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Abstract: Molecularly imprinted polymers (MIPs) have been widely used in nanomedicine in the last
few years. However, their potential is limited by their intrinsic properties resulting, for instance, in
lack of control in drug release processes or complex detection for in vivo imaging. Recent attempts in
creating hybrid nanomaterials combining MIPs with inorganic nanomaterials succeeded in providing
a wide range of new interesting properties suitable for nanomedicine. Through this review, we aim
to illustrate how hybrid molecularly imprinted polymers may improve patient care with enhanced
imaging, treatments, and a combination of both.

Keywords: nanomedicine; molecularly imprinted polymer; drug delivery; targeting; hybrid material

1. Introduction

The application of nanotechnologies to medicine, or for short, nanomedicine, is pre-
dicted to revolutionize the future of healthcare. When the size of materials is decreased
to nanoscale, an abundance of unique characteristics is newly displayed: large surface-
to-mass ratio and small volumes facilitating cellular uptake and intracellular transport.
Nanoparticles (NPs) tend to accumulate in tumors due to a physiologically-based phe-
nomenon: the enhanced permeability—of the endothelial lining of the blood vessel—and
retention (EPR) effect. This passive targeting has been widely employed to treat tumors
using drug delivery systems [1–4] or heat-generating nanosystems [5]. Not limited to
cancer therapy, with interesting developments to treat burns [6] or achieve antimicrobial
effects [7], those systems are composed of a wide range of materials: gold, silver, polymers,
silica, iron oxide, etc., each employed for its interesting specific property.

The most recent developments in nanomedicine aim at a personalization of the treat-
ments and hence require an active targeting of biological markers. Such targeting is
performed through the functionalization with antibodies [8,9], fragments of antibodies [10],
or aptamers [11–14] in order to increase the efficiency of immunotherapies and prediction
of therapeutic response [15,16]. It is only recently that molecularly imprinted polymers
(MIPs) have been used to enhance the targeting properties of nanoparticles. Another
aspect developed in nanomedicine is the possibility to use nanosized objects to transport
and deliver drugs at a given location inside a living body, despite biological barriers and
degradation mechanisms. For this purpose, it is also possible to use nanosized polymer
materials and to render them more efficient through molecular imprinting.

Molecular imprinting is a method inducing molecular recognition properties during
the formation of the three-dimensional structure of a polymer in the presence of a template
molecule. After the extraction of the molecule, the polymer matrix contains tailor-made
binding sites, cavities complementary in size, shape, and functionality to the template that
can recognize the targeted compound with high selectivity (Figure 1).
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and can be removed, forming highly specific cavities. In case of drug delivery applications, the polymer can be reloaded. 
The imprinting process enables an efficient targeting through a surface protein that can be combined with drug loading 
of the material. Created with BioRender.com. 
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stable physically and chemically [17–19], not degraded by proteases or denatured by 
solvents, and can be engineered and tailored for any given application. Moreover, they 
are notable for their good biocompatibility [20], solubility, ability to cross the cell 
membrane [20], and lack of immunogenic response [20]. Nanosized MIPs (nanoMIPs) 
have larger surface/mass ratio, more easily accessible recognition sites, lower 
heterogeneities, and better solubilities than micrometric MIPs. Due to these remarkable 
properties, there has been a growing interest concerning the use of nanoMIPs for medical 
purposes for the past decades. Now, a growing trend in MIPs-related research is their 
combination with inorganic materials, enlarging the range of possible applications (Figure 
2). Inorganic nanoparticles, by possessing large surface-to-volume ratio and size-related 
physical and chemical properties, are good candidates to support molecular imprinting 
polymer at their surface. These MIP nanomaterials enable complete removal of templates 
after the synthesis, enhanced site accessibility, and have a well-defined shape. The first 
superparamagnetic MIP composite beads incorporating Fe3O4 were prepared more than 
two decades ago using suspension polymerization [21]. It is only recently that the use of 
superparamagnetic MIP became important in nanomedicine as a result of their interesting 
physical intrinsic properties [22,23]. The imprinting of molecules can also be achieved 
using as a silica nanoparticles as a support [24]. Carbon nanotubes have extraordinary 
mechanical, electrical, and thermal properties, on top of being biocompatible [25]. These 
materials are also used as supports for surface imprinting of proteins and their unique 

Figure 1. MIPs synthesis principle. The target used as a template is added to a polymer mixture, forming pre-polymerization
complexes. After the initiation of the polymerization, the template is embedded inside the polymer matrix and can be
removed, forming highly specific cavities. In case of drug delivery applications, the polymer can be reloaded. The imprinting
process enables an efficient targeting through a surface protein that can be combined with drug loading of the material.
Created with BioRender.com the 3 April 2021.

In contrast to biological antibodies, the synthesis of molecularly imprinted polymers
is reproducible, fast, not involving animals, and relatively economical. They are very stable
physically and chemically [17–19], not degraded by proteases or denatured by solvents,
and can be engineered and tailored for any given application. Moreover, they are notable
for their good biocompatibility [20], solubility, ability to cross the cell membrane [20], and
lack of immunogenic response [20]. Nanosized MIPs (nanoMIPs) have larger surface/mass
ratio, more easily accessible recognition sites, lower heterogeneities, and better solubilities
than micrometric MIPs. Due to these remarkable properties, there has been a growing
interest concerning the use of nanoMIPs for medical purposes for the past decades. Now,
a growing trend in MIPs-related research is their combination with inorganic materials,
enlarging the range of possible applications (Figure 2). Inorganic nanoparticles, by pos-
sessing large surface-to-volume ratio and size-related physical and chemical properties,
are good candidates to support molecular imprinting polymer at their surface. These MIP
nanomaterials enable complete removal of templates after the synthesis, enhanced site
accessibility, and have a well-defined shape. The first superparamagnetic MIP composite
beads incorporating Fe3O4 were prepared more than two decades ago using suspension
polymerization [21]. It is only recently that the use of superparamagnetic MIP became im-
portant in nanomedicine as a result of their interesting physical intrinsic properties [22,23].
The imprinting of molecules can also be achieved using as a silica nanoparticles as a
support [24]. Carbon nanotubes have extraordinary mechanical, electrical, and thermal
properties, on top of being biocompatible [25]. These materials are also used as supports
for surface imprinting of proteins and their unique properties can be exploited for medical
applications. Quantum dots, characterized by excellent stability and specific emission
wavelengths depending on their size, were pioneered by Brus’ group [26]. This exceptional
nanomaterial can be couped to MIPs for useful applications in targeted imaging. In 2020,
980 publications were released containing mentions of “molecularly imprinted polymers”
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and 209 referred to a combination of MIPs with an inorganic material (Data extracted from
1findr.1science.com the 20 April 2021).
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of molecularly imprinted polymers and any of the following keyword: hybrids, nanocomposites, gold, silver, iron, silica,
quantum dots, carbon dots (orange). Data extracted from 1findr.1science.com the 20 April 2021.

