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Abstract

Background: The Cancer Stem Cell (CSC) hypothesis has gained credibility within the cancer research community.
According to this hypothesis, a small subpopulation of cells within cancerous tissues exhibits stem-cell-like characteristics
and is responsible for the maintenance and proliferation of cancer.

Methodologies/Principal Findings: We present a simple compartmental pseudo-chemical mathematical model for tumor
growth, based on the CSC hypothesis, and derived using a ‘‘chemical reaction’’ approach. We defined three cell
subpopulations: CSCs, transit progenitor cells, and differentiated cells. Each event related to cell division, differentiation, or
death is then modeled as a chemical reaction. The resulting set of ordinary differential equations was numerically integrated
to describe the time evolution of each cell subpopulation and the overall tumor growth. The parameter space was explored
to identify combinations of parameter values that produce biologically feasible and consistent scenarios.

Conclusions/Significance: Certain kinetic relationships apparently must be satisfied to sustain solid tumor growth and to
maintain an approximate constant fraction of CSCs in the tumor lower than 0.01 (as experimentally observed): (a) the rate of
symmetrical and asymmetrical CSC renewal must be in the same order of magnitude; (b) the intrinsic rate of renewal and
differentiation of progenitor cells must be half an order of magnitude higher than the corresponding intrinsic rates for
cancer stem cells; (c) the rates of apoptosis of the CSC, transit amplifying progenitor (P) cells, and terminally differentiated
(D) cells must be progressively higher by approximately one order of magnitude. Simulation results were consistent with
reports that have suggested that encouraging CSC differentiation could be an effective therapeutic strategy for fighting
cancer in addition to selective killing or inhibition of symmetric division of CSCs.
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Introduction

Fundamental and applied clinical research into cancer could

greatly benefit from mathematical models that contribute to the

basic understanding of this disease, to the planning of more

efficient therapeutic strategies, or to the generation of accurate

patient prognosis. This paper presents a general, simple, and

flexible mathematical model, mechanistically based on the Cancer

Stem Cell (CSC) hypothesis, that is capable of reproducing the

dynamics observed during the exponential growth of a tumor.

Recently, the CSC hypothesis has gained credibility within

the cancer research community [1–5]. In its simplest version,

this hypothesis postulates that most tumors (if not all) arise by

consecutive genetic changes in a small subpopulation of cells

that have intrinsic characteristics similar to those of normal

stem cells (SCs) [6–9]. A fast growing body of experimental

evidence suggests that these so-called cancer stem cells (CSCs)

are the drivers of cancer and are responsible for sustained

tumor growth. Although no general consensus has yet been

reached on several key aspects of the biology of CSCs, there is

agreement in some of their distinctive features: (a) self-renewal

capabilities, (b) potential for differentiation into the various cell

subtypes of the original cancer, and (c) increased tumorigenesis

[9–14].

Numerous researchers have reported the existence of CSC

subpopulations in solid tumors [15–25]. CSCs have been reported

to be more resistant to normal cancer therapies than are

differentiated tumor cells (bulk tumor cells) [18,19,22,25,26].

Therefore, properly and selectively targeting CSCs could be one of

the main lines of attack in a new wave of therapeutic strategies

against cancer [5,22,27–29].

Although tumor growth has been a subject of intensive

mathematical modeling in the last two decades, the concept of

existence of a CSC population within tumors has been only

recently included as an element in describing tumor growth [30–

45]. Among these examples, different modeling approaches have

been used, ranging from stochastic [35,42,45] to deterministic

modeling [37,41]. CSC-cancer modeling has frequently focused
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on the exploration of therapeutic strategies [36,37,41,43]. For

instance, Dingli and Michor [36] used mathematical modeling to

demonstrate the importance of selective targeting of CSCs to

improve the efficiency of cancer therapies. Similarly, Ganguly and

Puri [39] formulated a model to evaluate chemotherapeutic drug

efficacy in arresting tumor growth, based on the cancer stem cell

hypothesis. Their results suggested that the best response to

chemotherapy occurs when a drug targets abnormal stem cells.

CSC based mathematical models have also been used to forecast

the effect of specific therapeutic agents (and combinatory

therapies). Several contributions have explored different aspects

of the treatment with imatinib [37,41,43]. Mathematical modeling

has also been used to gain understanding of fundamental issues

underlying CSC biology [31,32,40,42,44,45]. The biology of

CSCs has not been fully elucidated and many questions still

remain unresolved [16,45]. In particular, some of these uncer-

tainties are related to the dynamics of tumor growth. As an

illustration, little is known about the balance between the multiple

and complex cellular events that occur during the early stages of

tumor progression. One of the central objectives of this work is to

identify if some commonalities (or universal features) may exist

with respect to the kinetics of early tumor growth. Experimentally

studying the balance between the different cellular events involved

on the process of tumor growth is not a trivial matter.

Mechanistically based mathematical modeling might be highly

useful for simulating the dynamics of cancer initiation and

progression, the response to different therapies, and the evolution

of resistance to drugs [30], as well as for gaining further

fundamental understanding on the underlying dynamics of tumor

growth.

In the present manuscript, we present a simple mathematical

model that is designed to study the role of CSCs in tumor

growth, with the aim of understanding the kinetic relationships

between the different processes leading to exponential growth in

solid tumors and evaluating possible therapeutic strategies for

cancer treatment. We attempted to capture the key features of

the known biological behavior of CSCs in a pseudo-chemical

model, where cell division and death of the three cell subtypes

considered are represented as ‘‘chemical reactions.’’ The

intrinsic rates at which these reactions (cellular events) occur

are the parameters of the model (kj) and are analogous to

reaction rate kinetic constants. Based on an exploration of the

parameter space of these kinetic constants, we derive conclu-

sions related to their relative magnitudes. Some inferences

regarding the fundamental biology of tumor growth and the

effectiveness of some therapeutic strategies against cancer are

discussed.

Methods

A pseudo-chemical model for tumor growth: underlying
biological concepts

Tumors are a heterogeneous mix of cells, some of which exhibit

SC-like characteristics [14,16,17,34,46–48]. It is probably more

accurate to say that a tumor possesses a continuous spectrum of

cell types, ranging from CSCs to more differentiated cells. In most

of the previous modeling studies, the complexity of tumor tissue

has been addressed by defining several cell subpopulations

(typically from two to four), leading to compartment models

[31,32,37,40]. In order to reduce the complexity of the resulting

model, only three subtypes of cells are considered: CSCs, transit

amplifying progenitor cells (P), and terminally differentiated cells

(D) (Fig. 1). This assumption is consistent with several experimen-

tal reports that simplify the cell heterogeneity found in cancer, in

which three main cell subtypes are indentified [23,48] with some

variants in nomenclature; i.e., holoclones, meroclones, and

paraclones [49–51].

In our model, events related to CSC self-renewal, to maturation

of CSCs into P cells, to further differentiation to D cells, and to

death of all cell subtypes, are represented as ‘‘chemical reactions’’

and are mediated by specific rate constants. These reactions occur

in a system that has no nutrient limitations during the phase of

exponential tumor growth. This assumption presumes that

angiogenesis occurs at a rate that ensures the accessibility of

nutrients sustain constant growth.

