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Auto‑qPCR; a python‑based 
web app for automated 
and reproducible analysis of qPCR 
data
Gilles Maussion1,2,4, Rhalena A. Thomas1,4, Iveta Demirova1, Gracia Gu1, Eddie Cai1, 
Carol X.‑Q. Chen1, Narges Abdian1, Theodore J. P. Strauss3, Sabah Kelaï2, 
Angela Nauleau‑Javaudin1, Lenore K. Beitel1, Nicolas Ramoz2, Philip Gorwood2 & 
Thomas M. Durcan1*

Quantifying changes in DNA and RNA levels is essential in numerous molecular biology protocols. 
Quantitative real time PCR (qPCR) techniques have evolved to become commonplace, however, 
data analysis includes many time‑consuming and cumbersome steps, which can lead to mistakes and 
misinterpretation of data. To address these bottlenecks, we have developed an open‑source Python 
software to automate processing of result spreadsheets from qPCR machines, employing calculations 
usually performed manually. Auto‑qPCR is a tool that saves time when computing qPCR data, helping 
to ensure reproducibility of qPCR experiment analyses. Our web‑based app (https:// auto‑q‑ pcr. com/) 
is easy to use and does not require programming knowledge or software installation. Using Auto‑
qPCR, we provide examples of data treatment, display and statistical analyses for four different 
data processing modes within one program: (1) DNA quantification to identify genomic deletion or 
duplication events; (2) assessment of gene expression levels using an absolute model, and relative 
quantification (3) with or (4) without a reference sample. Our open access Auto‑qPCR software saves 
the time of manual data analysis and provides a more systematic workflow, minimizing the risk of 
errors. Our program constitutes a new tool that can be incorporated into bioinformatic and molecular 
biology pipelines in clinical and research labs.

Abbreviations
CT  Cycle threshold
qPCR  Quantitative polymerase chain reaction
iPSC  Induced pluripotent stem cells
CNVs  Copy number variants
SNVs  Single nucleotide variants
DA  Dopaminergic
NPC  Neural precursor cells
DANs  DA neurons

Polymerase chain reaction (PCR) identifies a nucleic acid fragment of interest by increasing its proportion relative 
to  others1. Initially the technique was primarily used to visualize DNA fragments for  cloning2,3 or  genotyping4–6, 
but can now be used to investigate genetic polymorphisms and  mutations7,8, copy number variants (CNVs)9, 
single nucleotide variants (SNVs), point mutations, and genetic deletion/duplication  events10. With the develop-
ment of fluorogenic probes and dyes capable of binding newly synthesized DNA, PCR became more quantita-
tive, leading to innovative tools for quantifying relative transcript levels for one or more genes, now referred 
to as quantitative PCR (qPCR). With these technological advancements, qPCR is now used to quantify mes-
senger RNA (mRNA)11, long non-coding  RNA12,  microRNAs13,14, DNA–protein  interactions15 and epigenetic 
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 modifications16,17. Thus, the advent of PCR has revolutionized our ability to analyze and quantify nucleic acids 
and has made qPCR a standard technique.

qPCR experiments are already automated at the data acquisition stage, with thermocycler software providing 
“by default” pre-processing  procedures18. However, several steps (data exclusion, normalization, data display 
and differential analyses) required for full data interpretation are heterogenous, and the data processing and 
display methods and options vary widely across available licenced qPCR programs. Commercially available 
software that provide data summaries and statistical output do not systematically allow for user selections and 
are not necessarily transparent as to the processes and settings being used. Not knowing the conditions for data 
flagging or exclusion and normalization can lead to misinterpretation of the results. Also, not all qPCR software 
provides a statistical output. Analysis of qPCR data is still highly time consuming and error prone, especially 
when processing large numbers of data points. The user must intervene to include or exclude replicates, which, 
without guidelines or standardized procedures, can potentially introduce “user-dependent” variation and errors. 
To both simplify and accelerate this data analysis step for qPCR datasets, we have created a Python-based, open 
source, user-friendly web application “Auto-qPCR” to process exported qPCR data and to provide summary 
tables, visual representations of the data, and statistical analysis. The program can be found at the website https:// 
auto-q- pcr. com/. Furthermore, the program can be installed locally, and then run offline.

The program can work with the two commonly used molecular biology approaches: (i) absolute quantifi-
cation, where all RNA estimations rely on orthogonal projection of the samples of interest onto a calibration 
 curve19, and (ii) relative quantification that relies on difference of cycle threshold (CT) values between the gene 
of interest and endogenous  controls20.