Hence, combining molecularly imprinted polymer with inorganic nanoparticles could
lead to a novel class of hybrid materials useful in nanomedicine, given their ability to
respond to external physical stimuli.

Recently, some reviews focusing on molecularly imprinted polymer for biological
application [27], for cancer therapy [28], or for bioimaging and therapy [29] have been
published. One review concerns magnetic molecularly imprinted polymers for targeted
cancer therapy [23]. However, none of them focuses on the development of hybrid magnetic
MIPs in nanomedicine and their possible contribution to this field.

In this review, we focus on the recent development of nanosized molecularly im-
printed particles (nanoMIPs) for medical applications and their improvement through their
combination with inorganic nanoparticles (nanoMIPs hybrids).

2. Fundamentals about MIPs and Their Adaptation for Nanomedicine
2.1. Historical Applications

Molecularly imprinted polymers were first widely employed in the separation field,
for analytical purposes. They are often used as a chromatographic stationary phase or to
selectively extract trace molecules from complex matrices using the solid phase extraction
technique. During this process, the analytes are separated and pre-concentrated, resulting
in a lower limit of detection (LOD) than with classical techniques, even in complex sam-
ples [30] such as fish, meat [31,32], or milk [33]. This type of system can also be used for
the purification and enantioselective separation of drugs [34,35], for example by forming
enantioselective membranes [36]. The comparison of MIPs performances for separation
purposes with those of immunosorbents and aptamers leads to similar results for each
technique when analyzing complex samples [37], which is quite encouraging for future
developments of MIPs nanoparticles for nanomedicine.

The good stability of MIPs combined with their low cost and high selectivity toward
molecules then led to the development of sensors able to detect chemical compounds.
The most challenging aspect of those devices is to transform the MIPs recognition into

1findr.1science.com
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signals. Label-free sensors have been developed, mostly inspired from DNA chips and
immunosensors. Many techniques are available for measuring the signal such as quartz
crystal microbalance (QCM), surface acoustic wave (SAW), surface plasmon resonance
(SPR) measurements, Raman and Fourier transform infrared spectroscopy (FTIR), and
atomic force microscopy (AFM). Those techniques were developed using MIPs as recogni-
tion elements and even achieved picomolar limits of detection [38].

Lately, MIPs mimicking biological functions [39] with, for instance, enzyme-like activ-
ity [40], have been designed. In 2013, an assay similar to the enzyme-linked immunosor-
bent assay (ELISA) was developed, replacing the antibodies coating microplate wells with
molecularly imprinted polymer. The sensitivity of the assay was three orders of magnitude
better than a previously described ELISA assay based on antibodies (2.5 pM), with more
stability and easier implementation as no cold-chain logistic was required. In terms of
affinity and specificity, MIPs possess binding characteristics similar to those of antibodies
or biological receptors, which makes them often described as “synthetic antibodies” [41].
Replacing antibodies with MIPs nanoparticles in ELISA-like and other similar assays has
been widely studied, leading to tests with a picomolar LOD similar to antibodies-based
assays (LOD for biotin: 1.2 pM for nanoMIPs versus 2.5 pM for the antibody assay, LOD
for fumonisin B2: 6.1 pM versus 25 pM) [42–44]. Dissociation constants (Kd), depending
on the monomers used and the nature of the template, are often in the nanomolar range:
0.48 nM for NanoMIPs against vancomycin [45]. Hence, they might be used for a great
number of medical applications that previously required tailor-made antibodies or for
which no antibodies could be developed. For example, MIP sensors can directly be applied
to diagnose diseases: in 2016, Lieberzeit et al. [46] developed a MIP-based QCM sensor
able to specifically trap lipoproteins, a cardiovascular biomarker, as its concentration in
human serum is inversely correlated to high risk of coronary disease. This device, applied
to human samples, led to similar results to a standard homogenous enzymatic assay.

As MIPs show efficiency in biological sensors, scientists are now interested in their
use in the medical field. However, their synthetic process has to be modified and adapted
to be compatible with the desired application, with an emphasis on biocompatibility when
aiming for in vivo applications.

2.2. Synthesis of MIPs

The origin of molecularly imprinted polymers can be traced as far as the 1930s when
a Soviet researcher named Polyakov discovered an improvement of the adsorption of
benzene derivatives on silica particles when prepared in their presence [47]. During the
following years, the study of the formation process of those imprinted polymers led to
enhanced recognition properties and in the 1970s, Günter Wulff synthesized an organic
polymer able to separate racemates [48]. When designing an imprinted polymer, different
imprinting strategies are employed, depending on the application [49], as the morphology
of the imprinted polymer can affect recognition properties or potential application [50].