Framed in this way, the time evolution of all cellular

subpopulations can be represented by a set of ordinary differential

equations that have an analytical solution. In the following

paragraphs, we introduce each of the cellular events considered for

the construction of the model, and their representation in the form

of ‘‘chemical reactions.’’

Expansion of SCs can be accomplished through symmetric

division [52,53], whereby one CSC originates two CSCs:

CSC �k1{?2CSC ðR1Þ

Alternatively, a CSC can undergo asymmetric division (whereby

one CSC gives rise to another CSC and a more differentiated

progenitor (P) cell). This P cell possesses intermediate properties

between CSCs and differentiated (D) cells [2,51,54–56]:

CSC �k2{?CSCzP ðR2Þ

Both symmetrical and asymmetrical cell divisions of CSCs have

been experimentally documented by staining of nuclear Oct-4 (a

stem cell marker) [57]. Regulation of the ratio between symmetric

and asymmetric division might possibly be crucial for the

development and progression of cancer [44,52].

CSCs may also differentiate to P cells by symmetric division

[44,58]:

CSC �k3{?2P ðR3Þ

P cells can either self-renew, with a decreased capacity compared

to CSCs, or they can differentiate to D cells [21,31,59,60]:

P �k4{?2P ðR4Þ

P �k5{?2D ðR5Þ

D cells do not have the capacity to proliferate [20,51,62], so their

corresponding kinetic constant should be very small (here

considered negligible). In addition, all cellular subtypes can

undergo cell death:

CSC �k6{?M ðR6Þ

P �k7{?M ðR7Þ

Model Based on the Cancer Stem Cell Hypothesis
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D �k8{?M ðR8Þ

To establish the model, we followed a classical strategy used in

chemical reaction engineering to describe a system of chemical

reactions. For each cellular event, a ‘‘reaction rate’’ can be

successively established: r1 = k1CSC; r2 = k2CSC; r3 = k3CSC;

r4 = k4P; r5 = k5P; r6 = k6CSC; r7 = k7P; r8 = k8D.

Neglecting all terms related to transport of cells (to and from the

tumor), the rate of accumulation of a cell subtype ‘‘j’’, dj/dt, is

equivalent to the net generation of that cell subtype, given by the

addition of all reaction rates where that cell subtype is involved (i.e.

produced or consumed).

For example, the cell species CSC is involved in the cellular

events R1, R2, R3, and R6. In reaction R1, CSC is produced at a

rate equivalent to 2r1, and consumed at a rate r1. In the cellular

event R2, CSC is produced at a rate r2, and consumed at the very

same rate r2. In the cellular event R3, CSC is consumed at a rate

r3 due to differentiation into P. Similarly, in the cellular event R6,

CSC is consumed at a rate r6 due to cell death.

The accumulation of CSCs within the system will be given by

Eq. 1:

dCSC

dt
~2r1{r1zr2{r2{r3{r6

dCSC

dt
~r1{r3{r6

dCSC

dt
~k1CSC{k3CSC{k6CSC

dCSC

dt
~ k1{k3{k6ð ÞCSC

ð1Þ

Similarly, the accumulation of P and D cells within the system is

expressed as:

dP

dt
~r2z2r3z2r4{r4{r5{r7

dP

dt
~k2CSCz2k3CSCz2k4P{k4P{k5P{k7P

dP

dt
~ k2z2k3ð ÞCSCz k4{k5{k7ð ÞP

ð2Þ

And,

Figure 1. Basic assumptions of the model. (A) Different cell populations are found in solid tumors. For simplicity, the model considers only three
cell compartments or differentiation stages (CSC = Cancer Stem Cells, P = progenitor cells, D = terminally differentiated cells, and M = dead cells). All
the possible different stages of differentiation of progenitor cells (P1, P2, etc., have been lumped into the cell subtype P. CSC, P, and D cell subtypes
undergo cell death through reactions R6, R7, and R8 respectively. (B) Cellular division events considered in the model: symmetrical self-renewal of
cancer stem cells (R1); asymmetrical renewal of cancer stem cells (R2); symmetrical differentiation of cancer stem cells into progenitor cells (R3);
symmetrical proliferation of progenitor cells (R4); and symmetrical differentiation of progenitor cells into fully differentiated cells (R5).
doi:10.1371/journal.pone.0026233.g001
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dD

dt
~2r5{r8

dD

dt
~2k5P{k8D

ð3Þ

This simple system of ordinary differential equations can be

analytically solved to obtain the populations of each cell type

(CSC, P, D) at any time, provided that a set of initial cell

populations is specified (CSCo, Po and D).

CSC~CSC0eat ð4Þ

P~CSC0 b= a{xð Þ½ �eatz½P0{CSC0b= a{xð Þ�ext ð5Þ

D~deatzeextz D0{d{eð Þe{k8t ð6Þ

Where

a~k1{k3{k6 ð7Þ

b~k2z2k3 ð8Þ

x~k4{k5{k7 ð9Þ

d~2k5CSC0b= a{xð Þ a{k8ð Þ½ � ð10Þ

e~2k5 P0{CSC0b= a{xð Þ½ �= x{k8ð Þ ð11Þ

The total number of tumor cells (N) will be the sum of the three

cellular subtypes, assuming that dead cells are reabsorbed:

N cellsð Þ~CSCzPzD ð12Þ

The tumor volume can be calculated, considering that the effective

volume contribution of a spherically shaped cell in a spherical

tumor is 4.1861026 mm3/cell [62], as:

V mm3
� �

~4:18|106N ð13Þ

This assumption implies that the tumor grows at constant cellular

density, which might be reasonable during exponential tumor

growth, when we have assumed that no nutrient transport

limitations exist, and space constraints are not significant [63].

Results and Discussion

Significance of the parameters and constraints of the
model

The model has one kinetic parameter per cellular event (or

‘‘reaction’’). A brief discussion of the physical significance of these

kinetic constants is pertinent here. In a typical elementary

chemical reaction, the rate of appearance of a chemical species

is proportional to the concentration of the reagents through a

proportionality constant, the specific rate of reaction. Analogously,

for our cellular system, the ‘‘rate of reaction’’ of each cellular event

depends on both the number of precursor cells for that event and

the proportionality constant kj that will multiply that number. For

example, the rate of disappearance of CSCs, due exclusively to the

occurrence of the cellular event R1, is r1, and is mediated by the

kinetic parameter k1. Therefore, k1 is an intrinsic reaction rate

constant that indicates the natural predisposition of a cell, in this

case a CSC, to divide symmetrically to originate two CSCs. In our

model definition, kj is not equal to the growth rate of a cell subtype,

but rather to the intrinsic proliferation rate associated with the

frequency at which that particular cell subtype generally divides.

To calculate the rate of accumulation of a particular cellular

species (or net growth rate of that species), all terms where this

species appears or disappears should be considered. For example,

for the particular case of CSC, the associated rate of accumulation

involves r1, r3, and r6 (see equation 1).

Kinetic parameter grouping
The proposed kinetic model has eight independent variables.