Here we use Auto-qPCR to analyze qPCR datasets and illustrate four distinct computational methods. Overall, 
Auto-qPCR provides an all-in-one solution for the user, going from datasets to graphs, within one web-based 
software package. Unlike other software, the intermediate and final results are output by the program, allowing 
a full review of the data and accurate statistical treatment based on the experimental design. Auto-qPCR was 
conceived to build logical links between the experimental design and required statistics for differential analyses 
of each mode, which is rarely found in other qPCR programs. While other open-source qPCR analysis software 
programs and web  apps21–23 are available, they are only able to normalize, compare and display qPCR data gen-
erated with one of the two quantification  modes19,20. In contrast, Auto-qPCR provides a comprehensive data 
analysis package for a wide variety of qPCR experiments. Using the web app does not require prior programming 
knowledge, account creation or desktop installation. Additionally, the program has been designed to assist the 
user at each step of the analysis once the exported data files have been collected from the qPCR system.

Auto-qPCR can be used to analyse qPCR data in a reproducible manner, simplifying data analysis, avoiding 
potential human error, and saving time. In this manuscript, we describe some of the uses of the software and 
outline the steps required, from entering an individual dataset to complete statistical analysis and graphical 
presentation of the data.

Methods
Culture of iPSC lines. To illustrate the four different models of quantification managed by the Auto-qPCR 
program, we used 11 different iPSC cells lines whose properties are presented in Table S1. Quality control profil-
ing for the iPSCs used was outlined  previously24.

The use of iPSCs in this research is approved by the McGill University Health Centre Research Ethics Board 
(DURCAN_IPSC/2019-5374).

For the cell lines GM25952, GM35953, GM25974, GM25975, fibroblasts were ordered from the Coriell Insti-
tute and reprogrammed at the Montreal Neurological Institute. The NCRM1 iPSC line was requested from the 
NIH Center for Regenerative Medicine (NIH CRM, http:// nimhs temce lls. org/ crm. html). The KYOUDXR0109B 
iPSC line was ordered from ATCC company. For the following iPSC cell lines—AiW001-2, AiW002-2, AJG001-
C4, AJC001-5 and 522-2666-2—somatic cells were collected and reprogrammed at the Montreal Neurological 
Institute.

The iPSCs were seeded on Matrigel-coated dishes and expanded in mTESR1 (StemCell Technologies) or 
Essential 8 (ThermoFisher Scientific) media. Cells were seeded at 10–15% confluency and incubated at 37 °C in a 
5%  CO2 environment. The media was changed daily until the cultures reached 70% confluency. Cells harbouring 
irregular borders, or transparent centres were manually removed from the dish prior to dissociation with Gentle 
Cell Dissociation media (StemCell Technologies). The iPSCs were then seeded and differentiated into cortical 
or dopaminergic neuronal progenitors or neurons.

Generation of cortical and dopaminergic neurons. The induction of cortical progenitors was per-
formed as described  previously25. The media used for cortical differentiation is described in the standard oper-
ating procedure published on the Early Drug Discovery Unit (EDDU)  website24. Once neural progenitor cells 
(NPCs) attained 100% confluency, they were passaged and seeded on a Poly-Ornithine-laminin coated dishes 
to be differentiated into neurons. Cells were switched for 24 h to 50% Neurobasal (NB) medium, and 24 h later 
placed in 100% NB medium with AraC (0.1 µM) (Sigma) to reduce levels of dividing cells. After the third day 
of differentiation, cells were maintained in 100% NB medium without AraC for four days before being collected 
for RNA extraction. IPSCs were induced into dopaminergic NPCs (DA-NPCs) according to methods previously 
 described26, modified according to methods used within the  group27. DA-NPCs were subsequently differentiated 
into dopaminergic neurons (DANs), with immunostaining and qPCR analysis performed at four and six weeks 
of maturation from the NPC  stage28.

https://auto-q-pcr.com/
https://auto-q-pcr.com/
http://nimhstemcells.org/crm.html
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DNA and RNA extraction. IPSCs were dissociated with Gentle Cell Dissociation Reagent (Stem Cell Tech-
nologies) while  Accutase® Cell Dissociation Reagent (Thermo Fisher Scientific) was used to dissociate NPCs and 
iPSC-derived neurons. After 5 min incubation at 37 °C with the indicated dissociation agent, cells were collected 
and harvested by centrifugation for 3 min at 1200 rpm. Cell pellets were resuspended in lysis buffer and stored 
at − 80 °C before DNA or total RNA extraction with the Genomic DNA Mini (Blood/Culture Cell) (Genesis) or 
mRNAeasy (Qiagen) kits, respectively.