According to the nature of the interaction between the template and functional
monomers, three main approaches can be distinguished to classify synthesis techniques of
molecularly imprinted polymers: covalent, non-covalent, and semi-covalent techniques. In
covalent imprinting, the templates are chemically bound to monomers. The chosen reaction
being reversible, for instance, a boronic acid function reacting with diol as employed by
Wulff [51], the template is then chemically removed from the polymer, forming highly
specific cavities able to recapture the template, either covalently or non-covalently [52] (the
latest resulting in what is called the semi-covalent approach). However, this technique
is limited by the ability to perform reversible covalent bonds between the template and
monomers and to extract the template without disrupting the polymer.

The idea of creating imprinted polymers through non-covalent interactions has been
widely explored by Mosbach. The interactions may be ionic, hydrogen bonding, hydropho-
bic, electrostatic, etc. After a successful attempt with dyes [53] in what was called at
the time a “host-guest” polymerization, Mosbach and his team developed an imprinted
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polymer able to separate amino acid derivatives [54]. With this technique, improved se-
lectivity may be obtained with mixtures of monomers [51]. This method, however, tends
to produce polymers with a less homogenous repartition of binding sites than through a
covalent approach.

At their origin, MIPs were synthesized through bulk polymerization, forming macro-
porous polymer networks with the ability to entrap molecules. Those polymers had to be
ground to obtain small particles and create a large surface area for recapture. However, this
step is time consuming and results in irregular shapes and sizes as well as heterogeneities
in the binding sites repartition.

Obtaining monodispersed polymer particles is a key condition to improve repro-
ducibility. Conducting the polymerization in a biphasic system is a great option to obtain
regular shapes and sizes. The emulsion polymerization technique is usually performed
in oil-in-water emulsions with a surfactant. In 2002, Tovar et al. [55] synthesized MIPs
nanoparticles by miniemulsion polymerization, allowing direct non-covalent imprint-
ing of a chiral amino acid derivative. The resulting nanospheres, with a size of about
200 nm, showed enantiospecificity. However, the use of surfactants can interfere with
molecular recognition, contaminate the polymeric product, and require complicated and
time-consuming purification steps. Pickering emulsion polymerization, which consists in
the addition of nanoparticles such as silica during the process, enable a surfactant free-
polymerization (Figure 3). The process has been employed in the synthesis of imprinted
hydrogel microbeads able to passively release the nucleotide adenosine 5’-monophosphate
for an application in cosmetology [56].

Figure 3. Inverse Pickering emulsion used for the synthesis of MIP-DMEAM-NIPAM-based hydrogel microbeads. Repro-
duced with permission. [56] © 2021 Elsevier B.V.

In 1999, Mosbach et al. [57] first described the precipitation polymerization technique
which produces uniform sub-micrometer imprinted particles. The resulting molecularly
imprinted microspheres were highly specific for their target, theophylline or 17β-estradiol,
and had higher adsorption capacities compared to the particles obtained by grinding an
imprinted monolith. This technique has also been successfully employed for many medical
purposes such as the design of a transdermal formulation of a MIP with the ability to release
encapsulated nicotine [58]. The polymerization process occurs in a solvent excess and
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stops when the particles reach a critical size which makes them precipitate. However, the
dilution tends to decrease interactions between the template and the functional monomers
leading to less selectivity.

2.3. Synthesis of MIP Nanoparticles for Nanomedicine

While their advantages make MIP nanoparticles an attractive tool for medical pur-
poses, some adjustments are required in term of size, composition, and thus, synthesis
technique. As described in Section 2.2, the precipitation polymerization technique led to
particles with a size range limited to the range of precipitation which could be an issue
for biomedical applications. For in vivo applications, particles with sizes above 200 nm
are required to avoid a rapid elimination by the reticuloendothelial system and to favor
EPR effect. Particles below 10 nm are rapidly removed through extravasations and renal
clearance [59]. To overcome this particular issue while avoiding surfactant use, the hier-
archical technique can be implemented: the target is bound to a porous silica gel (pore
sizes about 11 nm) and the polymerization process takes place inside the pores. The size
distribution is narrow compared to bulk materials (8–9 nm) and cross-links are homo-
geneously distributed [60]. However, the material presents less selectivity as the steric
hindrance, caused by the binding to the silica surface, prevents complementary interac-
tions to develop [61]. This technique has been adapted by Sellergren et al. in 2011 [62]
for the imprinting of proteins (human serum albumin and immunoglobulin G) and can
supposedly be used for applications in nanomedicine but to the best of our knowledge,
none is currently under development.

The molecular imprinting process being cheaper than the use of antibodies to target a
given molecule, it remains nonetheless expensive for biomedical applications as the cost of
interesting proteins or drugs is often non-negligible. It is also well known that proteins can
degrade in organic solvent and that their structure, a key factor in protein recognition and,
hence, for an efficient protein imprinting, is altered by temperature or pH changes. The
imprinting of proteins, beyond the difficulties regarding their stability, tends to produce
higher cross-reactivity and insufficient extraction after the polymerization due to the size
of the protein. Epitopes, small regions of a protein that are used as a recognition site, may
be employed to address those particular issues [63–65].

Moreover, for medical applications, it is necessary to work with small and regular
objects: specific methods have to be designed such as the solid-phase synthesis developed
by Ambrosini et al. [66]. Instead of having the template in solution, the proteins are
immobilized onto glass beads (100 µm) (step 1 Figure 4). The beads are then packed into a
reactor with the reaction media containing monomers, initiator, and a crosslinker (step 2
Figure 4). After synthesis, the residual monomers and low affinity nanoMIPs are washed
away (step 3 Figure 4) before extracting high-affinity nanoMIPs from the templates by
hot washing or thermo-responsive swelling (step 4 Figure 4). Their attempt with trypsin
resulted in high specificity and selectivity toward trypsin, without any surfactant used that
could alter a protein conformation during the imprinting, and the release of the MIP from
the functionalized glass beads is simply induced by a temperature change.