We simplified the analysis of the parameter space by grouping the

eight kinetic constants of the model into three groups. Group I

includes k1, k2, and k3; kinetic constants associated with cellular

events that relate to CSC proliferation and differentiation. Group

II includes k4 and k5, since they mediate cellular events related to

proliferation or differentiation of P cells. Finally, k6, k7 and k8 were

included in Group III, as they describe cell death of each cell

subtype.

In addition, some mathematical relationships among parameter

groups and kinetic constants were defined. The value of k1, the

rate constant for symmetric CSC renewal, was set equal to one.

This is convenient, since all the rest of the kj values can now be

defined (or scaled) relative to k1. In addition, it is helpful to define

ratios between the kinetic parameters, namely W2/1, W3/1, W4/1,

W5/4, W6/1, W7/1, and W8/1. For example, W4/1 is the ratio between

k4/k1; biologically, it reflects the relative magnitude of the intrinsic

kinetic constant governing symmetrical division of progenitor cells

with respect to that related to symmetrical division of cancer stem

cells. Similarly, W5/4 (k5/k4) indicates the relative magnitude

between the rate constants associated to symmetrical division of

progenitor cells to render two progenitor cells (R4) and

symmetrical division of progenitor cells to produce two differen-

tiated cells (R5). In this way, a vector of Wi/j values will define a

complete set of kj values, and therefore a biological scenario for

tumor growth. Illustratively, once k1 is set to the unit value (k1 = 1),

the vector Wi/j = [W2/1, W3/1, W4/1, W5/4, W6/1, W7/1, W8/1] = [1.0,

0.01, 5.35, 0.8, 0.01, 0.1, 1.0] defines a scenario where k1 = 1,

k2 = 1.0, k3 = 0.01, k4 = 5.35, k5 = 4.28, k6 = 0.01, k7 = 0.1, k8 = 1.0.

Although, a priori, all kj values are plausible, some constraints

based on biological knowledge can be applied. For instance, in the

present paper, the intrinsic apoptosis rate was considered to

increase as cells become progressively more differentiated.

Consequently, the greatest death rate corresponds to the most

differentiated phenotype (D). On the other hand, CSCs have an

extremely low apoptotic index [21,53,64–66]; therefore, the next

constraints will be imposed for all simulations:

k6vk7; and k7vk8 ð14Þ

In addition, experimentally, a minimum fraction of CSCs has been

found to be maintained through the evolution of cancer [20,61].

Normally, this fraction is lower than 1% of the total cell number

[20,25,67]. Therefore, CSC/N,0.01 and d[CSC/N]/dt<0 for

all times. Finally, the fraction of P cells can be estimated from

Model Based on the Cancer Stem Cell Hypothesis
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experiments in the literature to be approximately 0.2 [20,68]. It is

also well known that D cells constitute the majority of tumor cells

[7,20,37]. Accordingly, we set the following expressions as

constraints:

P=N&0:2 and D=N&0:8 ð15Þ

The biology of CSCs has not been fully elucidated and many

questions still remain unresolved [16,45]. In particular, some of

these uncertainties are related to the dynamics of tumor growth.

As an illustration, little is known about the balance between the

multiple and complex cellular events that occur during the early

stages of tumor progression. One of the central objectives of this

work is to identify if some commonalities (or universal features)

may exist with respect to the kinetics of early tumor growth.

Experimentally studying the balance between the different cellular

events involved on the process of tumor growth is not a trivial

matter.

The simple model that we proposed here allows for the study of

the effect of variations in the relationships between the intrinsic

kinetic values of each one of the cellular events defined (from R1 to

R8). In our discussion, we place particular importance on the

experimentally documented fact that the CSC fraction in a tumor

is constant during tumor evolution, which is clear evidence of the

crucial role of the CSC reservoir in tumor growth [20,22,25,51].

Therefore, the constraint d[CSC/N]/dt<0 becomes central to

identifying biologically consistent and feasible solutions for the

model.

Feasible model solutions
In principle, one would expect that a vast number of

combinations would render dynamical behaviors that would be

consistent with experimental observations of the evolution of solid

tumors. Based on our experience testing the model, the imposed

constraints (namely d[CSC/N]/dt<0; P/N<0.2; D/N<0.8;

CSC/N,0.01) substantially limit the number of sets of parameter

values that lead to feasible solutions.

As an illustration, let us consider the particular solution,

obtained when the vector Wi/j = [W2/1,W3/1,W4/1,W5/4,W6/1,W7/1,

W8/1] = [1.0, 0.01, 5.35, 0.8, 0.01, 0.1,1.0] is used. This scenario

corresponds to one where k1 = 1, k2 = 1.0, k3 = 0.01, k4 = 5.35,

k5 = 4.28, k6 = 0.01, k7 = 0.1, k8 = 1.0. The corresponding solution

exhibits exponential growth, typically observed during the first

stage of tumor growth (Figure 2A). After 30 arbitrary time units, all

constraints are satisfied; namely, d[CSC/N]/dt<0; P/N<0.1875;

D/N<0.8106; CSC/N<0.0018 (Figure 2B). Indeed, while

exploring feasible solutions, we found the CSC/N vs. time plot

to be particularly useful (see Figure 2C). For example, Figure 2C

shows the dependence of the dynamics of CSC/N with respect to

the value of W4/1. In this illustrative exercise, the rest of the Wi/j

values remain constant, while W4/1 was progressively increased

within the range of 5.0 to 5.7 units. Only specific value of

W4/1 = 5.35 satisfied the condition of d[CSC/N]/dt = 0. Around

the solution defined by the vector Wi/j = [1.0, 0.01, 5.35, 0.8, 0.01,

0.1, 1.0] other solutions exist that also satisfy d[CSC/N]/dt = 0;

some of these have different CSC/N, P/N, and D/N steady state

values. We found identification of these to be aided by trial and

error investigations of the effect that small perturbations to this set

of Wi/j values had on the quality of the solutions. Table 1 presents

results from a series of simulation experiments where Wi/j values

were varied around those that produced the solution previously

discussed (Exp 0 in Table 1).

Some solutions, although satisfy d[CSC/N]/dt = 0, differ

importantly in terms of their resulting cellular fractions at the

steady state. For example, the solution of Exp. 7 (Table 1) is

conducive to a steady state in which the cellular fractions CSC/N,

P/N, and D/N are 0.0459, 0.1703, and 0.7836, respectively. In

this particular case, the modification consisted of increasing the

value of W5/4 (or k5/k4) from 0.80 to 0.85. This implies an increase

of only 6.25% in the value of the intrinsic reaction rate constant of

differentiation versus self-renewal of the subpopulation of

progenitor cells. Not intuitively, the fraction of cancer stem cells

Figure 2. Model output. (A) The model estimates the time evolution
of each one of the cell subpopulations considered, fully differentiated
cells (D; blue line); progenitor cells (P; red line); and cancer stem cells
(CSC; green line). (B) by plotting the cell fractions for each cell
population (D/N; blue line), (P/N; red line), and (CSC/N; green line), it is
possible to search for feasible and biologically consistent solutions (i.e.
d[CSC/N]/dt = 0; C/N,0.01). (C) Only a relatively small set of parameter
combinations result in solutions that satisfy the constraint d[CSC/N]/
dt = 0. The solution defined by the vector Wi/j = [1.0, 0.01, 5.35, 0.8, 0.01,
0.1, 1.0] satisfy d[CSC/N]/dt = 0 only if when the specific value of
W4/1 = 5.35 was used (green line). Values of W4/1 = k4/k1.3.5 (purple and
light blue line) cause d[CSC/N]/dt,0; and values of W4/1 = k4/k1,3.5 (red
and dark blue line) cause d[CSC/N]/dt.0.
doi:10.1371/journal.pone.0026233.g002

Model Based on the Cancer Stem Cell Hypothesis
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increases as a result, due to the now higher mortality rate of

differentiated cells induced by their higher cell numbers

(r8 = k8[D].r7 = k7[P].r6 = k6[CSC]).

