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Abstract

Background: Adverse effects of drugs are often identified after market introduction. Post-marketing
pharmacovigilance aims to detect them as early as possible and relies on spontaneous reporting systems collecting
suspicious cases. Signal detection tools have been developed to mine these large databases and counts of reports are
analysed with disproportionality methods. To address disproportionality method biases, recent methods apply to
individual observations taking into account all exposures for the same patient. In particular, the logistic lasso provides
an efficient variable selection framework, yet the choice of the regularization parameter is a challenging issue and the
lasso variable selection may give inconsistent results.

Methods: We propose a new signal detection methodology based on the adaptive lasso. We derived two new
adaptive weights from (i) a lasso regression using the Bayesian Information Criterion (BIC), and (ii) the class-imbalanced
subsampling lasso (CISL), an extension of stability selection. The BIC is used in the adaptive lasso stage for variable
selection. We performed an extensive simulation study and an application to real data, where we compared our
methods to the existing adaptive lasso, and recent detection approaches based on lasso regression or propensity
scores in high dimension. For both studies, we evaluate the methods in terms of false discoveries and sensitivity.

Results: In the simulations and the application, both proposed adaptive weights show equivalent or better
performances than the other competitors, with an advantage for the CISL-based adaptive weights. CISL and lasso
regression using BIC are solid alternatives.

Conclusion: Our proposed adaptive lasso is an appealing methodology for signal detection in pharmacovigilance.
Although we cannot rely on test theory, our approaches show a low and stable False Discovery Rate in all simulation
settings. All methods evaluated in this work are implemented in the adapt4pv R package.

Keywords: Adaptive logistic lasso, BIC, Variable selection, Drug safety signal, Spontaneous reporting

Background
Because the conditions of exposure of an active drug in
real life are very different from those of clinical trials, the
adverse effects of drugs are often identified once they are
introduced on the market. This may be due to a com-
plex interaction with subcategories of population, or to a
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long latency period after exposure. Post-marketing phar-
macovigilance aims to detect as early as possible these
adverse effects that have not been identified during the
safety assessment stages of drug development. Pharma-
covigilance systems rely on large databases of individual
case safety reports of adverse events (AEs) suspected to
be drug-induced. Many countries currently have a spon-
taneous reporting system as well as supranational entities
such as the European Medicines Agency or the Uppsala
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Monitoring Centre in charge of pharmacovigilance for
the World Health Organization. In France, the national
pharmacovigilance database is maintained by the National
Agency for the Safety of Drugs and Health Products
(Agence Nationale de Sécurité du Médicament et des Pro-
duits de Santé, ANSM). It contained around 450 000
reports at the end of December 2017. Currently, about
36 000 reports are reported annually.
Several automated signal detection tools have been

developed to mine these large amounts of data in order to
highlight suspicious AE-drug combinations. To draw defi-
nite conclusions, these signals need further expert investi-
gations or additional studies. This is why it is important to
generate a reasonable number of signals with as few false
associations as possible for further analysis. Thus, perfor-
mances of these signal detection approaches are evaluated
according to their ability to identify toxicities truly asso-
ciated with drugs as well as their ability to not generate
a signal when there are no relationship between a drug
and an adverse event. Classical signal detection meth-
ods are based on disproportionality analyses of counts
aggregating patients’ reports for each drug-AE pair [1–4].
These methods have been extended to account for mul-
tiple comparison testing in order to provide alternative
signal ranking and detection thresholds based on false
discovery rate (FDR) estimates [5–7]. Other methods for
aggregated counts relying on likelihood ratio tests have
also been proposed [8, 9].
Disproportionality methods are subject to the masking

effect bias and do not account for co-prescription [10–13].
In recent years, multiple logistic regression-based sig-
nal detection methods which rely on lasso penalization
[14, 15] have been proposed to address these limita-
tions. Unlike disproportionality methods, they are directly
applied to individual spontaneous reports rather than to
aggregated counts. For an observation, the outcome is the
presence or absence of a given AE, and the covariates
are all drug presence indicators. The objective of phar-
macovigilance therefore pertains to the variable selection
framework by aiming to identify the drugs potentially
associated with AE among the multitude of candidate
covariates. The drug exposure matrix is thus large, binary
and extremely sparse, and there is also a large imbalance
between the presence and absence of a given AE. More
recently, signal detection methods based on propensity
scores (PS) in high dimension have also been proposed
as an alternative to address disproportionality method
biases [16–18].
Lasso penalization is a computationally efficient way

to perform regression in high dimension [19]. The parsi-
mony induced by the L1 norm is also an appealing feature
of this algorithm. Nevertheless, while cross-validation is
classically used for the purpose of prediction, it is less

straightforward to choose the best regularization param-
eter controlling the sparsity of the model in the variable
selection framework. Furthermore, it has been shown that
there is no proper regularization parameter that allows the
lasso to enjoy the oracle properties defined by Fan and Li
[20]. This means for instance that the lasso variable selec-
tion may be inconsistent. Subsampling strategies such as
stability selection [21] have been proposed to lessen the
importance of the choice of regularization parameter, and
the class-imbalanced subsampling lasso (CISL) [15] was
specifically designed to account for the large imbalance in
spontaneous reporting data.
The adaptive lasso is an alternative approach to improve

the variable selection properties of the lasso [22]. It
consists in using adaptive weights (AWs) for penalizing
covariates differently in the L1 penalty. Originally, AWs
were derived from coefficients estimated by maximum
likelihood. A high-dimensional version of the adaptive
lasso has been proposed by Bühlmann and Van De Geer
[23] in the linear case, in which the AWs are derived from
the coefficients obtained by a first lasso regression. Huang
et al. [24] proposed the same approach in the logistic case.
They also showed in another work that in the linear case,
AWs derived from univariate regression coefficients result
in good recovery properties under certain conditions [25].
To our knowledge, the adaptive lasso has never been used
for signal detection in pharmacovigilance.
In this work, we present a new automated signal detec-

tion strategy based on the adaptive lasso which aims at
improving the guidance of the variable selection operated
by the lasso through adaptive penalty weights specific to
each covariate. This new strategy also involves the use
of the Bayesian Information Criterion (BIC). We propose
two new AWs derived from (i) a lasso logistic regres-
sion for which the regularization parameter is chosen
using the BIC, and (ii) CISL. These AWs are then incor-
porated into a lasso logistic regression using the BIC to
choose the regularization parameter. We compare both
versions of our approach to (i) more classical implemen-
tations of the adaptive lasso in high dimension [23–25],
(ii) lasso regressions considering cross-validation, BIC
or permutations [26, 27] for choosing the regulariza-
tion parameter, (iii) CISL and (iv) the propensity score
in high dimension-based approaches that were recently
proposed. We conducted an extensive simulation study
exploiting real drug exposure data from the French phar-
macovigilance database in order to preserve the sparsity
of the covariates. We also present an empirical study on
the French national database using a large and recently
published reference set pertaining to drug-induced liver
injuries (DILI) [28, 29]. Performances of all the presented
methods are evaluated in terms of false discoveries and
sensitivity.



Courtois et al. BMCMedical ResearchMethodology          (2021) 21:271 Page 3 of 17

Methods
We first present the lasso-based detection approaches.
Then we detail the detection approaches based on the
propensity score in high dimension. In a third step, we
detail implementations of adaptive lasso proposed in the
literature and we present our proposals based on the
adaptive lasso.

