the
best of our knowledge, none of them were extended to
acount for the history of the exposure through a WCIE as
we proposed, and both methods are limited to concomi-
tant exposure and outcome assessments. Thanks to the

separation between the assessment periods of the expo-
sure and the outcome in the landmark approach, we were
able to correctly estimate the time-varying effects of the
exposure history using a two-stage approach, as demon-
strated by simulations. This two-stage procedure makes
our methodology easy to implement in standard statisti-
cal software, and easy to adapt to other contexts as long
as exposure and outcome are not assessed simultaneously.
First, any type of outcome could be considered such as
time-to-event or binary endpoint as usually encountered
in case-control studies. Note however that (i) in case-
control studies (unlike prospective studies or case-control
studies nested within a cohort), exposure data are col-
lected retrospectively from the landmark time, when the
groups were selected, which may result in non-differential
measurement errors; (ii) with a time-to-event endpoint,
our approach would still require that the exposure time-
window ends at the landmark time. Second, non-ignorable
dropout for the repeated outcome could be easily taken
into account by estimating the outcome parameters in
the second stage using a shared random-effect model
[46] rather than a standard mixed model. Third, with
a repeatedly-measured outcome, any relevant nonlinear
shape of trajectory over time could be considered instead
of a linear trajectory. Fourth, the approach could be eas-
ily adapted to handle other types of exposures, such as
categorical variables, by considering a generalized linear
mixed model in the first stage. Fifth, the NHS women
were highly homogeneous in age and we used the same
time scale (i.e., elapsed time since entry in cognitive sub-
study) to (i) model the underlying true exposure and (ii)
define the WCIE; however, in other applications, users
could consider other timescales, and even two different
timescales, such as age for the exposure trajectory and
years before the landmark for the weights. Finally, for ease
of epidemiological interpretation we defined the WCIE as
the sum of weighted exposures at each time unit over the
[−S, 0] period but the integral over the continuous time
window can also be considered, and leads to the same
trajectory of association as illustrated in supplementary
eFigure 14 with the trajectory of BMI association in the
NHS. Simulation studies showed that the proposed two-
stage estimation model recovers various sets of shapes
of the true weight function (i.e., constant over time or
time-varying), and provides satisfactory estimates of the
strength of the associations. In particular, splitting the
estimation procedure into two parts does not seem to
lead to bias when the exposure and outcome are non-
concurrent, even in the case of poorer exposure infor-
mation (i.e., higher missing data or higher time-interval
between two visits or higher measurement error).
The method presents however several limitations that

warrant consideration. First, while our estimates are capa-
ble of capturing the shape of the weight function, the
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splines functionsmay not accurately reflect rapid and sud-
den changes in the relationship [29]. If these effects are
expected, the user can improve the model by including
one or more knot(s) in regions where a strong curvature is
anticipated or by considering a piecewise constant trajec-
tory of association instead of splines. Second, ourmethod-
ology assumes a linear association between the exposure
at each time and the outcome. Extensions to account for
nonlinear associations both over time and over the expo-
sure range is a direction for future research. Third, we
considered a standard linear mixed model for the expo-
sure which assumes zero-mean homoscedastic Gaussian
independent measurement errors. Additional simulations
showed that the method remained robust to errors with
heavier tails of distribution when these errors were cen-
tered around 0 (see eFigure 15) but the method was likely
to provide biased estimates in the case of errors not cen-
tered around zero (see eFigure 16). In epidemiological
contexts where the distribution of the errors is expected to
be non-standard (e.g., when an under-reporting is likely),
the linear mixed model should thus be revised accord-
ingly. Finally, as in previous WCIE methods, we only
considered one time-varying exposure while it could be
of interest in the future to simultaneously examine several
exposure histories that are known to be interrelated (e.g.,
BMI and physical activity, or multi-pollutant/chemical
mixtures).
Applied to the association between BMI history starting

at midlife and cognition at older ages, our methodol-
ogy confirmed the complex and age-dependent relation-
ship. Indeed, with no a priori assumptions on the shape
of relations, and after controlling for BMI history, age
and educational level, we found that higher BMI levels
at midlife but lower BMI levels at older ages were sig-
nificantly associated with poorer cognition after the age
70 in women. This bidirectional relationship is consis-
tent with previous studies, including our own work, that
showed that obesity at middle age but low BMI late
in life were associated with subsequent development of
cognitive impairment and dementia [3–5, 47, 48]. Note
however that our interpretations are based on a spe-
cific population of generally healthy women and that
these results cannot be generalized to populations with
other socioeconomic or health status. Although a non-
linear J-shaped association (i.e., underweight and over-
weight are associated with an increased risk of worst
cognition) was sometimes reported for BMI in the liter-
ature [47], this is unlikely to be the case in our sample
in which very few nurses were underweight during the
whole exposure period. Finally, we note that the follow-
up rate was high in the NHS and there was little or
no attrition so that we did not need to account for
death or possible informative dropout in our applica-
tion.