Other sets produce solutions with steady states similar to those

of our reference case, previously mentioned (Wi/j = [1.0, 0.01,

5.35, 0.8, 0.01, 0.1, 1.0]; experiment 0 in Table 1). For example,

the set Wi/j = [1.5, 0.005, 5.35, 0.8, 0.01, 0.1, 1.0] also produces a

solution that satisfies d[CSC/N]/dt = 0, with a steady state

characterized by the cellular fractions P/N<0.1878; D/

N<0.8102; CSC/N<0.0018 (Figure 3A, Exp. 15 in Table 1).

We found several solutions (see Exp. 15, 16, and 17 in Table 1),

with steady state values in the vicinity of P/N<0.18, D/N<0.81,

and CSC/N<0.0018, by modifying the value of two of the

parameters Wi/j with respect to the values of the reference set

(Exp. 0 in Table 1). To do so, we selected displacements (DWi/j)

with opposite effects on the steady state P/N or CSC/N values

(according to column No. 10 in Table 1). For example, in Exp.

15, an increase of 50% on the value of W2/1 was compensated by

a proportional decrease (50%) on the value W3/1. This was an

expected result: an increase in the rate of asymmetrical

differentiation (r2) has to be balanced by a decrease in the rate

of symmetrical differentiation (r3). Similarly, the opposite

statement should hold. A decrease of 20% in the intrinsic rate

of asymmetrical differentiation was compensated by a 20%

increase in the rate of symmetrical differentiation (Exp. 16 in

Table 1). Less intuitively, in Exp. 17 (see Figure 3B), an

increment in the W2/1 value was balanced by a decrease on

W4/1. In this case, a 50% increase in the rate of asymmetrical

differentiation is equilibrated by a minor decrease (0.5%) in the

intrinsic rate of both symmetrical proliferation (r4) and differen-

tiation of progenitor cells (r5). Note that both the value of k4 and

k5 are influenced by W4/1, since the value of W5/4 was left

unmodified.

Kinetic commonalities during exponential growth
While multiple sets of Wi/j could produce results consistent with

the proposed set of constraints, those sets must comply with some

general characteristics. For example, as illustrated before, the

parameters W2/1 and W3/1 (and consequently k2 and k3) are

inversely related. To keep the overall fraction of cancer stem cells

CSC/N constant over time, an increase on the value of k2 must be

balanced by a proportional decrease on k3, and vice versa.

This observation suggests a fine feedback biochemical control,

and not necessarily a fixed ratio k2/k3. This result is relevant, since

the experimental determination of the relative probability of

occurrence of symmetric and asymmetric CSC division is difficult.

The suggestion that regulation of the ratio between symmetric and

asymmetric division may be crucial for the development and

progression of cancer appears recurrently in the literature

[33,46,52,54,55]. For example, Boman et al. [31], using a

compartmental model, concluded that the only mechanism that

can explain how CSC subpopulations can increase exponentially

during colorectal cancer development involves an increase in

symmetric SC cell division. This finding suggests that systemic

therapies for effective treatment of cancers must act to control or

eliminate symmetrical cancer SC division in tumors, while

minimally affecting normal SC division in non-tumor tissues. In

this respect, Turner et al. [45] have consistently concluded that

symmetric division rates are the key in dictating brain tumor

composition. Their results also suggested the importance of

developing novel treatment strategies that specifically target the

CSC subpopulation in brain tumors.

Table 1. Analysis of the effect of small perturbations around a particular solution.

Exp W1/1 W2/1 W3/1 W4/1 W5/4 W6/1 W7/1 W8/1 d[CSC/N]/dt (*) CSC/N @ss P/N @ss D/N @ss

0 1 1 0.01 5.35 0.8 0.01 0.1 1 ss 0.0018 0.1875 0.8106

1 1 1.5 0.01 5.35 0.8 0.01 0.1 1 (2) 0.1878 0.8105

2 1 0.5 0.01 5.35 0.8 0.01 0.1 1 (+) 0.1871 0.8107

3 1 1 0.015 5.35 0.8 0.01 0.1 1 (2) 0.1874 0.8108

4 1 1 0.005 5.35 0.8 0.01 0.1 1 (+) 0.1875 0.8103

5 1 1 0.01 5.45 0.8 0.01 0.1 1 (2) 0.186 0.8128

6 1 1 0.01 5.25 0.8 0.01 0.1 1 (+) 0.1891 0.807

7 1 1 0.01 5.35 0.85 0.01 0.1 1 ss 0.0459 0.1703 0.7836

8 1 1 0.01 5.35 0.75 0.01 0.1 1 ss 0 0.218 0.7819

9 1 1 0.01 5.35 0.8 0.1 0.1 1 (2) 0.1871 0.8127

10 1 1 0.01 5.35 0.8 0.001 0.1 1 (+) 0.1876 0.81

11 1 1 0.01 5.35 0.8 0.01 1 1 ss 0.1435 0.1608 0.6955

12 1 1 0.01 5.35 0.8 0.01 0.01 1 (2) 0.194 0.8057

13 1 1 0.01 5.35 0.8 0.01 0.1 10 ss 0.0055 0.5588 0.4356

14 1 1 0.01 5.35 0.8 0.01 0.1 0.1 ss 0.0011 0.1119 0.8869

15 1 1.5 0.005 5.35 0.8 0.01 0.1 1 ss 0.0018 0.1878 0.8102

16 1 0.8 0.012 5.35 0.8 0.01 0.1 1 ss 0.0018 0.1873 0.8107

17 1 1.5 0.01 5.325 0.8 0.01 0.1 1 ss 0.0018 0.1882 0.8098

(*) ss indicates that the solution reaches a steady state d[CSC/N]/dt = 0 in less than 30 arbitrary time units; (+) indicates that d[CSC/N]/dt.0 after 30 arbitrary time units;
(2) indicates that d[CSC/N]/dt,0 after 30 arbitrary time units.
Rows corresponding to experiments 1 to 14 were built by varying only one Wi/j value at a time, while the rest were kept constant with respect to the reference case (Exp.
0). Column 10 indicates whether the CSC/N fraction reaches a steady state; that is, (d[CSC/N]/dt) = 0. If that is the case, the CSC/N fraction is indicated in column 11.
doi:10.1371/journal.pone.0026233.t001
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Other kinetic relationships appear to be more stringent. Our

results suggest that the ratio k4/k1 has to be maintained in a very

narrow band in order to sustain exponential tumor growth with

constant CSC/N, P/N, and D/N fractions. For example, in our

model, for the case where CSC/N<0.0018, P/N<0.18, and D/

N<0.81, the ratio k4/k1 must be maintained at <5.35. Variations

of less than 2.5% around this value must be compensated, for

example, by important modifications to the value of k2 (or more

generally stated W2/1; see Figure 4A) or alternatively, k3 (or more

generally stated W3/1; Figure 4B).