The logistic lasso
Let N denote the number of spontaneous reports (i.e. the
number of observations) and P the total number of drug
covariates. Let X denote the N × P binary matrix of drug
exposures and let xi be a 1× P vector of covariates for the
ith observation. Let y be the N-vector of binary responses
that indicates the presence or absence of the AE of inter-
est. For i ∈ {1, ...,N}, the corresponding multiple logistic
model is

logit(Pr(yi = 1|xi)) = β0 +
P∑

p=1
βp xip, (1)

where β0 is the intercept and β is a P-vector of regression
coefficients associated with drug covariates. Although we
are not in the P >> N context, P is typically very large,
which can cause some numerical problems with classi-
cal regression. The penalized logistic lasso consists in
estimating:

(
β̂0λ, β̂λ

) = argmax(β0,β)

{
l ((β0,β) , y,X) − pen(λ)

}
,

where l is the log-likelihood of model (1), λ is the regular-
ization parameter and pen(λ) is defined as

pen(λ) = λ|β|1 = λ

P∑

p=1
|βp|. (2)

Thanks to the L1 penalty in (2), some coefficients of
β̂λ are shrunk to exactly zero, so the covariates associ-
ated with these coefficients are not retained in the model.
By controlling the amount of penalization, the λ parame-
ter in the lasso regression is closely related to the number
of non-zero estimated coefficients. Since the aim in phar-
macovigilance is to detect deleterious associations with
the outcome, we are only interested in covariates with a
positive associated penalized coefficient in β̂λ.

Penalization parameter selection
We considered three strategies for selecting the penaliza-
tion parameter: cross-validation, BIC and permutations.
One round of cross-validation involves partitioning the
dataset into nf subsets, called folds: nf − 1 are used as
a training set, i.e. the model is estimated on this set, and
the remaining fold is used as a validation set where a
prediction performance metric (e.g. area under curve or
deviance) is calculated. This procedure is repeated so that
each fold is used only once as a validation set. An average

value of the performance metric and a standard devia-
tion are then calculated over the nf obtained values. In
the lasso regression context, cross-validation is performed
for each tested λ value. The selected λ according to cross-
validation is the one with the best result in terms of the
prediction performance metric selected. In this work, we
used the deviance, and we set nf to 5.
An alternative strategy for selecting the penalization

parameter is to rely on model selection criteria such as the
BIC [15, 27]. For each tested λ, we implemented the BIC
as follows:

BICλ = −2lλ + df(λ) ln(N), (3)

where lλ is the log-likelihood of the classical multiple
logistic regressionmodel, which includes the set of covari-
ates with a non-zero coefficient in β̂λ, and df(λ) = |̂βλ �=
0|. If different λs lead to the same subset of retained
covariates, then the non-penalized models resulting from
these λs are the same, as is the BIC. Consequently, this
approach selects the subset of covariates that leads to the
classical model which minimizes the BIC defined in (3),
rather than selecting a particular λ.
An approach based on permutations for selecting the

penalization parameter in lasso regression was proposed
by Sabourin et al. [27] based on the suggestion of Ayers
and Cordell [26]. Denoting π as any permutation of
{1, ...,N}, let yπl = (yπ(1), ..., yπ(N)) be a permuted version
of the outcome y with 1 ≤ l ≤ K . A lasso regression is
performed for each of these permutations by regressing
yπl on the original data set X. One then obtains λmax(yπl ),
i.e. the smallest value of the penalty parameter, such that
no covariate is selected in the lasso regression on yπl .
As in Sabourin et al. [27], we used the median value of(
λmax(yπ1), ..., λmax(yπK )

)
in a lasso regression performed

with the original outcome y. In this work, we set K = 20.
In the following, we refer to the approach involv-

ing cross-validation, BIC or permutation to choose the
penalty parameter as lasso-cv, lasso-bic and lasso-perm,
respectively.

Class-imbalanced subsampling lasso
To circumvent the penalization parameter selection issue
in lasso regression, Meinshausen and Bühlmann proposed
the stability selection algorithm [21]. Briefly, it consists of
perturbing the data by subsampling many times, imple-
menting lasso regression on these subsamples randomly
drawn without replacement, and choosing covariates that
occur in a large fraction of the resulting selected sets
induced by the lasso path of regularization. Ahmed et al.
proposed a variation of this method to account for the
large imbalance of the outcome that occurs in pharma-
covigilance databases: the CISL algorithm [15]. In CISL,
subsamples are drawn following a nonequiprobable sam-
pling scheme with replacement in order to allow a better
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representation of individuals who experienced the out-
come of interest. Lasso regressions are performed in each
of these samples and the following quantity is computed:

π̂b
p = 1

E

E∑

η=1
1

[
β̂

η,b
p > 0

]
, (4)

where E is the maximum number of covariates selected
by all the lasso regressions, η ∈ {1, ..,E} is the number of
covariates selected and β̂

η,b
p is the regression coefficient

estimated by the logistic lasso for drug p, on sample b ∈
{1, ..,B} for a model including η covariates. Thus, for each
drug, an empirical distribution of π̂b

p is obtained over all
B samples. The drug covariate is then selected if a given
quantile of the distribution of π̂b

p is non-zero. In this work,
we considered the covariate sets established with the 10%
quantiles of these distributions following Ahmed et. al.’s
recommendation.

Propensity score approaches
The propensity score (PS) is defined as the probability of
being exposed to a drug of interest given the observed
covariates [30]. It is a balancing score, which means
that conditionally on the PS, treatment exposure and the
observed covariates are independent, so it is possible to
deal with measured confounding. Recently, this method-
ology was extended to exploit large healthcare databases.
In this framework, covariate selection algorithms are used
to automatically select potential confounders for inclusion
in the PS estimation model of a given drug exposure [31].
In Courtois et al. [17], several PS-based approaches were

proposed in the context of signal detection from spon-
taneous reporting data. These approaches consisted in
estimating a PS for each drug reported in the database.
The PSs were built by selecting among all the other drugs
those to be included in the PS estimation model. Because
of the large number of candidate covariates to be included
in these models, covariate selection algorithms were used
and compared. Here we used the lasso-bic approach pre-
sented earlier to select the set of covariates to be included
in the PS logistic regression model. This procedure was
repeated for all drugs in the database. Following Courtois
et al, we accounted for these PSs in the final regres-
sion model through adjustment and weighting with two
different weightings for the latter: Inverse Probability of
TreatmentWeighting (IPTW) [32] andMatchingWeights
(MW) [33]. We also investigated the weights truncation
approach with IPTW. This consists in assigning to indi-
viduals whose corresponding weight is below the rth per-
centile or above the (1 − r)th percentile of weights, the
value of the rth or (1 − r)th percentile, respectively [34].
Here we chose to set r = 2.5%.

For a given PS-based approach, each drug was evaluated
using one-sided hypothesis testing. To account for multi-
ple testing, we used the procedure proposed by Benjamini
and Yekutelli [35] to control the FDR under arbitrary
dependence assumptions. We set the FDR level at 5%.
In the following, we refer to the adjustment on the PS,
the weighting on the PS with weights IPTW, IPTW with
truncation, and MW as ps-adjust, ps-iptw, ps-iptwT and
ps-mw, respectively.

Adaptive lasso and extensions for signal detection
The adaptive lasso
As defined by Fan and Li [20], an optimal procedure in
statistical learning should have the following oracle prop-
erties: (i) identifies the right subset of true predictors,
and (ii) produces unbiased estimates. In their work, they
showed that the lasso procedure does not enjoy these ora-
cle properties. Indeed, there are some scenarios in which
the lasso variable selection could be inconsistent. Further-
more, with an equal penalty for all covariates, the lasso
tends to overpenalize the relevant ones and to produce
biased estimates for true large coefficients. To overcome
this drawback, Zou [22] proposed the adaptive lasso in
which AWs are used to penalize covariates differently in
the L1 penalty:

pen(λ) = λ

P∑

p=1
wp|βp|.