Immobilization of the template through an affinity ligand [67] or metal chelate func-
tionalization of the glass-beads [68], instead of direct chemical attachment to the support,
enables an oriented binding to the beads surface.

The solid-phase synthesis has been employed by other groups [69,70], with attempts
to automatize the synthesis process and to improve the binding properties of the MIPs.
This process increases the binding properties as non-imprinted nanoparticles are washed
before releasing MIPs, less dialysis is required to remove the template and the reusable
aspect of the glass beads [71] tends to decrease the cost of this technique. However, the
glass beads suffer several drawbacks. First, their size being between 70 and 100 µm, the
surface/volume ratio is not optimal, leading to a smaller number of proteins immobilized.
Interactions between the template and the monomer were also limited by the fact that
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stirring has to be avoided as the beads are prone to abrasion, causing leaching of the
template and undesired nanoglass particles.
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monomer mixture is added, polymerization is initiated, (3) non-specific polymers are washed using
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As an alternative to address those issues, Sun et al. [72] replaced glass beads (70–100 µm)
with magnetic microspheres (600–700 nm). Greater immobilization of trypsin was obtained,
less solid material is employed and the nanoMIPs showed high affinity and selectivity
for the template protein while the yield increased compared to conventional solid phase
synthesis (Figure 5).
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Solid-phase synthesis hence presents two main advantages compared to historical
techniques that are really useful for medical applications: the fixation onto a surface,
enabling more control over the orientation of the template during polymerization, and the
glass beads ability to be reused, reducing the cost of the imprinting process. The possibility
to automatize this process is also very interesting in the perspective of an industrialization
of the production of this type of materials.

However, possible applications for those materials are limited by their inherent phys-
ical and chemical properties. Combining molecularly imprinting polymers to inorganic
nanoparticles could lead to a novel class of hybrid materials with very interesting properties
for nanomedicine, especially if they respond to external stimuli. As a support, those nano-
materials provide new synthesis pathways to those used for MIPs synthesis as described in
the next part.
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3. From MIPs to Hybrid MIPs
3.1. MIPs for Drug Delivery and Targeting

The very recent possibility to imprint larger molecules like proteins and to reduce the
size of molecularly imprinted particles to nanoscale makes possible the in vivo application
of those materials for medical purposes. For example, nanoMIPs can be used in many
biological and medical fields, as drug delivery carriers or for other therapeutic purposes
such as targeting.

As cancer cells tend to overexpress monosaccharides like mannose, fucose, or sialic
acid on their surface, those make good targets for the imaging of cancer cells with MIP
nanoparticles (Figure 6) [73].
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In the case of a drug encapsulation inside a polymer matrix for passive delivery [74,75],
the molecule is protected from enzyme degradation during its transit through the body
thanks to the crosslinked polymer shell.

It is also possible to combine passive drug release to targeting using MIPs as described
by Piletsky et al. They developed an imprinted protein nanoparticle against Epidermal
Growth Factor Receptor (EGFR), hence the material can specifically recognize a native
protein and passively deliver a drug payload to the desired cell. The characteristics of
molecularly imprinted polymers enables the access to in vivo targeting and imaging [76].
In 2019, Piletsky et al. developed fluorescent molecularly imprinted nanoparticles against
an extracellular epitope of a biomarker, B2M [77], to detect senescent cells in vitro and
in vivo. They showed that nanoMIPs do not elicit toxic responses in the cells or in mice
and successfully recognize old animals, which have a higher proportion of senescent cells
in their organs (Figure 7). Importantly, they loaded nanoMIPs with drugs and showed that
they can specifically kill senescent cells via passive diffusion.
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mice injected intravenously with Alexa Fluor 647-tagged B2M MIPs. Control mice were injected only with vehicle. Animals
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Reproduced with permission [77] © 2021 The Royal Society of Chemistry.

However, in order to keep the drug inside the polymer and actively deliver the
payload only at the desired time and place, it is possible to combine MIPs with inorganic
cores displaying interesting physical properties.

3.2. Properties of Inorganic Particles

Since the beginning of the 2000s, inorganic nanoparticles have been actively investi-
gated as carriers for cell delivery [78]. Inorganic nanoparticles combine several advantages:
a surface/volume ratio that enables the grafting/adsorption of large quantities of drugs
and at the same time a good colloidal stability necessary for intravenous injection. However,
what makes them very attractive for nanomedicine applications is their physical properties
which depend on the composition of the nanoparticle. Among the most studied, one can
find gold nanoparticles for their plasmonic properties, iron oxide which are superparam-
agnetic, silica particles which can be functionalized in a controlled manner, and quantum
dots exhibiting luminescent properties.
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Gold nanoparticles have been widely explored as therapeutic agents for displaying
several coveted properties. In cancer therapy, it is possible to use gold nanoparticles as
antineoplastic agents as they are capable of altering cell cycles [79] through their capacity
to enhance radiation sensitivity and vascularization processes [80] thanks to their intrinsic
property: they can interact selectively with heparin-binding glycoproteins and inhibit their
activity. Gold nanoparticles may also be used for photothermal therapy: the excitation of
surface plasmon oscillation through light exposition generates local heat release around
nanoparticles [81]. This property can be used for cancer therapy [82,83] as evaluated in
clinical trials. For instance, Nanospectra Biosciences trial, Aurolase, treated lung cancer
with gold nanoparticles and laser radiation delivered through bronchoscopy. The coupling
of gold nanoparticles with molecularly imprinted polymers may lead to new triggered
release techniques using thermosensitive polymers and the photothermal properties of
the particles.