cDNA synthesis, quantitative PCR, and data export. Reverse transcription reactions were per-
formed on 400 ng of total RNA extract to obtain cDNA in a 40 μl total volume containing, 0.5 μg random prim-
ers, 0.5 mM dNTPs, 0.01 M DTT and 400 U/µl-MMLV RT (Carlsbad, CA, USA). The reactions were conducted 
in single plex, in a 10 µl total volume containing 2 × TaqMan Fast Advanced Master Mix, 20 × TaqMan primers/
probe set (Thermo Fisher Scientific), 1 µl of diluted cDNA and RNAse-free  H2O. Real-time PCR (RT-PCR) were 
performed on a QuantStudio 3 or QuantStudio 5 machines (Thermo Fisher Scientific). Primers/probe sets from 
Applied Biosystems were selected from the Thermo Fisher Scientific web site. Two endogenous controls (beta-
actin and GAPDH) were used for normalization (Table S2).

Data generated from the QuantStudio machine were extracted using QuantStudio design and analysis soft-
ware, either (i) as Excel files (*.xls or *.xlsx extensions) and the results tab was saved as a ‘comma delimited’ csv 
file or (ii) extracted as a txt file that only contained the result tab. Excel files should be carefully used since gene 
names (notably those whose numbers can be recognized as potential dates) could be modified by automatic 
changes in cell  formatting29. We suggest exporting data in txt or csv file format.

Collection of external data set. An external qPCR data set was provided from an earlier published 
 study30, which quantified levels of Nrxns and Nlgn transcripts in the subcortical areas of the brains from mice 
submitted to conditioned place preference (CPP) with cocaine. Briefly, subcortical areas (subthalamic nucleus, 
globus pallidum and substantia nigra) of sectioned mouse brains were isolated by laser capture microdissection. 
RNA was extracted with the Arcturus PicoPure kit and reverse transcription performed as above. The qPCR 
experiments were performed according to an absolute quantification design on the Opticon 2 PCR machine 
(Bio-Rad). Β2Microglobulin (B2M) was used as endogenous control. Data were re-extracted from the Opticon 
Monitor 2 files as csv files and analyzed by Auto-qPCR.

Program development and structure. The program was written in Python 3 using Pandas and NumPy. 
A main script calls the selected model script (absolute.py, relative.py and stability.py), which processes the data 
and then calls the statistical functions script (if selected) and the plotting function script. The graphical user 
interface (GUI) was created using Flask, a package for integrating HTML and Python code. The GUI is written 
in JavaScript, CSS, HTML and Bootstrap4, a framework for building responsive websites. Our GitHub reposi-
tory (https:// github. com/ neuro eddu/ Auto- qPCR) includes all Python processing scripts and scripts to build the 
GUI that can be installed locally to run on a computer. A complete list of package dependencies and versions are 
in the GitHub repository (requirements.txt) and File S1. The program was developed using git version control. 
The web app is hosted by the Brain Imaging Centre at the Montreal Neurological Institute-Hospital (The Neuro) 
and was installed in a virtual machine directly from the public GitHub repository. When updates are available 
the changes will be applied to the web app using GitHub. The organization and function of the script files for the 
program are in Table S3. The web app can be found at https:// auto-q- pcr. com (Figure S1). The app can also be 
used locally, installation instructions for command line/Linux as well as executable files for Windows and Apple 
are on the Auto-qPCR website. Once launched, a web browser opens on the user’s computer, the app appears in 
the web browser identical to the online version, but no internet is required.

Program function—input data processing and quantification. The Auto-qPCR program reads the 
raw data in the form of a results spreadsheet (via the users file navigator) and reformats it into a data frame in 
Python. The user enters information into the web app read as arguments by the software. See Table S4 for a list 
of all the user inputs and Figure S2 for examples of the input files. The input spreadsheet needs to be organized 
such that samples are found in rows and values are found in columns, the required columns are: Well, Sample 
Name, Target Name, Task, CT (Figure S2), the column names do not need to match exactly. The values for the 
reference genes/targets (ACTB, GAPDH) are calculated for each sample and technical replicate (cell line, time 
point, treatment condition) separately.

To detect outliers, the CT standard deviation (CT-SD) of the technical replicates for a given sample is cal-
culated, if the CT-SD is greater than the cut-off (the default value is 0.3), then the technical replicate furthest 
from the sample mean is removed. The process occurs recursively until the CT-SD is less than the cut-off or the 
value of “max outliers” is reached. This is determined by the parameter ‘Max Proportion’, the 0.5 default means 
that outliers will be removed until two technical replicates remain. The ‘preserve highly variable replicates’: If 
the CT-SD is higher than 0.3, but the absolute (mean-median)/median is less than 0.1, replicates are preserved. 
This helps to account for a lack of a clear outlier, where two of three replicates are close to equally distributed 
around the mean.