The penalty applied to the covariate p is defined by λp =
λ × wp. The higher the value of the weight wp, the more
the variable p is penalized and the less likely the variable is
to be included in the model. By assigning a higher penalty
to small coefficients and a lower penalty to large ones, the
adaptive lasso makes it possible to consistently select the
right model and produce unbiased estimates. Thus, Zou
showed in his work that under certain conditions for the
AWs, the adaptive lasso enjoys the oracle properties.
To build the AWs, Zou used an initial consistent esti-

mator of β∗, the P-vector of regression coefficients. To
this end, he considered β̂

mle
p the maximum likelihood esti-

mate for covariate p and defined the associated penalty
weight wp = 1

|β̂mle
p |γ , with γ > 0. However, in the high-

dimensional context, it is non-trivial to find a consistent
estimate for constructing the AWs since computing the
maximum likelihood is not feasible.
In the linear case, Bühlmann and Van De Geer [23]

proposed to use the penalized regression coefficients esti-
mated by a lasso regression to determine these AWs con-
sidering γ = 1. In both the lasso and the adaptive lasso,
the penalization parameter λ was selected through cross-
validation. This two-stage procedure, which involves an
initial lasso step with cross-validation, was proposed in
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the logistic case under the name of iterated lasso [24]. By
denoting β̂

lcv the P-vector of lasso regression coefficients
determined with lasso-cv, the AWs associated with the
drug covariate p in the adaptive lasso stage are defined as:

wlcv
p =

⎧
⎨

⎩

1
|β̂ lcv

p | if β̂ lcv
p �= 0

∞ if β̂ lcv
p = 0

Thus, a covariate that has not been selected with lasso-cv
in the first stage is automatically excluded in the adaptive
lasso stage. In the following, we refer to this approach as
adapt-cv.
In the linear case, Huang et al. [25] showed that under

certain conditions, using univariate regression coeffi-
cients to determine the AWs presents nice properties.
By denoting β̂univ

p the univariate coefficient associated to
drug covariate p, we defined the following AWs associated
with the drug covariate p in the adaptive lasso stage:

wuniv
p = 1

|β̂univ
p | .

As in the work of Huang et al., we chose the penalisation
parameter according to cross-validation in the adaptive
lasso stage. We refer to this approach as adapt-univ.
Following Ballout et al. [36], the optimal λ for cross-

validation-based adaptive lasso is obtained by deriving
adaptive weights for each training set (i) directly for adapt-
univ or (ii) using an embedded cross-validation for adapt-
cv. This optimal λ is then used on the full data to obtain
the final adaptive lasso estimates.

Extending adaptive lasso for pharmacovigilance
Although adaptive lasso is an appealing variable selection
procedure, to our knowledge it has never been used for
signal detection. Since the aim in pharmacovigilance is to
select the right subset of drugs associated with an AE, we
sought to develop a signal detection approach by enhanc-
ing the performance of this method in terms of variable
selection. To this end, we first use the BIC as defined above
to identify the final subset of covariates in the adaptive
lasso stage instead of cross-validation. We also propose
two new AWs that aim to under-penalise variables that
have been considered relevant by lasso-based variable
selection methods, and to increase the penalty applied to,
or even exclude, variables considered as less relevant.
The first one consists in using the BIC in the first stage.

By denoting β̂
lbic the P-vector of unpenalized regression

coefficients estimated in the first stage with lasso-bic,
we define the following AWs associated with the drug
covariate p in the adaptive lasso stage by:

wlb
p =

⎧
⎨

⎩

1
|β̂ lbic

p | if β̂ lbic
p �= 0

∞ if β̂ lbic
p = 0

A covariate that has not been selected by the lasso-bic in
the first stage is automatically excluded in the adaptive
lasso stage.
The second proposed AWs are derived from the CISL

approach. We first compute CISL by considering a non-
zero constraint in calculating of the quantity (4) instead of
the original positive constraint:

τ̂ bp = 1
E

E∑

η=1
1[ β̂η,b

p �= 0] .

This quantity measures the proportion to which a vari-
able has been selected in E first models provided by the
lasso regularization path. We define AW for covariate p
according to the B-vector τ̂ p as:

wcisl
p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
B

if ∀b ∈ {1, ...,B} τ̂ bp > 0

∞ if ∀b ∈ {1, ...,B} τ̂ bp = 0

1 − 1
B

∑B
b=1 1[ τ̂ bp > 0] otherwise.

Thus, the more τ̂p is non-null over the B subsamples,
the smaller is its associated AW.
In the following, we refer to these approaches as adapt-

bic and adapt-cisl.

Simulation study
We performed a simulation study to assess the perfor-
mances of the proposed adaptive lasso strategies and to
compare all themethods described above.We investigated
a large number of scenarios in terms of event prevalence,
number of true signals, exposure frequency and strength
of association. We compared the ability of each method
to detect true signals and not detect false signals through
sensitivity and FDR.

Comparison set-up
We simulated the occurrence of a given AE accord-
ing to a logistic regression model yi ∼ Bernoulli(αi)
with αi = 1

1+exp
(
−β0−∑P

p=1 βpxip
) . As for the drug

exposure matrix, we used the French pharmacovigi-
lance database for the period 2000-2017 which contains
452 914 individual reports and 2 378 different drugs (see
“Real-world data analysis” section for a description of
the data). For each replication of each scenario, we first
randomly selected 100 000 individual reports out of the
452 914 individual reports. For each of these datasets, we
then randomly selected a subset of 500 drugs among those
reported more than 10 times. Thus, for each simulation
scenario,N and P were set at 100 000 and 500 respectively.
We investigated 27 scenarios that differed according to:
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• the value of the intercept β0, the latter being used to
simulate outcomes of varying scarcity
β0 ∈ {−2,−4,−6};

• the number of drugs associated with the outcome
among the 500 drug covariates: nTP ∈ {0, 5, 20};

• the value of the regression coefficients for the nTP
true predictors: βTP ∈ {1, 2};

• the reporting frequency of the true predictors (if any):
frequent (at least 100 reports over 100 000) or rare
(between 20 and 100 reports over 100 000).

Note that for each scenario, the nTP true predictors were
chosen randomly for each of the 500 replications.
In order to measure the relevance of using the BIC with

the adaptive lasso, we included a method based on the
same AWs as adapt-univ in the comparison. However,
instead of cross-validation, we used the BIC to perform
variable selection in the adaptive lasso stage. In the fol-
lowing we refer to this approach as adapt-univ-bic. For the
sake of clarity, Table 1 summarizes all the implemented
signal detection approaches based on the adaptive lasso.
For each approach, it details how the AWs are obtained
and what variable selection method is used in the adaptive
lasso stage.
We declared as signals all drugs positively associated

with the outcome for all the lasso and adaptive lasso-based
approaches. For PS-based approaches, we applied a sup-
plementary filter by considering only drugs which had
more than three reports in common with the outcome.
Drugs discarded by the filter had their associated p-value
set to one [37]. For the sake of completeness, we also
included a disproportionality method in the comparison:
the Reporting Fisher’s Exact Test (RFET) [5]. Compared
to the more classical Reporting Odds Ratio (ROR) and
Proportional Reporting Ratio (PRR), the RFET does not
rely on asymptotic assumptions which are often not met
given the low number of observed counts. As for the PS-
based approaches, RFET was implemented on drugs with
more than three reports in common with the outcome,
and one-sided p-values were considered. We applied the
multiple testing correction procedure to RFET presented
in the “Propensity score approaches” section.