Another class of nanoparticles that would provide interesting properties for MIPs
hybrids is superparamagnetic iron oxide nanoparticles (SPIONs). Due to their size and
superparamagnetic properties, strong magnetization at low magnetic field without rema-
nence when the field is off, SPIONs may be employed as MRI contrast agents. For liver
imaging, two solutions, approved by the FDA after 1996, were commercially available:
Feridex® and Resovist®, now no longer employed [84]. Superparamagnetic particles are
currently more studied for their ability to magnetically guide carriers in vivo or generate
heat upon alternating magnetic field (AMF) stimulation, so-called magnetic hyperther-
mia [22]. NanoTherm® (MagForce Ag) is a SPION based technology using magnetic
hyperthermia properties [84], approved in Europe for the treatment of glioblastoma and
currently evaluated in the USA for the treatment of prostate cancer.

It is hence possible to combine such nanoparticles with thermosensitive polymers
for a triggered drug release or cell-targeted hyperthermia therapy. The most widely
employed magnetic material to be coupled to MIP is magnetite, Fe3O4, due to its excellent
characteristics, such as low toxicity, easy synthesis, and low production cost. MIP may also
be coupled to maghemite, γ-Fe2O3, less employed due to the additional oxidation step
required but presenting the same main characteristics as Fe3O4 on top of being chemically
more stable. The main challenges with those particles are long-term chemical stability
and functionalization. To address those issues, it is possible to add an organic (polymer,
dendrimer) or inorganic (silica, gold) shell before the MIP functionalization which will
provide a protection against oxidation as well as new functionalization pathways.

Another interesting property that can be added to MIP is fluorescence emitted by
quantum dots. A quantum dot (QD) is a nanosized crystal of inorganic semiconductor
that has size-tunable, narrow, Gaussian emission spectra excited at a single wavelength,
enormous absorption extinction coefficients, and high fluorescent quantum yields. They
are inorganic, photochemically robust, resistant to photobleaching, and exceptionally
bright. Finally, quantum dots “blink”, which ensures the observation of a single dot event,
translating to the observation of a single protein. It is possible to design biocompatible
QD for in vivo applications by modifying the surface of the usual CdSe, CdTe, or ZnSe
nanocrystals or through conjugation with antibodies, peptides, or small molecules [85,86].
They have been widely developed for bioimaging and drug delivery [87], hence they make
good candidates for the synthesis of hybrid MIPs for medical application as a great number
of publications already support such combination in the design of sensors [88–90]. Carbon
dots (CDs) may provide similar results. Carbon dots are small nanosized particles (3 nm)
that exhibit remarkable photoluminescent properties. They are chemically inert, without
heavy metals and more photostable than dyes and other quantum dots.

To synthesize those hybrid materials, it is possible to do a bulk-like polymerization,
where the template is added with the monomer and the core, or to combine covalent
and non-covalent approach by grafting the template on an inorganic surface such as
silica nanoparticles [91,92]. The latter, as described by Liu et al. [73], requires additional
steps to ensure the template immobilization prior to polymerization. This method is
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less time-efficient but is preferred if a specific orientation of the template is necessary
or if the one-pot process is not successful. In the case of sialic acid imprinted polymer
described by Liu et al. [92], no MIP layer is formed using the bulk process, probably due
to a lower pH induced by the sialic acid, slowing down the polymerization process, but
pre-immobilization of the template solved this particular issue. Additionally, the intrinsic
properties of the nanoparticles may be exploited during the synthesis: the luminescence
of the CDs can be used as a light source for local photopolymerization, resulting in thin
layers of MIP coating the fluorescent CDs (Figure 8) [93].
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A wide range of new applications for molecularly imprinted polymers can be de-
veloped when they are combined to inorganic materials but the grafting of MIPs onto
the surface of inorganic nanoparticles also results in core-shell structures that allow more
control over the size and distribution of the material. The main improvements provided
by nanoMIPs and hydrid nanoMIPs compared to other nano-objects is non-exhaustively
described in Figure 9.

3.3. Toxicity and Stealthiness

The combination of a polymer matrix with nanostructures usually provides addi-
tional properties [94]. However, the complexity of a material may increase the number
of possible side effects. The incorporation of inorganic nanoparticles that are themselves
already suspected to induce some toxicity [95,96] has to be considered when evaluating
the benefice/risk balance of such innovation.

For in vivo applications, the biocompatibility of the hybrid material as well as its
degradation characteristics are to be studied. For instance, Griffete et al. [97] studied
the biological fate of iron oxide molecularly imprinted polymer-coated nanoparticles. In
particular, they evaluated the impact of the acrylamide polymer coating on the degradation
of iron nanoparticles in a lysosome-like buffer and in a model of cartilage tissue formed
by differentiated human mesenchymal stem cells. They found that the polymer coating
tends to slow down the iron nanoparticles degradation without hindering it or affecting
the internalization of the nanoparticles. This aspect is encouraging for the development of
nanomedicine tools involving hybrid materials.

For therapeutic purposes, the endocytosis by macrophages is also a key factor, as an
excess of MIPs endocytosis decreases the amount of circulating particles, increasing the
amount needed for a therapeutic effect. Dong et al. [24] evaluated the cytotoxicity and
the macrophage endocytose of SiO2-MIPs hybrid nanoparticle targeted against HER2, a
receptor overexpressed in some types of breast cancer cells. Their material, while efficiently
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targeting breast cancer cell HER2+ and inhibiting tumor growth, proved to be non-cytotoxic
and showed only a small macrophage uptake and is hence very promising as a new strategy
against breast cancer.