Model dependent processing: Absolute model calculates the ratio between the gene of interest and each con-
trol. For each gene/target of interest the normalized value is calculated against the mean of each control target 
separately, then the mean value from normalized to controls is calculated. Relative model ΔCT, without a calibra-
tion sample, calculates the ΔCT by subtracting the Control CT value from the CT value for the target from each 
(endogenous control), then takes mean value of the resulting deltas. Relative model ΔΔCT and genomic stability 
model, individually calculates the ΔCT for the target in test sample and the reference/calibration sample(s) then 

https://github.com/neuroeddu/Auto-qPCR
https://auto-q-pcr.com
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calculates the ΔΔCT by subtracting the reference ΔCT from the test sample. For all models, the mean value of 
technical replicates is calculated for each target.

For the relative models, values of reference genes are calculated separately for each input file. The data from 
one input file will not be applied to another file. For the absolute model, qPCR output for each gene is found 
in a separate file and the selected endogenous controls will be applied to all the data input in one analysis. For 
all models, two spreadsheets are created that can be opened in Excel. (1) “clean_data.csv” contains the ΔCT 
calculated for each technical replicate, including outliers, indicated by “TRUE” in the column “Outlier”. (2) and 
“summary_data.csv” contains the mean, standard deviation (SD) and standard error (SE) for each sample calcu-
lated from the included technical replicates; this output can easily be analyzed in another statistical program (R, 
SASS, Prism). All the input and output data are cleared after processing and no user data is stored in the web app.

Program function—statistical analysis. For testing differential gene expression, the user selects the sta-
tistic option and files in a form to indicate the conditions of the experiment. Either paired test (t test) or multiple 
comparisons (one-way ANOVA or 2-way ANOVA) to investigate interaction effects is selected. The names of 
the variables to be grouped by must be within either the ‘sample names’ column in the input file or within an 
additional column, which was created during the qPCR setup. A column can also be added manually into the 
results input file(s), although this will add a risk of copy/paste errors and add additional time to the analysis 
process. See Table S5 for the list of which analysis is applied for each setting. All default settings are maintained 
for statistical functions (for details see the Pingouin documentation at https:// pingo uin- stat. org/), the output has 
been reformatted to be more easily read and interpreted by users and for consistency across statistical outputs.

Program function—visualization. The plotting scripts were written using the Matplotlib bar chart func-
tion. The labels and axis settings were all adjusted directly within the script (plot.py). The user can dictate the 
gene/target order and the sample order (cell lines, treatments, time points) in the web app by entering the orders 
into the appropriate input box. The order variables will be grouped for the summary plots. All the plots are auto-
matically generated and saved as png files. If statistics are applied, two summary bar charts of the mean values 
are generated, grouped by the selected variable. For two-way ANOVA analysis, the summary bar chart will group 
the first variable on the x-axis and the second variable will be visualized in different colours and indicated in the 
legend.

Data availability and reproducibility. All raw csv input files data files and output files used in plots are 
available at https:// github. com/ neuro eddu/ Auto- qPCR, along with a user guide. The example input (Input Data) 
and output files (Output Data) are all available and organized by Figure names. The parameters used for each 
figure can be found in the document “Notes_on_Datasets.docx” and screen shots of the filled web app from 
for each figure are in the Supplementary Figures. The example output will be replicated identically if the same 
conditions are entered.

Illustrations. The schematic representation in Fig. 1 and simplified versions in Figs. 2, 3, 4 were created in 
Adobe Illustrator Creative Cloud 2020, with icons inserted from BioRender.

Results
The Auto‑qPCR program functions with the workflow of a qPCR experiment. A qPCR experi-
ment includes multiple steps that can be divided into two categories: (1) sample preparation to conduct the 
qPCR reaction, and (2) data analysis, visually represented in the schematic in Fig. 1. Nucleic acids are extracted 
from biological samples (RNA which is converted to cDNA for quantifying gene expression levels; or genomic 
DNA). Prior to performing qPCR in vitro, the user must generate the in-silico experimental layout using soft-
ware that monitors the biochemical reaction. The user defines the experimental design (absolute or relative 
quantification), the method for detecting DNA synthesis (Taqman or SybrGreen) and the location of each sam-
ple within the plate. Finally, at the end of the qPCR process/cycle/program, the recorded data is exported and 
then would normally be analyzed manually. In our workflow, the data is exported from the PCR machine and 
saved as spreadsheet in the form of a txt or csv file (Supplementary Figure S2). The file is then uploaded into the 
Auto-qPCR web app and the user enters their experimental settings.