We observed similar situations for steady states (d[CSC/N]/

dt = 0) defined by different CSC/N, P/N, and D/N fractions. For

example, the vector Wi/j = [1.5, 0.005, 3.6, 0.75, 0.01, 0.1, 1.0]

produces a solution where d[CSC/N]/dt = 0, with CSC/

N<0.045, P/N<0.25, and D/N<0.70. Small variations in

W4/1 = k4/k1 = 3.6 disrupt the d[CSC/N]/dt = 0 condition, unless

they are accompanied by an important adjustment to k2. Notice,

however, that a 4.5% increase in CSC in a solid tumor is not

consistent with previously reported experimental data. We could

only find steady states (d[CSC/N]/dt = 0) with CSC/N,0.01, P/

N<0.20, and D/N<0.80 when W4/1 = k4/k1 was in the range of

5.18 to 5.40 (See Figure 4).

Indeed, we found a perfect linear correlation between the values

of W4/1 and W2/1 that fulfill the conditions d[CSC/N]/dt = 0,

CSC/N,0.0018, P/N<0.20, and D/N<0.80, namely W2/1 =

219.997W4/1+107.98 (Figure 4A). An analogous linear relation-

ship exists between W4/1 and W3/1, namely W3/1 = 20.1947W4/1+
1.0515 (Figure 4B). This suggests that the relative magnitude of the

proliferation and differentiation rate constants for progenitor cells

(k4+k5) must be at least half an order of magnitude above the

analogous parameters for stem cells (CSC) in order to maintain

exponential tumor growth while keeping (d[CSC/N]/dt = 0). Our

results also suggest that the ratio between the intrinsic constant

rate for symmetric proliferation of progenitor cells and the

analogous parameter for stem cells symmetric self-renewal

(W4/1 = k4/k1) should be approximately half an order of magnitude

(between 5.10 and 5.4), independently of the values of k2 and k3.

We also observe that, to maintain tumor growth, the constant for

symmetric cancer stem cell renewal should be in the same order of

magnitude as the sum of k2 and k3.

The time evolution of the rates of proliferation of CSCs,

progenitors, and terminally differentiated cells (dCSC/dt, dP/dt,

and dD/dt respectively) can be calculated using equations (1), (2),

and (3). Despite the fact that the kj values associated with CSC

events are of the order of magnitude, and in some cases even

higher, than kj values corresponding to P and D cells, the number

Figure 3. Feasible solutions for the model. Within the explored
parameter space, once a feasible steady state solution is found, others
can be found on the vicinity of a specific vector Wi/j. (A) Solution for the
vector Wi/j = [1.5, 0.005, 5.35, 0.8, 0.01, 0.1,1.0]. (B) Solution for the vector
Wi/j = [1.5, 0.01, 5.325, 0.8, 0.01, 0.1, 1.0].
doi:10.1371/journal.pone.0026233.g003

Figure 4. Linear relationships between model parameters.
Certain linear relationships between CSC self-renewal and differentia-
tion kinetic parameters allow identification of families of feasible
solutions: (A) By increasing W2/1 while proportionally decreasing W4/1 a
family of feasible model solutions can be found. Similarly, (B) W3/1 and
W4/1 are linearly related.
doi:10.1371/journal.pone.0026233.g004
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of stem-like cells is much smaller than numbers of progenitors or

differentiated cells. Consequently, the product (k1CSC) and the

global rate of proliferation (dCSC/dt) are one or two orders of

magnitude smaller than those rates for more differentiated cells

during all stages of the exponential growth of a tumor. In addition,

early in the development of a tumor, the ratios between the global

growth rates of the different cell subtypes achieve equilibrium.

According to our simulation results, (dP/dt)/(dCSC/dt)<100 and

(dD/dt)/(dP/dt)<4. Therefore, (dD/dt)/(dCSC/dt)<400. This equi-

librium of growth rates between cell subtypes must be achieved if

balanced tumor growth is to maintain constant ratios of cell

subpopulations. Again, these ratios between growth rates of

different cell subpopulations are not easy to calculate in vivo.

The role of cell death
The model is sensitive to the ratios between cancer stem cell

self-renewal and cell death (W6/1, W7/1, W8/1). The initial

assumption of k6,k7,k8 should be satisfied in order to observe

constant cell fractions throughout exponential growth. This is

consistent with several experimental reports. For instance, it has

been observed that the apparent rate of death in prostate CSC is

much lower than in other tumor cell subtypes [20,51]. We also

found that the W6/1, W7/1, W8/1 values should be in the range of

0.01 to the same order of magnitude as k1 (W8/1<1) to produce

solutions where d[CSC/N]/dt = 0 and CSC/N,0.01. Provided

that these two criteria are satisfied (k6,k7,k8 and W8/1<1),

families of solutions satisfying d[CSC/N]/dt = 0 and CSC/

N,0.01, but with different P/N and D/N values, can be

obtained. For example, Figure 5 presents one of these solution

families, where k1 = 1 and vector Wi/j was initially set as Wi/j =

[080, 0.012, 5.35, 0.8, 0.01, 0.1, 1.0] to locate a first condition

satisfying d[CSC/N]/dt = 0 and CSC/N,0.01. Other points of

the same series can be found by trial and error, by progressive (and

proportional) changes in the W6/1 and W7/1 values while keeping

the rest of the parameters constant. Specifically, we identified an

entire family of solutions that obeys the linear relationship

W7 =W6+0.09. As the W6/1 and W7/1 values increase, the CSC

fraction decreases from 0.0018 to 0.00125, and the fraction of

differentiated cells increases from 0.8107 to 0.8725.

Model fitness to experimental data sets
The model is flexible enough to allow proper adjustment to a

wide range of possible tumor growth scenarios. Here, to validate

the model, we selected three different tumor growth experimental

data sets available from previous literature [13,25,69]. In all cases,

the same Wi/j vector was used to describe the ratios between the

kinetic parameters of the model, namely Wi/j = [W2/1, W3/1, W4/1,

W5/4, W6/1, W7/1, W8/1] = [1.0, 0.01, 5.35, 0.8, 0.01, 0.1, 1.0]. After

proper scaling of the y axes (by multiplying by a different scaling

factor in each case), the model reproduces the three experimental

data sets with an R-square greater than 0.97 (Figure 6). This

suggests that, although the values for the intrinsic kinetic rates of

each tumor might be different, the relationships between them (all

Wi/j values) could be approximately common among different

cancer types. For all simulations, all constraints were satisfied for

each set of experimental data, particularly the condition of a

constant CSC cell fraction lower than 1% (specifically 0.0018).

We should emphasize that our model is capable of reproducing

the evolution of tumor growth only during its exponential phase.

For the experimental sets that we had analyzed, this means up to a

size of 1500 mm3; clinically, a medium size solid tumor. Tumors

of this size quite often contain necrotic tissue at their central core.