However, it has to be noted that cells experiments, as a model, are limited and that
more accurate results, obtained through small animal experiments, will be required to
assess the potential risk of those materials.
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4. Application of Hybrids nanoMIPs for Medicine
4.1. Bioimaging

As described in Section 2.1, the recognition properties of MIPs are useful in the medical
field to target specific tissues, cells, or compounds. It is therefore essential to be able to
image the targeted areas. The imaging performances can be greatly improved combining
the MIP technology with inorganic materials. With this goal, fluorescent proteins or an-
tibodies can be replaced by their fluorescent MIP counterpart for those applications. For
instance, epifluorescence and confocal microscopy can be used for live cell imaging [98].
NanoMIPs can promote the development of cell imaging tools against difficult targets
such as membrane proteins as well as intracellular proteins and can even target complex
structures such as whole cells [99]. The use of quantum dots for instance renders accessible
new ranges of emission and excitation wavelength, farther from the autofluorescence of
biomolecules, improving the signal/noise ratio. In 2017, Cecchini et al. [100] first tar-
geted the human vascular endothelial growth factor (hVEGF), overexpressed in many
invasive cancers, using molecularly imprinted polymer nanoparticles. They developed
nanoMIPs with quantum dots embedded, able to selectively bind to hVEGF while display-
ing a characteristic signal for bioimaging. Their ability to specifically target hVEGF was
confirmed in xenotransplantation of human malignant melanoma cells expressing hVEGF
in zebrafish embryos.



Nanomaterials 2021, 11, 3091 13 of 25

The combination of MIPs with QDs was described for multiplexed cell imaging
exploiting the size-tunable emission of QDs through the combination of various templates
with distinct QDs. A multiplexed imaging technique combining MIP-coated InP/ZnS
quantum dots and non-hybrid MIP containing a fluorescent rhodamine monomer was
developed in 2017 by Haupt et al. [101]. First, a hydrophilic coating was synthesized onto
the QD nanoparticles to ensure water-compatibility for the MIP layer synthesis. Then, a
MIP layer was formed with glucuronic acid (GlcA) or N-acetylneuraminic acid (NANA) as
a template, making the material able to efficiently target the extracellular and intracellular
hyaluronan and sialylation sites (Figure 10).
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Figure 10. (A) Red or green light emitted from InP/ZnS quantum dots excited by UV irradiation is
used to synthesize a polymeric shell in situ around the particles by photopolymerization. Methylene
blue/triethyl-amine (TEA) are used as the initiator system for red-QDs and eosin Y/TEA for green-
QDs. (B) A second shell of MIP is synthesized by reinitiation in the presence of functional and
cross-linking monomers and a molecular template (GlcA or NANA). Reproduced with permission
from [87] Copyright 2016 John Wiley & Sons.

In 2017, hyaluronan and salicylic acid nanoMIPs were employed as potential indicators
of pathological condition to localize hyaluronan and sialylation sites on fixed and living
human keratinocytes [102]. The quantum dots coated with MIPs were non-cytotoxic and
did not affect cell viability or morphology, offering a promising tool for bioimaging on
living tissue.

Hybrid MIPs may also be employed as surface-enhanced Raman scattering (SERS) tags
for bioimaging [94]. First developed by Yin et al. [103] to target cancer cells, their method
consists in the imprint of sialic acid onto Raman-active silver nanoparticles. After laser
excitation, the resulting SERS signals from the MIP nanoparticle were able to differentiate
cancer cells and tissues from normal ones. Similarly, gold nanorods coupled to EGFR-
imprinted polymers have been employed for live cell Raman imaging [94] and could be
employed for bioimaging (Figure 11).
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Figure 11. Confocal Raman images of MCF-7 breast cancer cells stained with (A) NIP@AuNR and
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4.2. Therapy

As MIPs can selectively and specifically adsorb molecules, they can be used for passive
or active drug delivery.

The most impressive advances toward controlled release have been obtained through the
combination of MIPs with inorganic materials. Sometimes, the inorganic part only serves as
a support for a clever release mechanism such as developed in 2016 by Zhang et al. [104]: a
silica-coated MIP encapsulating DOX and containing sulfur–sulfur bonding. In acidic pH and
high concentration of glutathione (GSH), the S-S bonds break, facilitating drug release. Similar
mechanisms were then exploited in 2018 by Yang et al. [92] in a material where the silica core
is removed by degradation of the S-nitrosothiol polymer by GSH at low pH generated nitrous
oxide which acted as an anticancer drug (Figure 12).

Beyond facilitating the synthesis, the addition of inorganic particles often provides
new tools for triggered drug release.

In 2014, UV was used to trigger drug release from asymmetric MIP-silver nanoparticles
(Janus particles) synthesized via a wax−water Pickering emulsion. The emulsion allowed
a one-sided silver coating of MIPs nanoparticle. Release of the drug from the Janus MIP
particles is controlled by switching on−off the UV illumination [105]. However, this
system lacks biocompatibility due to the application of Ag NPs and the limitation of
UV illumination which damages cells. Therefore, adjustments are required for practical
applications. For example, we could imagine replacing Ag NPs by gold nanorods which
are nontoxic and more biocompatible.

Magnetic MIP have also emerged as a powerful material for controlled drug delivery
systems because they can be localized to the delivery sites using a magnet [106] and release
the drug to particular sites through passive diffusion or polymer degradation. For instance,
magnetic molecularly imprinted polymers were synthesized for special recognition and
slow release of aspirin [107]. The synthesized MIPs have a high magnetic responding
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capacity, which enables them to be separated from suspension by an external magnetic
field. The resulting magnetic MIPs exhibit good special binding and selectivity capacities
to the template molecule.

Drug release can also be induced by polymer degradation as Asadi et al. [106] illus-
trated with their Fe3O4-modified MIP nanoparticles containing olanzapine (Figure 13). In
particular, they showed that the drug release can occur at pHs close to live body environ-
ment as the fructose-based polymer is degraded.

However, the main interest of the molecularly imprinted polymers combination with
maghemite/magnetite resides in their core processing photothermia [108] and hyperther-
mia properties [22]. While most studies focus on passive delivery, it is possible to use the
properties of magnetic nanoparticles to trigger the delivery of a drug or to kill specific cells
through heat exposure.