Table 1 Characteristics of signal detection approaches based on
adaptive lasso

Method Construction of
adaptive weights

Criterion for variable
selection in adaptive
lasso stage

adapt-cv lasso-cv cross-validation

adapt-univ univariate coefficients cross-validation

adapt-univ-bic univariate coefficients BIC

adapt-bic lasso-bic BIC

adapt-cisl CISL BIC

In total, we compared 14 signal detection approaches:
one disproportionality method, four lasso-based
approaches, five adaptive lasso-based approaches and
four PS-based approaches. All these approaches (except
RFET) are implemented in the R package adapt4pv
available on the CRAN. All the analyses were performed
with R version 3.6.0. All the logistic regressions were
computed with the speedglm R package v0.3-2 designed
to handle sparse matrices efficiently. All lasso regressions
were implemented using the glmnet R package v3.0-2.

Results
Table 2 shows the average number of drug covariates and
the average number of true predictors kept after discard-
ing covariates with fewer than three reports in common
with the simulated outcome per scenario. Table 2 also
shows the average number of cases per scenario. As the
number of cases decreased, the number of covariates
retained after filtering decreased, which also included true
predictors. When the true predictors were rarely reported
and the outcome was particularly rare, there were no true
predictors retained after filtering (scenarios 24, 25, 26).
We first compared the performances of our pro-

posed approaches versus the other adaptive lasso-based
approaches. Figure 1 shows the average FDR and sensitiv-
ity (across the 500 replications) of the approaches listed in
Table 1 for scenarios 1 to 15, i.e. scenarios in which there
are no true predictors (scenario 1-3) and scenarios with
true predictors frequently reported (scenario 4-15). Stan-
dard deviations of these metrics over the 500 simulation
replications are also shown for each approach and each
scenario. All adaptive lasso-based detection approaches
showed low FDR for scenarios 1-3, with slightly worse per-
formance for adapt-cv. In scenarios where β0 = −2 and
β0 = −4 (scenarios 4 to 7 and 8 to 11) adapt-cv and adapt-
univ showed a high sensitivity at the cost of a high FDR,
especially for adapt-univ. This is particularly the case in
scenarios 8 and 10. For scenarios 12 to 15, where the out-
come is rare (β0 = −6), these two approaches showed
a lower sensitivity. In these scenarios, adapt-univ showed
a low FDR while adapt-cv had an unstable behaviour in
terms of FDR, with a high average FDR in scenarios 12 to
14, and very low in scenario 15. By comparing adapt-univ
and adapt-univ-bic, we find that using the BIC to per-
form variable selection in the adaptive lasso step reduced
the FDR for β0 = −2 and β0 = −4. For β0 = −6,
this is not the case , adapt-univ showing particularly low
FDR and low sensitivity in this setting. By comparing
approaches which rely on BIC in the adaptive lasso stage,
namely adapt-univ-bic, adapt-bic and adapt-cisl, we see
that approaches based on our proposed AWs performed
better overall, since they showed both a lower FDR and a
higher sensitivity than adapt-univ-bic. These differences
in performance were particularly noticeable in scenarios
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Table 2 Average number of drug covariates/ true predictors retained after filtering and average number of cases according to
scenario settings

Scenario β0 nTP βTP Average number of
covariates retained after
filtering

Average number of true
predictors retained after
filtering

Average number
of cases

No true predictors

1 -2 0 0 389 NA 11 923

2 -4 0 0 165 NA 1 798

3 -6 0 0 30 NA 247

True predictors reportedmore than 100 times

4 -2 5 1 394 5 12 327

5 -2 5 2 400 5 12 937

6 -2 20 1 407 20 13 589

7 -2 20 2 424 20 15 956

8 -4 5 1 172 5 1 879

9 -4 5 2 184 5 2 083

10 -4 20 1 193 20 2 155

11 -4 20 2 237 20 3 121

12 -6 5 1 34 2 259

13 -6 5 2 44 4 294

14 -6 20 1 49 11 300

15 -6 20 2 95 18 507

True predictors reported between 20 to 100 times

16 -2 5 1 391 5 11 958

17 -2 5 2 392 5 12 013

18 -2 20 1 396 20 12 064

19 -2 20 2 400 20 12 284

20 -4 5 1 167 2 1 805

21 -4 5 2 171 4 1 822

22 -4 20 1 175 8 1 827

23 -4 20 2 191 17 1 897

24 -6 5 1 30 0 248

25 -6 5 2 31 0 251

26 -6 20 1 31 0 251

27 -6 20 2 35 2 263

4, 8, 10, and 13 to 15. In scenarios 12 to 15, adapt-bic
and adapt-cisl showed a better sensitivity than approaches
based on cross-validation with a lower FDR. Nonetheless,
adapt-univ-bic had a slightly lower FDR than adapt-bic
and adapt-cisl when there were no true predictors (sce-
narios 1-3), with an FDR around 0.10 for adapt-cisl and
adapt-bic, and around 0.05 for adap-univ-bic.
Among our proposals, adapt-cisl generally performed

better than adapt-bic with a lower FDR and a slightly
higher sensitivity, in particular in scenarios 12 to 15 when
the outcome was rare. In these scenarios, the FDR of
adapt-cisl ranged from 0.01 to 0.10 and its sensitivity

ranged from 0.06 to 0.72, while the FDR of adapt-bic
ranged from 0.03 to 0.12 and its sensitivity ranged from
0.03 to 0.68.
Simulation results for scenarios 16 to 27, i.e. for true

predictors reported between 20 and 100 times, are shown
in Fig. 2 for all these approaches. Unsurprisingly, all the
approaches showed a lower sensitivity in these scenarios
compared to scenarios 4 to 15.
Overall, although the differences in performance are

less clear-cut than in Fig. 1, the behaviour of the differ-
ent approaches is quite similar. For scenarios where the
outcome is frequent (scenarios 16-19) adapt-univ showed
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Fig. 1 Sensitivity and False Discovery Rate of signal detection approaches based on adaptive lasso across scenarios 1 to 15. The upper and lower
parts of the colour bars represent the average sensitivity and FDR of each approach over the 500 simulation replications respectively. The vertical
solid lines extending the bars represent the standard deviation of the corresponding metrics
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Fig. 2 Sensitivity and False Discovery Rate of signal detection approaches based on adaptive lasso across scenarios 16 to 27. The upper and lower
parts of the colour bars represent the average sensitivity and FDR of each approach over the 500 simulation replications respectively. The vertical
solid lines extending the bars represent the standard deviation of the corresponding metrics
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a high sensitivity and a rather high FDR. At the oppo-
site, as the outcome became rarer this approach became
very conservative with a low FDR and a low sensitivity.
Adapt-cv tended to show a higher FDR (e.g scenarios 20
and 22) and a higher sensitivity (e.g. scenarios 18, 25,
27) than the three BIC-based approaches. Adapt-univ-bic
showed a lower FDR when the true predictors were less
reported. Overall our proposals adapt-cisl and adapt-univ
performed the best, with an FDR that remained low and
a good sensitivity, as in scenarios 1 to 15, and a stable
performance behaviour across all simulation scenarios.
For all methods, the variability in the FDR estimation

over the 500 replications was greater in scenarios where
nTP = 0 (i.e. scenarios 1, 2 and 3). It decreased with
the intercept value for all the approaches. Overall, our
proposals showed more stable results in terms of FDR
compared to adapt-cv, adapt-univ and adapt-univ-bic with
lower or equal standard deviations. In terms of sensitivity,
all approaches presented results of comparable standard
deviations in the majority of scenarios, except in some
scenarios where our approaches showed greater standard
deviations. This is particularly the case in scenario 19 for
adapt-bic.
In supplementary materials, Table A shows the aver-