Our model does not distinguish between living and dead tissue,

and only provides an overall volume based on a very naive and

simple approximation of equal spherical volume contribution of

each cell (dead or alive) within the tumor. Although simple and

unrealistic, this assumption has yielded a good agreement with

experimental sets for our descriptive purposes.

Contrasting strategies to combat cancer
Most of the currently used chemotherapy and radiotherapy

strategies against cancer are unable to distinguish between

different tumor cell types, or even healthy and tumor cells, killing

them all unselectively. Some reports also indicate that CSCs are

particularly resistant to conventional therapeutic procedures

[18,19,23,26,51]. Friel et al. [19] reported that CSCs isolated

from human EnCa were particularly resistant to Paclitaxel, a

widely used chemotherapeutic anticancer agent. Kang et al. [18]

found that CSCs from GBM were radio-resistant when exposed to

radiation dosages that killed other tumor cell subpopulations.

Eyler and Rich [26] and Dylla et al. [23] reported additional

evidence of CSC resistance to conventional therapies. More

recently, Tan et al. demonstrated that holoclone forming cells

from pancreatic tumors (with stem cell characteristics) exhibit

much higher chemoresistance to gemcitabine and 5-FU than

meroclones and paraclones [51].

This enhanced resistance of CSCs would explain the observed

aggressive regeneration of tumors after treatment. The remaining

CSC population would grow exponentially (having an abundant

amount of nutrients) and would readily regenerate the other

subpopulations that form the bulk of the tumor.

Figure 7A shows the behavior of a solid tumor when treated

with a non-specific therapy such that 90%, 99%, 99.9% or

99.99% of the solid tumor cells are eradicated at a particular time,

let us say 120 days. For illustrative purposes, the base case we have

chosen is the case illustrated in Figure 6C [13]. In all instances,

after an incubation time, the tumor relapses to exhibit practically

the same progression profile originally followed. Even in the case

of the most effective treatment, which kills 99.99% of all tumor

Figure 5. Linear relationships between model parameters. The
intrinsic apoptotic rates of CSC and P cells are also linearly related.
Proportional increases in W6/1 and W7/1 can reveal a family of feasible
model solutions.
doi:10.1371/journal.pone.0026233.g005
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cells (including 99.99% of CSCs), the tumor is able to reinitiate

growth in a relatively short time (within 50 days).

An intuitive therapy to eradicate tumors, widely suggested in

recent literature [22,23,24,26–29,31,46,70–72], relates to the

targeting of CSCs, killing them selectively through treatment

(i.e., augmenting k6 significantly over k7, and k8) or, alternatively,

preferentially killing stem cells at a particular time. Other authors

have evaluated this strategy using mathematical models; for

example, Dingli and Michor [36] designed a simple mathematical

model to demonstrate the importance of eliminating tumor stem

cells. The authors explored different therapeutic scenarios to

illustrate the properties required in novel anti-cancer agents for

successful tumor treatment. Their results indicated that successful

therapy must eradicate tumor stem cells. Similarly, Ganguly and

Puri [39] formulated a mathematical model to evaluate chemo-

therapeutic drug efficacy in arresting tumor growth based on the

cancer stem cell hypothesis. Their results also suggest that the best

response to chemotherapy occurs when a drug targets abnormal

stem cells.

However, our simulations show that this therapeutic avenue,

although superior to unselective treatments, is only effective if

progenitor cells (P) are also targeted. This is, for the time window

that our model is applicable, the exponential tumor growth phase,

both cancer stem cells and progenitor cells have to be eradicated to

stop tumor growth. This can be easily seen by examining equation

2 [dP/dt = (k2+2k3)CSC+(k42k52k7)P ]. In that equation, the rate

of accumulation of the subpopulation of progenitor cells depends

on two terms, one affected by the number of CSCs and the other

dependent on the number of P cells. Therefore, even in the

complete absence of CSCs, the term depending on P has to be

negative for P to decrease. That term, namely (k42k52k7)P, can

only be negative if k4 ,k5+k7. For the set of Wj/i values that we

have chosen (based on the rational that we had explained before:

d[CSC/N]/dt = 0 with CSC/N,0.01) this condition is not met.

Figure 6. Three experimental data sets, corresponding to the
different scenarios referred to in the text, were used to
validate the model. A comparison between the experimental data
(N black circles) and the model curve-fit (yellow solid line) is provided
for each set. The CSC/N fraction (blue line) and P/N fraction (red line) are
plotted for each experimental scenario. For each simulation, the vector
Wi/j = [W2/1, W3/1, W4/1, W5/4, W6/1, W7/1, W8/1] = [1.0, 0.01, 5.35, 0.8, 0.01,
0.1, 1.0] was multiplied by a different scaling factor (17.56Wi/j; 5.06Wi/j;
and 7.06Wi/j respectively). (A) A human prostate tumor transplanted
into a mouse model [69]; it is assumed that the original percentage of
CSCs was 1%; (B) 2000 CSCs from a breast primary tumor implanted in
NOD/SCID mice [25]; and (C) 16105 colon CSCs isolated and implanted
in NOD/SCID mice [13]. For all simulations, the vector Wi/j =Wi/j = [W2/1,
W3/1, W4/1, W5/4, W6/1, W7/1, W8/1] = [1.0, 0.01, 5.35, 0.8, 0.01, 0.1, 1.0] was
used.
doi:10.1371/journal.pone.0026233.g006

Figure 7. Different strategies against tumor progression are
explored using the proposed model. (A) The progression of a
tumor without intervention [15] is depicted from day 0 to day 120
(black circles and yellow curve). Different percentages of all tumor cells
(CSC, P and D) are unselectively eradicated at day 120: 90% (yellow line);
99% (blue line); 99.9% (orange line) and 99.99% (green line). The CSC/N
fraction (blue line) and P/N fraction (red line) remain unaltered for all
unselective treatments. (B) Effective alternative therapeutic strategies to
treat cancer might include enhancement of differentiation over CSC
self-renewal: i.e., 10% increase in W5/4 (yellow line) or 15% increase in
W4/1 (green line). The CSC/N fraction (blue line) and P/N fraction (red
line) are plotted for the case of a 15% increase. The case where 99.9% of
all tumor cells are eradicated unselectively at day 120 is included as a
reference (orange line).
doi:10.1371/journal.pone.0026233.g007
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The need to not only specifically target CSC, but also the

progenitor subpopulation to effectively detain tumor progression

has been suggested before in literature [73], also at the light of a

mathematical argument.

Conceivably, in the long term, selective killing of all cancer

stem cells will be sufficient to eradicate the tumor, since CSCs

are the ultimate cell reservoir responsible for sustained growth.

At the end of exponential growth phase, the relative weight of k7

has to increase (or alternatively the ratio W5/4 = k5/k4 will

change) due to causes such as oxygen mass transfer or nutrient

limitations. We plan to include this functionality in a later

version of our model.

This last comment on the relative ratio W5/4 = k5/k4 is useful to

introduce a less intuitive therapeutic strategy. Promotion of

differentiation has been suggested for clinical practice [74,75].

Using the proposed model, we explored variants of this approach.