In this context, in 2015, an innovative magnetic MIP nanomaterial for triggered cancer
therapy showing active control over drug release by using an alternating magnetic field
was developed [109,110]. Upon AMF exposure, the hydrogen bonds between the MIP and
the encapsulated drug, doxorubicin, are broken and the molecule is released without any
significant heating of the medium. After AMF application, cancer cell viability is reduced
to 60% after 1 h 30 min treatment in athermal conditions while the control cells do not
suffer any mortality (Figure 14). The same behavior was obtained with magnetic silica
imprinted polymer [111].

Other groups have worked on triggered systems that could release a drug upon a
signal while avoiding burst effects. In this purpose, Yan et al. developed a molecularly
imprinted polymer doped with graphene oxide quantum dots [112] enabling the controlled
release of DOX through the photothermal properties of QDs. The prepared polymer micro-
spheres doped with graphene QDs via miniemulsion polymerization using a polymerizable
ionic emulsifier were efficiently photothermally triggered to release DOX while avoiding
any leakage of the drug.
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Figure 12. Synthesis method of sialic acid imprinted hybrid nanoparticles. The intracellular degradation of the sulfur
bonds of the polymer in presence of GSH at low pH generate nitrous oxide with anticancer properties. Reproduced with
permission from [92] © 2021 Elsevier B.V.
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compared to the control experiment. (D) Treatment of the cancer cells with free doxorubicin (DOX) incubated for 2 h from 
0.5 to 50 µM. Reproduced with permission from [109] © 2021 RSC Publishing. 
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In 2019, Zhang et al. [113], developed an innovative silica-based material that could 
be used for targeting, drug delivery, and imaging. A biomarker, human fibroblast growth-
factor-inducible based, coupled with an anticancer, bleomycin, were imprinted on a silica 
core for its good optical properties. In vivo experiments showed an excellent inhibition of 
the growth of BxPC-3 xenograft tumor. Similar models have been developed against other 
cancer cells, for instance one targeting the HER2 receptor and delivering DOX [114]. It led 
to similar results in vivo, illustrating the versatility of this approach. 

Figure 14. Cancer cells (PC-3) internalization of the Fe2O3@DOX-MIP nanoparticles. DOX is detected in the green channel,
nuclei and cell membranes are stained by DAPI (A) in blue and PKH26 (A,B) in red. Z reconstructions (B) identify DOX
inside the cells. (C): Viability of cancer cells labeled with Fe2O3@DOX-MIP after exposure to the alternating magnetic
compared to the control experiment. (D) Treatment of the cancer cells with free doxorubicin (DOX) incubated for 2 h from
0.5 to 50 µM. Reproduced with permission from [109] © 2021 RSC Publishing.

4.3. Theranostic

New systems combining both aspects of MIPs—the ability to efficiently target and to
encapsulate therapeutic molecules to be delivered—are starting to spread in the theranostic
field. The main idea is to combine a biological marker characteristic of a pathological
condition as a target and a therapeutic molecule to enhance the potency of a treatment
while imaging and reducing potential side effects. This approach has been widely used
in cancer therapy as drugs employed in chemotherapy are also toxic for healthy cells,
resulting in acute side effects.
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The recent development of technologies combining molecularly imprinted polymers
with inorganic core materials is so versatile that it allows a wide range treatment option. In
particular, those materials could specifically target any given tissue or cell types that possess
a specific marker and that such marker possesses the required stability to be imprinted.
Like non-hybrid materials, they can be combined with a drug loading inside the polymer
matrix but additional features are available when using an appropriate core material. The
possibilities seem endless and are starting to be broadly explored in the literature.

In 2019, Zhang et al. [113], developed an innovative silica-based material that could
be used for targeting, drug delivery, and imaging. A biomarker, human fibroblast growth-
factor-inducible based, coupled with an anticancer, bleomycin, were imprinted on a silica
core for its good optical properties. In vivo experiments showed an excellent inhibition of
the growth of BxPC-3 xenograft tumor. Similar models have been developed against other
cancer cells, for instance one targeting the HER2 receptor and delivering DOX [114]. It led
to similar results in vivo, illustrating the versatility of this approach.

It is also possible to use the magnetic properties of a material to selectively target an or-
gan or a tumor instead of imprinting a surface marker. The ability of SPIONs to accumulate
in a specific site through magnetic guidance has been successfully demonstrated in a study
without the imprinting of molecules [115]. In a recent study, a 5-fluorouracil, anticancer
drug with fast degradation rates, loading novel multi core–shell structure nanocarriers
based on a cross linker of tannic acid has been synthesized [116].

Fluorescent imaging with a small animal imaging instrument confirmed the successful
conduction of the carrier into the liver by applying an external magnetic field. However,
as liver and kidney tend to naturally accumulate nanoparticles, the choice of liver located
tumors might not be the most appropriate to illustrate an efficient targeting (Figure 15).
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aminopropyl trimethoxysilane, FITC: fluorescein isothiocyanate, 5-FU: 5-fluorouracil, MPS: methacry-
loxypropyl trimethoxysilane). Reproduced with permission from [116] © 2021 The Royal Society
of Chemistry.
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5. Conclusions

In the past, molecularly imprinted polymers have been mostly used in sensors or for
analytical purposes but during the last decade, great developments have been made in
order to use them in nanomedicine. The synthesis techniques have evolved in order to
ensure the biocompatibility of the material, to control the size or even the orientation of the
imprint. As MIP nanoparticles are cheaper than antibodies, with an increased stability and
more adapted to mass production with alternatives to reuse the template proteins [117],
they represent a particularly good alternative for targeting applications for bioimaging or
for therapy. However, if the particles are used in vivo, it is necessary to keep in mind that a
protein corona can coat MIPs, decreasing their capacity to recognize the targeted protein
by preventing access to the imprint inside the polymer as studied by Lagana et al. in
2020 [118]. Hence, special attention needs to be placed on the future development of MIPs
for nanomedicine. If protein imprints are employed for in vivo targeting, some solutions
have to be developed and implemented in order to control protein corona formation.