Auto-qPCR will remove technical replicates by the selected criteria, normalize to an endogenous control, 
create a clean data table, and summary data table and graphs of all the results. If the user selects the statistical 
analysis, differential expression analyses will be performed on the designated groups. The program was designed 
for the most common uses of qPCR: detecting DNA fragment duplications or deletions, and quantifying gene 
expression levels according to the absolute or relative quantification models.

Genomic instability. A relatively new application for qPCR detects small changes within the genome, from 
a deletion to a duplication of a DNA segment. DNA regions known to be highly susceptible to such events can 
be quantified using a genomic instability qPCR test. In induced pluripotent stem cell (iPSC) research, genomic 
instability tests are critical for quality control to screen for duplication/deletion events that can arise during 
reprogramming and prolonged cell  passaging31,32. We performed a qPCR test for genomic stability, where for 
each cell line, the signal from each DNA region of interest was compared to the endogenous control region.

We uploaded the data into the Auto-qPCR web app and selected the genomic instability model (Fig. 2B). 
The endogenous control used to normalize the data, was an amplicon of a region on chromosome 4 (CHR4), a 
location of the genome known not to contain any instabilities. As a reference sample, we used DNA known not 

https://pingouin-stat.org/
https://github.com/neuroeddu/Auto-qPCR
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to have any instabilities as the calibrator (Normal) (Fig. 2A). The genomic instability model has two steps of nor-
malization in its general formula. This formula and the variables used in the example calculation (Fig. 2B,C). First, 
the CT values from the control region (i.e., CHR4) for each cell line are subtracted from each region of interest. 
Next, the ∆CT from the Normal DNA control is subtracted from the ∆CT calculated for each cell line sample. 
Finally, the mean is calculated from the average of multiple technical replicates included with the plate design 
for each sample. Thus, the ∆∆CT values are expressed as “Relative Quantification” according to the following 
formula: RQ =  2−∆∆CT. If the sample has no abnormalities (deletions or duplications) the values obtained should 
be equal or close to 1, except for targets in the X chromosome in a male individual in which the ratio would be 
expected to be at 0.5. As the DNA used for PCR amplification may come from a mixed population of cells, where 
only some cells carry a deletion or duplication, we set an acceptable range of variation as 0.3 above and below the 
expected value of 1; DNA regions with RQ values between that 0.7 and 1.3 are considered normal. Values below 

Figure 1.  Workflow of a qPCR experiment. Schematic representation of common qPCR assays: genomic 
stability assay to detect DNA deletions or duplication events (green line), two methods to quantify RNA (cDNA) 
using either absolute (red line) or relative quantification designs (blue lines). qPCR experiments can be sub 
divided in two parts: the sample preparation and running the PCR machine (Experimental Workflow) and 
the data analyses (Auto-qPCR Program). The preparation of the experiment includes nucleic acid extraction 
followed by a cDNA synthesis step (for RNA) and the in silico design of the PCR plate layout. Nucleic acid 
preparations are accurately diluted. For the absolute model, a standard curve must be created. The experimental 
design of the PCR plate, including the chemistry (fluorophore, primer mix), the status of the samples, and the 
transcripts or DNA region that are going to be amplified, must be generated in silico. After having defined 
the parameters of the qPCR reactions (number of PCR cycles and length of the different steps (denaturation, 
hybridization and elongation), and the temperatures), the PCR is run. The exported data from the thermocycler, 
converted to csv, is entered into the Auto-qPCR software and the model matching the experimental design and 
parameters for analysis are selected. The software will reformat the data, quantify each sample normalized to 
controls, and create spreadsheets and graphs to visualize the data analyses, all of which will be included in a zip 
file for the user to save.
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0.7 indicate a deletion and values above 1.3 indicate an insertion. For ease of analysis, we have included a column 
in the output file from the Auto-qPCR program that indicates normal, insertion or deletion (Supplementary 
Table S6). We found that all seven chromosomal regions in the four cell lines tested were between 0.7 and 1.3 and 
we concluded that no duplications or deletions were present (Fig. 2D and Supplementary Fig. S3B). Overall, we 
demonstrated how Auto-qPCR can be used to analyse the data from a genomic instability qPCR assay, and that 
the app effectively processed the data, creating a summary table and graph of the data.