age number of signals generated by adapt-cv, adapt-univ,
adapt-univ-bic, adapt-bic, adapt-cisl across all the sce-
nario settings. For all these approaches, as the outcome
and true predictors became rarer, the number of sig-
nals generated decreased. When the outcome is frequent,
adapt-cv and adapt-univ generated more signals on aver-
age than adapt-univ-bic, adapt-bic and adapt-cisl. The
latter generated approximately the same number of sig-
nals. For these three approaches, their number of signals
was close to the number of true predictors.
Since adapt-cisl and adapt-bic showed the best per-

formances among the adaptive lasso-based methods, we
retained only these two methods for the remaining com-
parisons with the other approaches. Figure 3 shows the
average FDR and sensitivity of our two approaches, RFET,
lasso-based and PS-based approaches when true predic-
tors were reported more than 100 times (scenarios 4-15).
Figure 4 shows the same results when true predictors were
reported between 20 and 100 times (scenarios 16-27).
Results for scenarios where there were no true predictors
(1-3) are shown in Table 3. Lasso-cv, ps-iptwT had the best
performances in terms of sensitivity but they both showed
a high FDR across all the scenarios. To a lesser extent,
RFET and ps-adjust showed the same behaviour in sce-
narios 7,11, 15 with an FDR up to 0.62 for RFET and up
to 0.34 for adjust-ps. RFET also had this behaviour in sce-
narios 4 to 6. In all other scenarios, they both showed a
rather low FDR. Overall, ps-adjust performed better than
RFET both in terms of sensitivity and FDR in scenarios
4 to 15, but RFET reached a lower FDR in scenarios 16

to 27. On the other hand, ps-mw was very conservative:
its FDR remained very low across the different scenar-
ios, sometimes even much lower than the expected 5%
fixed threshold. Its sensitivity dropped and became null
as soon as the outcome became rarer and the true pre-
dictors reporting frequencies decreased (scenarios 12-15,
16, 18 and 20-27). The ps-iptw approach performed very
poorly across all the scenarios with a very low sensitivity
and an extremely high FDR. The lasso-based approaches
other than lasso-cv showed good performances. Among
them, lasso-perm performed worse with a high FDR when
there were no true predictors (scenarios 1-3) with an FDR
around 0.35, or when the outcome was rare, both for fre-
quent and rare true predictors (scenarios 12-15 and 24-27)
with an FDR up to 0.38. CISL and lasso-bic showed very
good performances with both an acceptable sensitivity
and a low FDR in most scenarios. When the outcome was
rare, i.e. β0 = −6, CISL showed an increase in its FDR.
This increase was noticeable in scenarios 3, 12 and espe-
cially in scenarios 24 to 26, where CISL showed an FDR
between 0.15 and 0.20. Overall, lasso-bic had a slightly
higher sensitivity and FDR than CISL. Although lasso-
bic had a fairly stable behaviour, it showed a surprising
increase in its FDR in scenarios 14 and 20, with an FDR at
0.15 and 0.10, respectively.
Compared to lasso-bic, our proposals showed an equiv-

alent or lower sensitivity and a lower FDR in all scenarios.
In particular, this difference in FDR was noticeable in sce-
narios 12 to 15 comparing adapt-cisl to lasso-bic. Like
lasso-bic, adapt-bic and adapt-cisl showed an increase in
terms of FDR for scenario 20 with an FDR of 0.12 for
adapt-cisl and 0.10 for adapt-bic.
In supplementary materials, Table B and Table C show

the average number of signals generated by RFET, the
lasso-based and the PS-based approaches across all the
scenario settings. The number of generated signals for all
approaches considered here decreased with the scarcity of
the outcome and true predictors. This was particularly the
case for ps-mw which did not generate any signals for sce-
narios 20 to 27. All the approaches except ps-iptw had a
low number of generated signals on average when nTP =
0. For all other scenarios, the average number of signals
generated was consistent with the observed performance
in terms of true and false discoveries. Approaches such
as lasso-cv, ps-iptwT, ps-iptw, RFET and ps-adjust gener-
ated too many signals compared to the number of true
predictors, particularly when they were highly reported
(scenarios 4-15). Lasso-bic, lasso-perm, CISL and to a
lesser extent ps-mw, behaved like our proposals by gen-
erating a number of signals close to the number of true
predictors across all the settings.
Lasso-based approaches showed larger standard devi-

ation compared to other families of approaches when
nTP = 0. The stability of the results in terms of FDR
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Fig. 3 Sensitivity and False Discovery Rate of all signal detection approaches across scenarios 4 to 15. The upper and lower parts of the colour bars
represent the average sensitivity and FDR of each approach over the 500 simulation replications respectively. The vertical solid lines extending the
bars represent the standard deviation of the corresponding metrics
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Fig. 4 Sensitivity and False Discovery Rate of all signal detection approaches across scenarios 16 to 27. The upper and lower parts of the colour bars
represent the average sensitivity and FDR of each approach over the 500 simulation replications respectively. The vertical solid lines extending the
bars represent the standard deviation of the corresponding metrics
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Table 3 False Discovery Rate with standard deviation of all signal
detection approaches across scenarios 1 to 3, e.g. for scenarios
where nTP = 0

Methods False Discovery Rate

scenario 1:
β0 = −2

scenario 2:
β0 = −4

scenario 3:
β0 = −6

RFET 0.00 (0.00) 0.01 (0.09) 0.00 (0.04)

lasso-cv 0.31 (0.46) 0.28 (0.45) 0.12 (0.26)

lasso-bic 0.12 (0.33) 0.10 (0.30) 0.07 (0.26)

lasso-perm 0.37 (0.46) 0.41 (0.49) 0.35 (0.48)

CISL 0.06 (0.23) 0.04 (0.20) 0.18 (0.38)

adapt-bic 0.11 (0.32) 0.10 (0.30) 0.07 (0.26)

adapt-cisl 0.13 (0.33) 0.11 (0.32) 0.09 (0.29)

ps-adjust 0.01 (0.12) 0.15 (0.35) 0.14 (0.35)

ps-mw 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ps-iptw 0.99 (0.10) 1.00 (0.00) 1.00 (0.00)

ps-iptwT 0.23 (0.42) 0.35 (0.48) 0.29 (0.45)

decreased with the intercept value β0 as before, except for
RFET and ps-mw. All approaches showed comparable sta-
bility results in terms of sensitivity, with an increase of the
standard deviation when βTP = 2.

Real-world data analysis
The french pharmacovigilance database
We applied the aforementioned signal detection
approaches to the French pharmacovigilance data
extracted from 1 January 2000 to 29 December 2017.
We discarded spontaneous reports involving (i) drugs
recorded as vaccines, phytotherapy, homeotherapy,
dietary supplements, oligotherapy or enzyme inhibitors,
(ii) reactions recorded as overdoses or medication errors.
Drugs are listed according to their active substance which
is coded with the 5th level of the Anatomical Therapeutic
Chemical (ATC) hierarchy. AEs are coded according to
the Preferred Term (PT) level of the Medical Dictionary
for Regulatory Activities (MedDRA). This extraction of
the French pharmacovigilance database included 452 914
reports with 6 617 different AEs and 2 378 different drugs.