Additionally, in order to obtain novel interesting properties, they can be combined
with inorganic materials such as iron oxide, gold, or silver nanoparticles, which have the
capacity to respond to external physical stimuli. Fluorescence imaging has also become
a fundamental tool for biomedical applications. In the past decade, the fluorescence in
the second near-infrared window (NIR-II, 1000–1700 nm) has been developed to achieve
deep penetration and thus significant biomedical applications have begun to emerge [119].
Hence, novel synthetic strategies are to be directed toward the development of hybrid
imprinted nanoparticles for nanomedicine to exploit those advances. In particular, the
imprinting of proteins, often required for medical applications, is usually more complex
than imprinting small stable molecules. However, even if there are several hybrid MIPs
that exist, as listed in Table 1, they are scarcely used for their physical properties. For
example, combining a MIP that can recognize the imprint of a cancer marker, to inorganic
cores that heat in response to an external stimulus will produce an effective material
for selective cancer destruction. Nanoparticles such as gold have been widely used in
cancer phototherapy and photoimaging, owing to their enhanced solubility, stability,
biofunctionality, cancer targetability, and biocompatibility [120]. All-in-one materials,
combining targeting, imaging, and drug delivery, seems to be within grasp through the
combination of MIPs with inorganic nanoparticles. Many interesting combinations will be
released in the next few years that will provide an extensive panel for patient care.

Table 1. Hybrid molecularly imprinted nanoparticles applied to nanomedicine.

Inorganic Material Monomers Synthesis Technique Target Application Ref

CdTe QDs

N-isopropylacrylamide,
N-tertbutylacrylamide,

N(3-aminopropyl)
methacrylamide

hydrochloride acrylic acid
N,N’methylenebisacrylamide

Solid phase synthesis
of MIPs and chemical

coupling to QDs
hVEGF Bioimaging [100]

Fe2O3
acrylamide, ethylene glycol

dimethacrylate
Bulk

thermopolymerisation Doxorubicin dds [109]

Fe2O3
Acrylamide, N,N-

methylene-bis-acrylamide
Bulk redox

polymerization GFP Targeting/drug
delivery [97]

Fe3O4

methacrylic acid,
trimethylolpropane

trimethacrylate
Bulk polymerization Aspirin dds [107]

Fe3O4/SiO2 Fructose Co-precipitation
polymerization Olanzapine dds [106]

Fe3O4/SiO2 Tannic acid Mini-emulsion
polymerization 5 fluorouracil dds [116]
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Table 1. Cont.

Inorganic Material Monomers Synthesis Technique Target Application Ref

FITC doped SiO2 NPs TEOS
Bulk polymerization

with pre-oriented
template

HER2 cancer therapy [24]

FITC-doped SiO2 NPs TEOS
Template

immobilization
(boronic acid)

Sialic acid,
fucose or
mannose

Fluorescence
imaging (FITC) [73]

gold nano rods

Poly(NIPAAm)
template adsorption at
15 ◦C and colapsing at

37 ◦C generating an
imprint

EGFR Bioimaging [94]

Graphene oxide QD Methylmetacrylate, ethylene
glycol dimethacrylate

Mini-emulsion
polymerization Doxorubicin dds [112]

InP/ZnS QD

4-
acrylamidophenyl)(amino)

methaniminium acetate,
methacrylamide, ethylene
glycol dimethacrylate or

2-hydroxyethyl
methacrylate,N,N’-

ethylenebis(acrylamide)

Bulk
photopolymerization
using QD’s emission

Glucuronic
acid or N-

acetylneuraminic
acid

Bioimaging [87]

silica EGDMA Bulk polymerization Doxorubicin dds [104]

silica Dopamine Bulk dopamine
condensation

HER2 +
doxorubicin dds/targeting [114]

silicon nanoparticles

Ethylene glycol
dimethacrylate, zinc

acrylate,
4-Vinylbenzeneboronic acid

Bulk polymerization

Bleomycin +
human

fibroblast
growth-factor-

inducible
14

dds/targeting [113]

silver TEOS

Boronate
affinity-oriented

surface imprinting
approach/TEOS

condensation

Sialic acid Bioimaging
(RAMAN) [103]

silver

Methacrylic acid,
N-isopropylacrylamide,

N,N’-methylene-bis-
acrylamide,
allylamine

Wax in water
Pickering emulsion for

the Ag coating
propanolol UV dds [105]

Starch-based CD

4-
acrylamidophenyl)(amino)methaniminium

acetate, methacrylamide,
ethylene glycol
dimethacrylate

Bulk
photopolymerization

Glucuronic
acid

Cancer cell
targeting and

imaging
[93]

NIPAm: N-isopropylacrylamide, BIS: N,N’-ethylenebis(acrylamide), AMPA: N-(3-aminopropyl) methacrylamide hydrochloride,
EGDMA: ethylene glycol dimethacrylate, TEOS: Orthosilicate de tétraéthyle, MA: Methacrylic acid, MMA: Methylmetacrylate, AB:
4-acrylamidophenyl)(amino)methaniminium acetate.
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Abbreviations
AFM Atomic force microscope
AMF Alternative magnetic field
ASP Aspirin
CD Carbon dot
DOX Doxorubicin
EGDMA Ethylene glycol dimethacrylate
EGFR Epidermal growth factor
ELISA Enzyme-linked immunosorbent assay
EPR effect Endothelial permeability and retention effect
FTIR Fourier transform infrared spectroscopy
hVEGF Human vascular endothelial growth factor
LOD Limit of detection
MAA Methacrylic acid
MIP Molecularly imprinted polymer
MRI Magnetic resonance imaging
NIP Non-imprinted polymer
NIR Near infrared
NP Nanoparticle
QCM Quartz crystal microbalance
QD Quantum dot
SAW Surface acoustic wave
SERS Surface enhanced Raman spectroscopy
SPIONs Superparamagnetic iron oxide nanoparticles
SPR Surface plasmon resonance
TEM Transmission electronic microscopy
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