Absolute quantification. For absolute quantification experiments, the quantities of RNA transcripts for 
a gene of interest and the endogenous controls are first estimated with a calibration curve (Fig. 3A) to provide 
a mathematical relationship between the CT values and the RNA concentration or quantity. The relationship is 
described by the equation CT =  alog2[RNA] + b, where “a” is the slope and “b” is the Y-intercept (Fig. 3C)33. The 
expression levels of the RNA molecule of interest are then given by the ratio of the estimated amount of RNA for 
a select transcript and the estimated amounts of endogenous controls (Fig. 3C). Consequently, the values given 
as “Normalized Expression Levels” depend on the levels of transcript within the biological material used to set 
the calibration curves. We used Auto-qPCR to compare the expression of three gene transcripts across six dif-
ferent cell lines at four different stages in the differentiation of neurons from iPSCs (Fig. 3B and Supplementary 
Fig. S4). The calibration curve was made from a mix of the cDNAs generated from the reverse-transcribed RNA 
reactions from the four timepoints in the differentiation process and made of eight four-time serial dilutions to 
cover a linear relationship in a dynamic range from 1 to 16,384-fold dilution (Fig. 3A). Raw data was normalized 
with two endogenous controls (ACTB and GAPDH) (Fig. 3D–H and Supplementary Fig. S4A). Auto-qPCR app 
provides several graphical representations of the normalized expression values. The means of technical replicates 
are provided for each gene (Fig. 3D). Bar charts were generated for all gene and sample observations plotted 
together (grouped by gene Fig. 3E and by sample Fig. 3G), allowing for an overview of the data and visualization 
of the biological variation between cell lines at a given stage.

We used the statistical module in Auto-qPCR to test for changes in gene expression over the different stages of 
neuronal differentiation; the different cell lines were considered as biological replicates (Supplementary Fig. S5). 

Figure 2.  Auto-qPCR can process PCR genomic stability data. (A) Screen capture of the Auto-qPCR web-app. 
(B) Simplified schematic of PCR workflow showing the genomic instability analysis in green. The DNA copy 
number is quantified with the same formula as the ΔΔ CT relative quantification model. (C) The calculations 
carried out for genomic instability testing (ΔΔ CT). Top, the general formula used where the CT values for 
each chromosome were normalized to a region of interest and then to a reference sample. Middle, the reference 
DNA region (CHR4) and the reference sample (Normal) used in this dataset. Bottom, the confidence interval 
for determining a genomic instability, insertion, or deletion event. (D) Bar chart showing the output from 
Auto-qPCR program running the genomic instability model. Four different iPSC cell lines are indicated and 
compared to the control sample. Normalized signals for all four cell lines are in the confidence interval defined 
by the control sample.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21293  | https://doi.org/10.1038/s41598-021-99727-6

www.nature.com/scientificreports/

As there are more than two groups, the Auto-qPCR software runs a one-way-repeated measures ANOVA for 
each gene. Two summary plots (Fig. 3F,H) and two statistical output tables were generated: one for the ANOVAs 
and one for the secondary measures (Supplementary Tables S7 and S8). There was a significant effect of the dif-
ferentiation stage on the expression of synaptic markers. The t tests with false discovery rate (FDR) correction for 
pairwise comparisons of each stage showed that iPSCs have significantly less expression of each synaptic marker 
than DAN differentiated for 4 and 6 weeks (Supplementary Table S8), indicating that the differentiation protocol 
is successful for all cell lines tested, with each iPSC differentiating into progenitors and ultimately DAN (Sup-
plementary Figure S5). We show that raw absolute qPCR data was effectively processed by Auto-qPCR, creating 
summary data, visualization and statistics for differential gene expression between conditions.

Relative quantification. In addition to absolute quantification, the Auto-qPCR software also enables the 
processing of qPCR data obtained according to a relative quantification design. Contrary to absolute quantifica-
tion, relative quantification does not require a calibration curve, and quantification (of transcripts) is based on 
the CT difference between a transcript of interest and one or more endogenous controls (Fig. 4A). Relative qPCR 
is optimal for two kinds of comparisons: (1) detecting a difference in gene expression between two different con-
ditions, and (2) detecting a difference between two transcripts within the same condition. Relative quantification 
can be expressed either as RQ =  2−∆CT, where samples are normalized to internal control(s), or RQ =  2−∆∆CT, where 
a given sample is considered as a calibrator for the unknown samples (Fig. 4B,C).