Indeed, augmenting W5/4 = k5/k4 appears to be therapeutically

promising. In biological terms, this means increasing the relative

intrinsic rate of progenitor cell differentiation with respect to the

rate of progenitor cell renewal. Interestingly, a very modest 10%

increase in W5/4 (from 0.8 to 0.9), while keeping the rest of the Wi/j

values fixed, retards tumor relapse more effectively than does the

unselective tumor treatment (see Figure 7B). Similarly, increasing

the ratio W4/1 = k4/k1 and promoting a tumor richer in P cells also

is another effective therapeutic strategy. Indeed, the delay induced

by an increase of 15% on W4/1 = k4/k1 is comparable to that

caused by unselective eradication of 99.99% of the tumor cell mass

(Figure 7B).

Concluding remarks
In summary, in this study, we presented a first version of a

conceptually simple model, with an analytical solution, that is

capable of describing the basic kinetic features of tumor growth

during the exponential phase and that is consistent with the

Cancer Stem Cell hypothesis. Three cell subpopulations were

considered: CSCs, progenitors (P), and terminally differentiated

(D) cells. Each event related to cell division or death of each one of

these subpopulations has been represented and modeled as a

chemical reaction. This resulted in an analytically solvable set of

ordinary differential equations that describes the time evolution of

each cell subpopulation, as well as the overall tumor volume

evolution during exponential growth.

Although, in principle, an infinite set of combinations of model

parameter can be studied, we found that only a limited set of

model solutions is feasible if some biologically sound constraints

are imposed. For example, if we accept that the fraction of cancer

stem cells during the exponential phase of the tumor is practically

constant and no greater than 0.01 (namely d[CNC/N]/dt = 0 with

CSC/N,0.01), then only a reduced set of solutions is feasible. The

analysis of those sets suggests kinetic commonalities in solid tumor

growth: (a) the rates of symmetrical and asymmetrical CSC

renewal must be in the same order of magnitude; (b) the intrinsic

rate of renewal and differentiation of progenitor cells should be

half an order of magnitude higher than the corresponding intrinsic

rates for cancer stem cells; (c) the rates of apoptosis of the CSC, P,

and D cells are progressively higher by approximately one order of

magnitude. The flexibility of the model was tested by fitting

experimental data sets from three different tumor growth

scenarios. After adequate scaling, a single set of kinetic parameters

can be used for adequate reproduction of different tumor growth

cases.

We do not claim that our model renders accurate information

about the kinetics of solid tumor formation, but we observe that it

does provide insight into several underlying kinetic behaviors of

solid tumor growth that would be difficult to directly study

experimentally. As illustrated in this work, the model can even be

useful for anticipating the effect of different therapeutic strategies

(available or potential) against cancer.
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MAÁ.

References

1. Gao JX (2008) Cancer stem cells: the lessons from pre-cancerous stem cells. J Cell

Mol Med 12: 67–96.

2. Hermann PC, Huber SL, Heeschen C (2008) Metastatic cancer stem cells: a new

target for anti-cancer therapy? Cell cycle 7: 188–193.

3. Jagani Z, Khosravi-Far R (2008) Cancer stem cells and impaired apoptosis. Adv

Exp Med Biol 615: 331–344.

4. Kai K, Nagano O, Sugihara E, Arima Y, Sampetrean O, et al. (2009)

Maintenance of HCT116 colon cancer cell line conforms to a stochastic model

but not a cancer stem cell model. Cancer Sci 100: 2275–2282.

5. Schmidt C (2008) Drug makers chase cancer stem cells. Nat Biotechnol 26:

366–367.

6. Cho RW, Clarke MF (2008) Recent advances in cancer stem cells. Curr Opin

Genet Dev 18: 48–53.

7. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:

1111–1115.

8. Rapp UR, Ceteci F, Schreck R (2008) Oncogene-induced plasticity and cancer

stem cells. Cell Cycle 7: 45–51.

9. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and

cancer stem cells. Nature 414: 105–111.

10. Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE (1997) Purification of

primitive human hematopoietic cells capable of repopulating immune-deficient

mice. Proc Natl Acad Sci U S A 94: 5320–5325.

11. Gudjonsson T, Magnusson MK (2005) Stem cell biology and the cellular

pathways of carcinogenesis. APMIS 113: 922–929.

12. Rappa G, Mercapide J, Anzanello F, Prasmickaite L, Xi Y, et al. (2008) Growth

of cancer cell lines under stem cell-like conditions has the potential to unveil

therapeutic targets. Exp Cell Res 314: 2110–2122.

13. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, et al. (2007)

Identification and expansion of human colon-cancer-initiating cells. Nature 445:

111–115.

14. Vermeulen L, Todaro M, De Sousa F, Sprick MR, Kemper K, et al. (2008)

Single-cell cloning of colon cancer stem cells reveals a multi-lineage

differentiation capacity. Proc Natl Acad Sci U S A 105: 13427–13432.

15. Ailles LE, Weissman IL (2007) Cancer Stem cells in solid tumors. Curr Opin

Biotechnol 18: 460–466.

16. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours:

accumulating evidence and unresolved questions. Nat Rev Cancer 8:

755–768.

17. Loebinger MR, Giangreco A, Groot KR, Prichard L, Allen K, et al. (2008)

Squamous cell cancers contain a side population of stem-like cells that are made

chemosensitive by ABC transporter blockade. Br J Cancer 98: 380–387.

18. Kang MK, Hur BI, Ko MH, Kim CH, Cha SH, et al. (2008) Potential identity

of multi-potential cancer stem-like subpopulation after radiation of cultured

brain glioma. BMC Neurosci 9: 15.

19. Friel AM, Sergent PA, Patnaude C, Szotek PP, Oliva E, et al. (2008) Functional

analyses of the cancer stem cell-like properties of human endometrial tumor

initiating cells. Cell cycle 7: 242–249.

20. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective

identification of tumorigenic prostate cancer stem cells. Cancer Res 65:

10946–10951.

21. Collins AT, Maitland NJ (2008) Prostate cancer stem cells. Eur J Cancer 42:

1213–1218.

22. Maitland NJ, Collins AT (2008) Prostate cancer stem cells: a new target for

therapy. J Clin Oncol 26: 2862–2870.

Model Based on the Cancer Stem Cell Hypothesis

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e26233



23. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, et al. (2008) Colorectal cancer

stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS
ONE 3: e2428.

24. Pan Y, Huang X (2008) Epithelial ovarian cancer stem cells - a review. Int J Clin

Exp Med 1: 260–266.
25. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, et al. (2007)

ALDH1 is a marker of normal and malignant human mammary stem cells and a
predictor of poor clinical outcome. Cell Stem Cell 1: 555–567.

26. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic

resistance and angiogenesis. J Clin Oncol 26: 2839–2845.
27. Los M (2009) New, exciting developments in experimental therapies in the early

21st century. Eur J Pharmacol 625: 1–5.
28. Saini V, Shoemaker RH (2010) Potential for therapeutic targeting of tumor stem

cells. Cancer Sci 101: 16–21.
29. Scatena R, Bottoni P, Pontoglio A, Giardina B (2011) Cancer stem cells: the

development of new cancer therapeutics. Expert Opinion on Biological Therapy

11(7): 875–892.
30. Michor F (2008) Mathematical models of cancer stem cells. J Clin Oncol 26:

2854–2861.
31. Boman BM, Wicha MS, Fields JZ, Runquist OA (2007) Symmetric division of

cancer stem cells-a key mechanism in tumor growth that should be targeted in

future therapeutic approaches. Clin Pharmacol Ther 81: 893–898.
32. Daukste L, Basse B, Baguley BC, Wall DJN (2009) Using a stem cell and

progeny model to illustrate the relationship between cell cycle times of in vivo
human tumour cell tissue populations, in vitro primary cultures and the cell lines

derived from them. J Theor Biol 260: 563–571.
33. Dingli D, Traulsen A, Michor F (2007) (A)symmetric stem cell replication and

cancer. PLoS Comput Biol 3: e53.

34. Dingli D, Traulsen A, Pacheco JM (2007) Compartmental Architecture and
Dynamics of Hematopoiesis. PLoS ONE 2: e345.

35. Dingli D, Traulsen A, Pacheco JM (2007) Stochastic dynamics of hematopoietic
tumor stem cells. Cell Cycle 6: 461–466.

36. Dingli D, Michor F (2006) Successful therapy must eradicate cancer stem cells.

Stem Cells 24: 2603–2610.
37. Foo J, Drummond MW, Clarkson B, Holyoake T, Michor F (2009) Eradication

of chronic myeloid leukemia stem cells: a novel mathematical model predicts no
therapeutic benefit of adding G-CSF to imatinib. PLoS Comput Biol 5:

e1000503.
38. Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecture-a

bottom-up approach to modelling the spatio-temporal organisation of complex

multi-cellular systems. J Math Biol 58: 261–283.
39. Ganguly R, Puri IK (2007) Mathematical model for chemotherapeutic drug

efficacy in arresting tumour growth based on the cancer stem cell hypothesis.
Cell Prolif 40: 338–354.

40. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ (2007)

Mathematical modeling of cell population dynamics in the colonic crypt and in
colorectal cancer. Proc Natl Acad Sci U S A 104: 4008–4013.

41. Kim PS, Lee PP, Levy D (2008) A PDE model for imatinib-treated chronic
myelogenous leukemia. Bull Math Biol 70: 1994–2016.

42. Komarova NL, Wodarz D (2007) Effect of Cellular Quiescence on the Success of
Targeted CML Therapy. PLoS ONE 2: e990.

43. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, et al. (2005) Dynamics of

chronic myeloid leukaemia. Nature 435: 1267–1270.
44. Pacheco JM, Traulsen A, Dingli D (2009) The allometry of chronic myeloid

leukemia. J Theor Biol 259: 635–640.
45. T urner C, Stinchcombe AR, Kohandel M, Singh S, Sivaloganathan S (2009)

Characterization of brain cancer stem cells: A mathematical approach. Cell

Prolif 42: 529–540.
46. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a

hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:
730–737.

47. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:

4793–4807.
48. Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like

cells contribute to the aggressive behavior of human epithelial ovarian cancer.
Cancer Res 65: 3025–3029.

49. Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG (2008) PC-3 human

prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells.
Cancer Res 68: 1820–1825.

50. Pfeiffer MJ, Schalken JA (2010) Stem Cell Characteristics in Prostate Cancer

Cell Lines. Eur Urol 57: 246–255.
51. Tan L, Sui X, Deng H, Ding M (2011) Holoclone forming cells from pancreatic

cancer cells enrich tumor initiating cells and represent a novel model for study of
cancer stem cells. PLos One 6(8): e23383.

52. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in

development and cancer. Nature 441: 1068–1074.
53. Soltysova A, Altanerova V, Altaner C (2005) Cancer stem cells. Neoplasma 52:

435–440.
54. Caussinus E, Hirth F (2007) Asymmetric stem cell division in development and

cancer. Prog Mol Subcell Biol 45: 205–25.
55. Giebel B, Bruns I (2008) Self-renewal versus differentiation in hematopoietic

stem and progenitor cells: a focus on asymmetric cell divisions. Curr Stem Cell

Res Ther 3: 9–16.
56. Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, et al. (2006) Pten deletion

leads to the expansion of a prostatic stem/progenitor cell subpopulation and
tumor initiation. Proc Natl Acad Sci U S A 103: 1480–1485.

57. Cocciadiferro L, Miceli V, Kang KS, Polito LM, Trosko JE, et al. (2009)

Profiling Cancer Stem Cells in Androgen-Responsive and Refractory Human
Prostate Tumor Cell Lines. Ann N Y Acad Sci 1155: 257–262.

58. Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem
cell biology. Cell 88: 287–298.

59. Ashkenazi R, Gentry SN, Jackson TL (2008) Pathways to Tumorigenesis-
modeling mutation acquisition in stem cells and their progeny. Neoplasia 10:

1170–1182.

60. Mackenzie IC (2008) Cancer stem cells. Ann Oncol 19: v40–v43.
61. Maitland NJ, Bryce SD, Stower MJ, Collins AT (2007) Prostate cancer stem

cells: a target for new therapies. Ernst Schering Found Symp Proc 5: 155–179.
62. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, et al. (2004) Molecular

cell biology, 5th edn. New York: W. H. Freeman & Co. 973 p.

63. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular
tumor growth. SIAM Review 49: 179–208.

64. Senoo M, Pinto F, Crum C, McKeon F (2008) p63 is essential for the
proliferative potential of stem cells in stratified epithelia. Cell 129: 523–536.

65. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic
implications of cancer stem cells. Curr Opin Genet Dev 14: 43–47.

66. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem

cells. Annu Rev Cell Dev Biol 23: 675–699.
67. Yanamoto S, Kawasaki G, Yamada S-i, Yoshitomi I, Kawano T, et al. (2011)

Isolation and characterization of cancer stem-like side population cells in human
oral cancer cells. Oral oncology (in press).

68. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, et al. (2006)

Highly purified CD44+ prostate cancer cells from xenograft human tumors are
enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:

1696–1708.
69. Ellis WJ, Vessella RL, Buhler KR, Bladou F, True LD, et al. (1996)

Characterization of a novel androgen-sensitive prostate-specific antigen-
producing prostatic carcinoma xenograft: LuCaP 23. Clin Cancer Res 2:

1039–1048.

70. Winquist RJ, Boucher DM, Wood M, Furey BF (2009) Targeting cancer stem
cells for more effective therapies: taking out cancer’s locomotive engine.

Biochem Pharmacol 78: 326–334.
71. Ji Q, Hao X, Zhang M, Tang W, Yang M, et al. (2009) MicroRNA miR-34

inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4: e6816.

72. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A (2007) Role of stem cells in
cancer therapy and cancer stem cells: a review. Cancer Cell International 7:

9–11.
73. Kern SE, Shibata D (2007) The fuzzy math of solid tumor stem cells: a

prespective. Cancer Research 67: 8985–8988.

74. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev
Oncol Hematol 51: 1–28.

75. Sell S (2005) Leukemia: stem cells, maturation arrest, and differentiation
therapy. Stem Cell Rev 1: 197–205.

Model Based on the Cancer Stem Cell Hypothesis

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e26233