Comparison set-up
To assess the performances of these approaches, we used
a reference signal set pertaining to the adverse event
Drug-Induced Liver Injury (DILI) [28, 29]. The set was
established by text-mining the FDA-approved drug labels
with a list of keywords related to the DILI event. A level
of DILI severity was assigned to each keyword: mild,
moderate or severe DILI. According to where keywords
appeared in the labelling section of the FDA-approved
drug labels, drugs were classified in two DILI-related cat-
egories: “less-DILI-concern” and “most-DILI-concern”. If

no keywords were found in the label, drugs were consid-
ered as “no-DILI-concern”. The majority of “most-DILI-
concern” drugs were associated with severe DILI. This
classification was refined later to assess the causal rela-
tionship between each drug and a DILI event using other
data sources. Only drugs confirmed as a cause of DILI
were retained. We translated the list of keywords used
to define a DILI event into Preferred Terms (PT) codes
from the MedDRA classification. If a spontaneous report
involved at least one of the PT codes, it was considered
as a reported DILI event. This resulted in considering
25 187 DILI reports in the French pharmacovigilance
database. We considered the “no-DILI-concern” drugs as
true negatives, and the “most-DILI-concern” drugs as true
positives.
Over the study period, the database consisted of 1 692

different drugs reportedmore than 10 times. Among these
drugs, 1 136 had more than three reports in common
with a DILI. As in the simulation work, RFET and all the
PS-based signal detection approaches were implemented
on these 1 136 drugs and the remaining 556 had their p-
value set to one. In the end, the DILI reference signal set
contained 203 true negative controls and 133 true posi-
tive controls among the 1 692 drugs. Of the 1 136 drugs
retained after filtering, the reference signal set contained
123 true negative controls and 119 true positive ones.

Results
Table 4 summarizes the results of all the methods in terms
of generated signals, False Discovery Proportion (FDP),
specificity and sensitivity derived from the DILI reference
signal set. Despite the wide variability in terms of number
of generated signals, we observe that 10 methods out of 14
achieved a rather comparable balance between false posi-
tives and sensitivity as regards the reference set. As in the
simulations, adapt-cisl and adap-bic showed good perfor-
mance in terms of false discoveries, at the cost of lower
sensitivity. Some methods such as lasso-cv and adapt-
univ showed better performance than in the simulations.
Among all the compared methods, adapt-cisl showed the
best performances with only two false positives out of 60
signals with known status.
Figure 5-A shows the overlap between signals gener-

ated by adapt-cisl, adapt-bic and lasso-bic and Fig. 5-B
shows this overlap for adapt-cisl, adapt-bic and CISL.
Among the signals generated, true positives and false
positives according to the reference set are also repre-
sented. Figure 5-A shows that all the signals generated
by our two proposals were also generated by lasso-bic:
140 signals were common to the three methods, 13 were
generated by adapt-cisl and lasso-bic, and 11 were gener-
ated by adapt-bic and lasso-bic. Six signals were generated
by lasso-bic only, of which none were known to be pos-
itive and one was a known negative. Among the signals
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Table 4 Performance of each method in terms of number of signals, False Discovery Proportion (FDP), specificity and sensitivity.
Operating characteristics are calculated based on drugs with known status

Method Number of Number of signals Number of false FDP Specificity Sensitivity

generated signals with known status positive signals (%) (%) (%)

(positive or negative)

RFET 249 82 13 15.9 93.6 51.9

lasso-cv 220 79 5 6.3 97.5 55.6

lasso-bic 170 65 5 7.7 97.5 45.1

lasso-perm 158 60 4 6.7 98.0 42.1

CISL 109 48 2 4.2 99.0 34.6

adapt-cv 188 70 5 7.1 97.5 48.9

adapt-univ 179 65 4 6.2 98.0 45.9

adapt-univ-bic 163 61 4 6.6 98.0 42.9

adapt-bic 151 60 4 6.7 98.0 42.1

adapt-cisl 153 60 2 3.3 99.0 43.6

ps-adjust 209 71 6 8.5 97.0 48.9

ps-mw 86 40 0 0.0 100.0 30.1

ps-iptw 49 15 3 20.0 98.5 9.0

ps-iptwT 260 84 12 14.3 94.1 54.1

generated only by adapt-cisl or adapt-bic and common
to lasso-bic, adapt-cisl generated four true signals and no
false positive, whereas adapt-bic was a little less efficient
with two true positives and two false positives. There were
54 true positives and two false positives among the 140
signals generated by the three methods. Figure 5-B shows
that all signals generated by CISL were also generated by
adapt-cisl with 106 signals common for the three methods
(CISL, adapt-cisl, adapt-bic), three in common between
CISL and adapt-cisl, and 10 additional signals generated
by adapt-cisl only with three true positives and no false
positives. Adapt-bic did not share any signals with CISL
only and it generated 11 signals on its own with two true
positives and two false positives, i.e. the same generated by
lasso-bic. Overall, adapt-cisl performed well since its only
two false positives among associations with known status
were shared with the three other methods and no addi-
tional false positives occurred by itself. This was not the
case lasso-bic and adapt-bic.

Discussion
The development of novel signal detection methods is
crucial for improving the responsiveness and the effi-
ciency of post-marketing surveillance systems. In this
work we propose new approaches for signal detection
based on an appropriate methodology for variable selec-
tion: the adaptive lasso. In addition to defining new adap-
tive penalty weights derived from lasso-based approaches,
we used the BIC to perform variable selection. To assess
the performances of our strategies, we performed an

extensive simulation study conducted for multiple sce-
nario configurations and an application to real data, where
we compared our approaches to other implementations
of the adaptive lasso in high dimension found in the lit-
erature, as well as to other detection approaches recently
proposed based either on lasso regression or on PSs.
Methods for signal detection in pharmacovigilance must
both be able to avoid time-wasting false positive signals
in the context of further assessment resource constraints,
and they must also not miss true positive signals for obvi-
ous public health issues. Thus, we chose in this work to
evaluate our methods using the two criteria of sensitivity
and FDR. We developed an R package available on CRAN
that implement all the methods compared in the present
work.
By comparing all the adaptive lasso-based approaches

including our two proposals, adapt-bic and adapt-cisl, we
first demonstrate that our defined AWs and the use of the
BIC for variable selection are relevant for signal detection.
Cross-validation for the adaptive lasso is a computation-
ally intensive procedure since it requires deriving adap-
tive weights for each training set, and shows an unstable
behaviour in terms of detection. The broader comparison
that includes state-of-the-art signal detection approaches
shows that our proposals are particularly competitive.
Compared to lasso regression where BIC is used to per-

form variable selection, an approach we called lasso-bic
here, our proposals tend to show a lower FDR at the cost
of a slightly lower sensitivity. For adapt-bic, this result
is not surprising since by construction, the covariates
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Fig. 5 Distribution of signals generated by adapt-cisl, adapt-bic and
(A) lasso-bic; (B) CISL. Among signals generated, true positives are in
green and false positives in red

selected by this approach are a sub-sample of the covari-
ates selected by the lasso-bic approach.
Our work also confirms that CISL is a relevant sig-

nal detection approach. The choice of the quantile, which
we set at 10%, seems appropriate for a large number of
settings, except when the outcome and true predictors
are rare. As expected, cross-validation is not appropri-
ate for signal detection. All the approaches based on this
criterion: lasso-cv, adapt-cv and adapt-univ show a high
sensitivity at the cost of a very high FDR in the vast major-
ity of scenarios. The use of the permutation method with
lasso regression (lasso-perm) does not show fully satisfac-
tory results with an FDR generally higher than the one of
our proposals and a moderate gain in sensitivity.
Among the PS-based approaches for signal detection,

results are concordant with our previous work [17]. Our
simulation study shows that weighting on the propensity
score with matching weights perform very well when the
outcome was frequent but become very conservative with
a substantial drop in sensitivity as the outcome became