To illustrate the functions of the program, we compared the expression levels of two different control cell 
lines at two developmental stages, indicated as D0 (neural precursor cells) and D7 (7 days of differentiation 
into cortical neurons). We measured the expression levels of the progenitor marker PAX6, and two markers of 
neuronal differentiation (GRIN1and CAMK2A) and normalized to the housekeeping genes ACTB and GAPDH.

We used the Auto-qPCR app to process the same data twice, for a direct comparison of the two distinct relative 
quantification options (Supplementary Fig. S6). Figure 4D shows the mean expression from technical triplicates 
calculated by selecting the RQ =  2−∆CT. The ∆CT approach (not using a sample as calibrator) allows a comparison 
of the expression levels for the three different transcripts. We observed that relative to the endogenous con-
trols, the D0 expression values for each transcript varied widely between the two cell lines tested. However, as 
expected for both cell lines, PAX6 expression is higher at the D0 stage compared to D7. Conversely, both GRIN1 
and CAMK2A exhibited higher expression at the D7 stage compared to D0. Using the statistics module in the 
Auto-qPCR app, we compared the mean levels of each gene transcript at D0 and D7 using paired t tests for each 
gene (Fig. 4E,F). We found that although there were clear differences in expression, they were not significant 
between D0 and D7, likely a result of there only being two samples for each time point (Supplementary Table S9 
and Supplementary Fig. S6A and S7). Interestingly, we found that the CAMK2A  RQ∆CT was twice the level of 
GRIN1 at D7  RQ∆CT (Fig. 4F).

We next analysed this dataset with the  RQ∆∆CT model (indicated as ΔΔCT) in the web app (Supplementary 
Fig. S6B) where transcript levels are compared to both control gene expression (in this case ACTB and GAPDH) 
and a calibration sample; in this case we set one sample, AIW002-02-D0 arbitrarily as the reference sample 
(Fig. 4G). Here we can easily compare expression in a test condition relative to a control condition by display-
ing the results as fold change in expression. All decreases are displayed as between 0 and 1 and all the increased 
expression levels are above 1 (Fig. 4C). With the double normalization  (RQ∆∆CT), all values were expressed as a 
variation compared to the calibrator (AIW002-2-D0) as seen in Fig. 4G–I. As in the  RQ∆CT model, the changes 
in gene expression from D0 to D7 were not significant (Supplementary Table S10). Although the ratio of expres-
sion for a given gene in each cell line between DO and D7 remained unchanged, differential expression between 
genes can no longer be analysed. The  RQ∆∆CT shown in Fig. 4H showed that PAX6 expression was higher at D0 
than D7 and that CAMK2a and GRIN1 expression were both higher at D7 than D0, as seen in Fig. 4E using the 
RQ∆CT model. However, with the double normalization, the increase in GRIN1 expression from D0 to D7 appears 
much larger than the increase in CAMK2a expression (Fig. 4H,I), which was the opposite result from the single 
normalization model  (RQ∆CT) (Fig. 4E,F). Our findings highlight the need to analyze data with attention to the 
biological question. Using only the  RQ∆∆CT analysis, one might mistakenly believe the increase in GRIN1 expres-
sion is greater than that of CAMK2a. With Auto-qPCR we provide a quick easy option to process the exported 
qPCR data with two different relative models. We show the same gene expression ratios between the two time 
points, but different expression gene levels using the different relative quantitation models.

Auto‑qPCR produces the same results as manual processing of a previously published data‑
set. One of our objectives was to provide a tool for analyzing data from qPCR experiments generated with 
different qPCR machines. We reanalyzed a published dataset generated by the Gorwood  lab30, on a different 
machine (Opticon 2, Bio-Rad). The original study measured gene expression in three sub cortical areas (sub-
thalamic nucleus (STN), substantia nigra (SN) and globus pallidus (GP) of mice submitted to a place preference 
paradigm to  cocaine30. Manual processing shows a significant increase in Nrxn3 expression in the cocaine-
treated group compared to control, specifically in the GP (Fig. 5A).