Conclusions
This methodology offers great flexibility in capturing
complex dynamic relationships over the life-course, but
also allows application to the majority of epidemiologi-
cal contexts when the shape of the effects is not known
and even more importantly when the history of expo-
sure is measured incompletely and with error. Overall,
this method may significantly contribute to broadening
the applications of WCIE for a variety epidemiological
contexts.
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Additional file 1: eFigure 1. Trajectories of associations between the
body mass index history in the 24 years prior to the first cognitive interview
on the initial level (left panel) or the slope (right panel) of the Telephone
Interview for Cognitive Status (TICS) score approximated by natural cubic
splines (in black) or 5-year piecewise constants (in blue) in the Nurses’
Health Study (N=19,381), United States (1976-2000). 95% confidence
intervals were obtained by parametric bootstrap with 500 replicates.

Additional file 2: eTable 1. Parameter values used for the generation of
the exposure data in the main simulation scenario.

Additional file 3: eTable 2. Parameter values used for the generation of
the outcome data in the main simulation scenario.

Additional file 4: eFigure 2. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest across 500 simulations of 1000 subjects
each, and corresponding coverage rates (low panels) for Scenario A
(constant effect).

Additional file 5: eFigure 3. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest across 500 simulations of 1000 subjects
each, and corresponding coverage rates (low panels) for Scenario C (effect
mimicking the associations between BMI and TICS in the Nurses’ Health
Study).

Additional file 6: eFigure 4. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering less repeated
information for exposure (i.e., measured every 4 years instead of every 2
years) across 500 simulations of 1000 subjects each, and corresponding
coverage rates (low panels) for Scenario A (constant effect).

Additional file 7: eFigure 5. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering less repeated
information for exposure (i.e., measured every 4 years instead of every 2
years) across 500 simulations of 1000 subjects each, and corresponding
coverage rates (low panels) for Scenario B (distant negative effect).

Additional file 8: eFigure 6. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering less repeated
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information for exposure (i.e., measured every 4 years instead of every 2
years) across 500 simulations of 1,000 subjects each, and corresponding
coverage rates (low panels) for Scenario C (effect mimicking the
associations between BMI and TICS in the Nurses’ Health Study).

Additional file 9: eFigure 7. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering a larger proportion of
missing data for the exposure (i.e., 20% instead of 10%) across 500
simulations of 1000 subjects each, and corresponding coverage rates (low
panels) for Scenario A (constant effect).

Additional file 10: eFigure 8. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering a larger proportion of
missing data for the exposure (i.e., 20% instead of 10%) across 500
simulations of 1000 subjects each, and corresponding coverage rates (low
panels) for Scenario B (distant negative effect).

Additional file 11: eFigure 9. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering a larger proportion of
missing data for the exposure (i.e., 20% instead of 10%) across 500
simulations of 1000 subjects each, and corresponding coverage rates (low
panels) for Scenario C (effect mimicking the associations between BMI and
TICS in the Nurses’ Health Study).

Additional file 12: eFigure 10. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering a larger error of
measurement (i.e., σE = 1.8 instead of 0.9) across 500 simulations of 1000
subjects each, and corresponding coverage rates (low panels) for Scenario
A (constant effect).

Additional file 13: eFigure 11. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering a larger error of
measurement (i.e., σE = 1.8 instead of 0.9) across 500 simulations of 1000
subjects each, and corresponding coverage rates (low panels) for Scenario
B (distant negative effect).

Additional file 14: eFigure 12. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering a larger error of
measurement (i.e., σE = 1.8 instead of 0.9) across 500 simulations of 1000
subjects each, and corresponding coverage rates (low panels) for Scenario
C (effect mimicking the associations between BMI and TICS in the Nurses’
Health Study).

Additional file 15: eFigure 13. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) and slope (top right
panel) of the outcome of interest when considering a higher number of
inner knots of cubic splines in the definition of the BMI history (i.e., 3 inner
knots located at the 25th, 50th, and 75th percentiles instead of 2 located at
the 33th and 66th percentiles) across 500 simulations of 1000 subjects
each, and corresponding coverage rates (low panels) for Scenario C (effect
mimicking the associations between BMI and TICS in the Nurses’ Health
Study).

Additional file 16: eFigure 14. Trajectories of associations between the
body mass index history calculated every year (in black) or continuously (in
blue) in the 24 years prior to the first cognitive interview on the initial level
(left panel) or the slope (right panel) of the Telephone Interview for
Cognitive Status (TICS) score approximated by natural cubic splines in the
Nurses’ Health Study (N=19,381), United States (1976-2000). 95%
confidence intervals were obtained by parametric bootstrap with 500
replicates.

Additional file 17: eFigure 15. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health

outcome assessment on the initial level (top left panel) or the slope (top
right panel) of the outcome of interest across 500 simulations of 1000
subjects each, and corresponding coverage rates of the 95% pointwise
confidence interval (lower panels) for Scenario B (distant negative effect) in
the context of asymmetric distribution of error measurements (Cauchy
distribution with location 0 and scale 0.7).

Additional file 18: eFigure 16. Boxplots of the trajectory of association
between the exposure history over the 24 years prior to the initial health
outcome assessment on the initial level (top left panel) or the slope (top
right panel) of the outcome of interest across 500 simulations of 1000
subjects each, and corresponding coverage rates of the 95% pointwise
confidence interval (lower panels) for Scenario B (distant negative effect) in
the context of asymmetric distribution of error measurements (Cauchy
distribution with location -1 and scale 0.7).
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