rarer. This is a disadvantage since it is common in pharma-
covigilance datasets to have very few reported outcomes.
Adjustment on the PS lead to a high sensitivity and a quite
high FDR among several simulation settings. The ps-iptw
approach showed very poor performances in all settings.
As discussed in our previous work, these results can be
explained by a potential numerical instability of weights,
as already reported in the literature [38]. Performing trun-
cation of those weights improves these results, but it is still
an unsatisfactory signal detection approach since it leads
to a significant number of false discoveries.
Overall, our approaches show very satisfactory perfor-

mances in terms of false discoveries and a good sensitivity.
This behavior remains stable over all simulation scenar-
ios, with a slight increase in FDR when there are no
true predictors. Among our two proposals, adapt-cisl per-
forms slightly better. Lasso-bic and CISL are also relevant
detection approaches, with the few nuances in terms of
performance detailed above. RFET and to a lesser extent
ps-adjust provide sensitivity that is sometimes superior to
our proposals but with a fluctuating FDR which can be
high, especially when the number of predictors increases
and are strongly associated with the response. Finally,
making the concession of a large number of false discover-
ies (and thus a large number of signals to review), lasso-cv
is the approach that provides the best sensitivity in all
situations.
It is more difficult to assess the differences in perfor-

mances of the approaches from the results of the appli-
cation to real data. As the DILI adverse event is highly
reported and since the majority of drugs registered in
the French pharmacovigilance database are much less
reported, the most comparable simulation scenarios to
this situation are scenarios 16 to 19. The behaviour of the
approaches differs slightly from that observed in simula-
tion, but among all the approaches tested, our adapt-cisl
approach showed the best compromise between a very
low FDR, an acceptable sensitivity and a reasonable num-
ber of generated signals.
Using the BIC as a criterion to select the penalisa-

tion parameter in lasso regression for variable selection
has been widely studied [39–42]. In particular, Chen and
Chen [43] defined the extended Bayesian Information Cri-
terion (eBIC), which is suitable for model selection in
large model spaces. With this criterion, a term is added
to the original BIC to correct for the prior probability of
the different possible models in order to promote small
dimension models. The BIC is a particular case of the
eBIC. Chen and Chen showed that this criterion is par-
ticularly relevant in the large-P-small-N configuration.
Considering that here we are in the P << N situa-
tion, implementing the original BIC to perform variable
selection seemed reasonable. In the case of the adaptive
lasso, Hui et al. [44] developed the Extended Regularized
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Information Criterion (ERIC) to perform variable selec-
tion. They argued that the BIC cannot account for the
prior information carried by the AWs. In their work, they
considered the BIC defined with the penalised log likeli-
hood. By using the BIC which is based on the unpenalized
likelihood, we avoid some of the issues raised by Hui et
al. However, it would now be interesting to compare the
variable selection for the adaptive lasso operating with the
original BIC versus ERIC in our context.
To preserve the specificities of pharmacovigilance

datasets, i.e. a large size and sparsity, we based our sim-
ulation study on real data. This strategy has already been
used in the literature to simulate large health care data
[34]. We varied the number and the frequency of true pre-
dictors and their strength of association with the outcome,
the rarity of which we also varied. With this strategy, it
was not possible to vary the correlation structure between
the true predictors and the other variables. However, we
were able to evaluate the performance of our detection
methods with a realistic correlation structure between the
variables. As regard to the performance of our proposals,
we are rather confident that our methods manage satisfac-
torily the correlation between variables. An extension of
this work would be to develop amore complex strategy for
simulating data that would provide correlation structures
that we could control while remaining realistic. Neverthe-
less, defining such a set of realistic correlation structures
is a challenging task.
A major issue in the development of signal detection

methods is the lack of reliable and sufficiently large sets
of reference signals to evaluate performance in real-life
conditions. Here we considered a set of reference signals
pertaining to a common adverse event: DILI. Although
this set is very broad, it still has its limitations. Indeed,
the performances of the approaches are more difficult
to interpret since they can only be evaluated on signals
whose status has been assessed. It would be interesting to
extend this application to other adverse events.

Conclusion
The simulation and the application results suggest that
the adaptive lasso is an appealing methodology for phar-
macovigilance when the adaptive penalty weights are
cleverly chosen, and when an appropriate variable selec-
tion criterion is used. Although the BIC does not make
it possible to control the FDR, we are confident that it is
relevant in view of the results of our simulations. Finally,
our approaches do not require much more computation
time than lasso-based approaches, and take far less time
than that needed for PS-based approaches. An interest-
ing development could consist in integrating external
relevant information through adaptive penalty weighting
in the pharmacovigilance context. Under the weighted
lasso designation, this technique has proved to be very

attractive in an area such as genomics for improving
penalised regression performances in terms of prediction
and variable selection [45, 46].

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12874-021-01450-3.

Additional file 1: Supplementary materials : average number of signals
generated across simulation scenarios Average number of signals
generated by adaptive lasso-based approaches (Table A), RFET and
lasso-based approaches (Table B) and PS-based approaches (Table C)
across all simulated scenarios

Acknowledgements
The authors thank the regional pharmacovigilance centers and the ANSM for
providing the pharmacovigilance database dataset.

Authors’ contributions
EC, IA and PT-B conceived and designed the study. EC performed the
computations. EC, IA and PT-B discussed the results. EC drafted the manuscript
with support from IA and PT-B. All authors critically revised the work and
approved the final manuscript.

Funding
This research received no specific grant from any funding agency in the
public, commercial, or not-for-profit sectors.

Availability of data andmaterials
The datasets generated and analysed during the current study are not publicly
available due to ethical restrictions but are available from the corresponding
author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no financial and non-financial competing
interests.

Received: 1 April 2021 Accepted: 26 October 2021

References
1. Van Puijenbroek EP, Bate A, Leufkens HGM, Lindquist M, Orre R, Egberts

ACG. A comparison of measures of disproportionality for signal detection
in spontaneous reporting systems for adverse drug reactions,.
Pharmacoepidemiol Drug Saf. 2002;11(1):3–10.

2. Evans SJW, Waller PC, Davis S. Use of proportional reporting ratios (PRRs)
for signal generation from spontaneous adverse drug reaction reports.
Pharmacoepidemiol Drug Saf. 2001;10(6):483–6.

3. Bate A, Lindquist M, Edwards IR, Olsson S, Orre R, Lansner A, De Freitas
RM. A Bayesian neural network method for adverse drug reaction signal
generation. Eur J Clin Pharmacol. 1998;54(4):315–21.

4. Dumouchel W. Bayesian data mining in large frequency tables, with an
application to the FDA spontaneous reporting system. Am Stat.
1999;53(3):177–90.

5. Ahmed I, Dalmasso C, Haramburu F, Thiessard F, Broët P, Tubert-Bitter
P. False discovery rate estimation for frequentist pharmacovigilance
signal detection methods. Biometrics. 2010;66(1):301–9.

6. Ahmed I, Haramburu F, Fourrier-Réglat A, Thiessard F, Kreft-Jais C,
Miremont-Salamé G, Bégaud B, Tubert-Bitter P. Bayesian

https://doi.org/10.1186/s12874-021-01450-3


Courtois et al. BMCMedical ResearchMethodology          (2021) 21:271 Page 17 of 17

pharmacovigilance signal detection methods revisited in a multiple
comparison setting. Stat Med. 2009;28(13):1774–92.

7. Benjamini Y, Hochberg Y. Controlling the false discovery rate a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995;57(1):289–300.

8. Huang L, Zalkikar J, Tiwari RC. A likelihood ratio test based method for
signal detection with application to FDA’s drug safety data. J Am Stat
Assoc. 2011;106(496):1230–41.

9. Ding Y, Markatou M, Ball R. An evaluation of statistical approaches to
postmarketing surveillance. Stat Med. 2020;39(7):845–74.

10. Arnaud M, Salvo F, Ahmed I, Robinson P, Moore N, Bégaud B,
Tubert-Bitter P, Pariente A. A Method for the Minimization of
Competition Bias in Signal Detection from Spontaneous Reporting
Databases. Drug Saf. 2016;39(3):251–60.

11. Almenoff J, Tonning JM, Gould AL, Szarfman A, Hauben M,
Ouellet-Hellstrom R, Ball R, Hornbuckle K, Walsh L, Yee C, Sacks ST,
Yuen N, Patadia V, Blum M, Johnston M, Gerrits C, Seifert H, LaCroix K.
Perspectives on the use of data mining in pharmacovigilance. Drug Saf.
2005;28(11):981–1007.

12. Harpaz R, Dumouchel W, Shah NH, Madigan D, Ryan P, Friedman C.
Novel data-mining methodologies for adverse drug event discovery and
analysis. Clin Pharmacol Ther. 2012;91(6):1010–21.

13. Pariente A, Avillach P, Salvo F, Thiessard F, Miremont-Salamé G, Fourrier-
Reglat A, Haramburu F, Bégaud B, Moore N. Effect of Competition Bias in
Safety Signal Generation. Drug Saf. 2012;35(10):855–64.

14. Caster O, Norén GN, Madigan D, Bate A. Large-scale regression-based
pattern discovery: The example of screening the WHO global drug safety
database. Stat Anal Data Min. 2010;3(4):197–208.

15. Ahmed I, Pariente A, Tubert-Bitter P. Class-imbalanced subsampling
lasso algorithm for discovering adverse drug reactions. Stat Methods Med
Res. 2018;27(3):785–97.

16. Tatonetti NP, Ye PP, Daneshjou R, Altman RB. Data-Driven Prediction of
Drug Effects and Interactions. Sci Transl Med. 2012;4(125):125ra31.

17. Courtois É, Pariente A, Salvo F, Volatier É, Tubert-Bitter P, Ahmed I.
Propensity Score-Based Approaches in High Dimension for
Pharmacovigilance Signal Detection: an Empirical Comparison on the
French Spontaneous Reporting Database. Front Pharmacol. 2018;9:1010.

18. Wang X, Li L, Wang L, Feng W, Zhang P. Propensity score-adjusted
three-component mixture model for drug-drug interaction data mining
in FDA Adverse Event Reporting System. Stat Med. 2019;39(7):996–1010.

19. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc
Ser B Methodol. 1996;58(1):267–88.

20. Fan J, Li R. Variable Selection via Nonconcave Penalized Likelihood and its
Oracle Properties. J Am Stat Assoc. 2001;96(456):1348–60.

21. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B Stat
Methodol. 2010;72(4):417–73.

22. Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc.
2006;101(476):1418–29.

23. Bühlmann P, van de Geer S. Lasso for linear models. In: Statistics for
High-Dimensional Data. 1st edn. New York: Springer; 2011. p. 7–42.

24. Huang J, Ma S, Zhang C-H. The Iterated Lasso for High-Dimensional
Logistic Regression. The University of Iowa, Department of Statistics and
Actuarial Sciences. 2008;1–20.

25. Huang J, Ma S, Zhang C-H. Adaptive Lasso for Sparse High-Dimensional
Regression Models. Stat Sin. 2008;1603–18.

26. Ayers KL, Cordell HJ. SNP Selection in Genome-Wide and Candidate
Gene Studies via Penalized Logistic Regression. Genet Epidemiol.
2010;34(8):879–91.

27. Sabourin JA, Valdar W, Nobel AB. A permutation approach for selecting
the penalty parameter in penalized model selection. Biometrics.
2015;71(4):1185–94.

28. Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W. FDA-approved drug
labeling for the study of drug-induced liver injury. Drug Discov Today.
2011;16(15-16):697–703.

29. Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W. DILIrank: The largest
reference drug list ranked by the risk for developing drug-induced liver
injury in humans. Drug Discov Today. 2016;21(4):648–53.

30. Rosenbaum PR, Rubin DB. The central role of the propensity score in
observational studies for causal effects. Biometrilca. 1983;70(1):41–55.

31. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA.
High-dimensional propensity score adjustment in studies of treatment
effects using health care claims data. Epidemiology. 2009;20(4):512–22.

32. Austin PC. An Introduction to Propensity Score Methods for Reducing the
Effects of Confounding in Observational Studies. Multivar Beahavioral Res.
2011;46(3):399–424.

33. Li L, Greene T. A weighting analogue to pair matching in propensity
score analysis. Int J Biostat. 2013;9(2):215–34.

34. Franklin JM, Eddings W, Austin PC, Stuart EA, Schneeweiss S. Comparing
the performance of propensity score methods in healthcare database
studies with rare outcomes. Stat Med. 2017;36(12):1946–63.

35. Benjamini Y, Yekuteli D. The Control of the False Discovery Rate in
Multiple Testing under Dependency. Ann Stat. 2001;29(4):1165–88.

36. Ballout N, Etievant L, Viallon V. On the use of cross-validation for the
calibration of the tuning parameter in the adaptive lasso. arXiv preprint
arXiv:2005.10119. 2020.

37. Meinshausen N, Meier L, Bühlmann P. P-Values for High-Dimensional
Regression. J Am Stat Assoc. 2009;104(488):1671–81.

38. Yoshida K, Hernández-Díaz S, Solomon DH, Jackson JW, Gagne JJ,
Glynn RJ, Franklin JM. Matching weights to simultaneously compare
three treatment groups: Comparison to three-way matching.
Epidemiology. 2017;28(3):387–95.

39. Wang H, Li B, Leng C. Shrinkage tuning parameter selection with a
diverging number of parameters. J R Stat Soc Ser B Stat Methodol.
2009;71(3):671–83.

40. Wang T, Zhu L. Consistent tuning parameter selection in high
dimensional sparse linear regression. J Multivar Anal. 2011;102(7):1141–51.

41. Zou H, Hastie T, Tibshirani R, et al. On the “degrees of freedom” of the
lasso. Ann Stat. 2007;35(5):2173–92.

42. Fan Y, Tang CY. Tuning parameter selection in high dimensional
penalized likelihood. J R Stat Soc Ser B Stat Methodol. 2013;75(3):531–52.

43. Chen J, Chen Z. Extended Bayesian information criteria for model
selection with large model spaces. Biometrika. 2008;95(3):759–71.

44. Hui FK, Warton DI, Foster SD. Tuning parameter selection for the
adaptive lasso using ERIC. J Am Stat Assoc. 2015;110(509):262–9.

45. Bergersen LC, Glad IK, Lyng H. Weighted lasso with data integration. Stat
Appl Genet Mol Biol. 2011;10(1).

46. Lien TG, Borgan Ø, Reppe S, Gautvik K, Glad IK. Integrated analysis of
DNA-methylation and gene expression using high-dimensional penalized
regression: A cohort study on bone mineral density in postmenopausal
women. BMC Med Genet. 2018;11(1):1–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	The logistic lasso
	Penalization parameter selection
	Class-imbalanced subsampling lasso

	Propensity score approaches
	Adaptive lasso and extensions for signal detection
	The adaptive lasso
	Extending adaptive lasso for pharmacovigilance


	Simulation study
	Comparison set-up
	Results

	Real-world data analysis
	The french pharmacovigilance database
	Comparison set-up
	Results

	Discussion
	Conclusion
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s12874-021-01450-3.
	Additional file 1

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