We next processed the raw data using the Auto-qPCR web app absolute quantification pipeline and normal-
ized to B2M (Fig. 5B and Supplementary Figure S8A). This summary data closely matched the manually calcu-
lated data (Supplementary Table S11). The standard method of removing outliers from technical replicates is to 
remove the replicate most different from the mean, if the CT standard deviation (CT-SD) is above 0.3. Under 
‘Options for removing technical replicates’ in the Auto-qPCR software the threshold can be adjusted. During 
manual analysis, each set of technical replicates is inspected when the CT-SD value is above 0.3, when one rep-
licate is clearly different from the other two the divergent value will be removed. There are some instances in 
manual processing where no replicates are removed when the CT-SD is greater than 0.3, because the triplicate 
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values are evenly distributed. Auto-qPCR has an option to account for this type of data when the user selects 
‘preserve highly variable values’. With this option a replicate is only removed if the median is far from the mean. 
We processed the Nrxn3 expression data with a range of CT-SD cut-off values to display the difference in out-
comes and with or without preserving highly variable replicates (Supplementary Table S11). We compared the 
variances generated by the differences between the expression values from manual treatment and from Auto-
qPCR using a CT-SD cut-off of 0.3 with or without preserving highly variable replicates. We found that the 
preservation of highly variable option combined with a cut-off at 0.3 generate a 20% decrease in the variance 
between manual and automatic treatments (Supplementary Table S12) and preserved values falsely estimated 
as outliers by manual processing, which illustrates the subjectivity of the user with respect to the decision to 
retain or exclude a value based on criteria of divergence Our analysis suggests that applying two rules of data 
filtering provides a more systematic data analysis method and minimizes interindividual bias. Here we applied 
the standard cut-off of 0.3 and preserved highly variable replicates, appropriate for the highly variable and RNA 
level experimental samples we are analyzing.

Auto-qPCR also permits statistical groups to be designated in the sample name or in a specific group column, 
which can be added into the qPCR data during the plate set up or later in the results spreadsheet. To allow for 
statistical analysis of this data, we added a grouping column into the raw data files (Supplementary Table S13) 
and using the Auto-qPCR statistics module, we reanalysed the effect of drug treatment and brain regions on 
expression of Nrxn3 across several parameters. We first compared the overall effect of cocaine on expression 
after pooling the three brain regions and found that although the expression of Nrxn3 was increased across brain 
regions with cocaine treatment, there was no overall significant effect of drug treatment (Fig. 5C, Supplementary 
Fig. S9A and Supplementary Table S14). Comparing the three brain regions while pooling together control and 
cocaine treatment showed a significant difference in expression across brain regions. Post-hoc analysis revealed 
Nrxn3 expression in the STN was significantly lower than in the GP and SN (Fig. 5D, Supplementary Fig. S10A 
and Supplementary Table S15). When we considered each brain region with and without treatment as independ-
ent conditions, and individual mice as biological replicates and used a one-way ANOVA followed by post hoc 
tests using multiple t test with a correction for multiple comparisons we find cocaine significantly increased 
Nrxn3 expression specifically in the GP and not in the SN or STN (Fig. 5E and Supplementary Table S16). To 
apply the identical statistical treatment as originally presented, we performed a two-way ANOVA followed by a 
repeated measures t tests with FDR correction on the interaction variable between treatment and brain region, 
using Auto-qPCR, and found the same results as the one-way ANOVA (Fig. 5F, Supplementary Fig. S10B and 
Supplementary Table S17) and a t test of the GP alone (Fig. 5G), all in agreement with the originally published 
 results30. Together the data shows that the Auto-qPCR software is capable of processing data generated by another 
machine and the results match those processed manually.

Discussion
This paper presents Auto-qPCR, a new web app for qPCR analysis and provides examples of the functionalities 
of the software applied to qPCR experimental datasets generated from DNA (genomic instability assay), cDNA 
amplification, and RNA transcripts (absolute and relative quantification data). We have also summarized the 
computational bases of relative and absolute quantifications performed by Auto-qPCR, which is important for 
users to understand during experimental design. The Auto-qPCR web app also provides a statistical module that 
will be applicable to the majority of qPCR analysis experiments, and provides a correction across multiple tests, 
when more than two samples are compared, to mitigate against false positives. As not all experimental designs 
require differential analyses, the user can use Auto-qPCR without statistical analysis, calculating normalized 
RNA concentrations, and a summary table and graphs will be generated. Furthermore, the web app can be used 
with no installation or login requirements. We have created an easy-to-use program that is completely free and 

Figure 3.  Auto-qPCR can process quantitative qPCR data using a standard curve to perform statistical 
analysis. Output of Auto-qPCR processing using the absolute model. (A) Illustration of a calibration curve 
displaying 8 serial dilution points of a four-fold dilution which covers cDNA quantities from 0.003053 to 50 ng 
and establishes the linear relationship between CT values (y-axis) and the log2[RNA]. (B) Schematic of PCR 
workflow showing the pipeline for the absolute quantification using a standard curve in red. (C) Formula 
used to process a real-time PCR experiment using an absolute quantification design. Top, general formula 
where the linear relation between the logarithm of RNA concentration and the CT value is provided by the 
calibration curve. The normalized quantification is expressed as a ratio between concentrations for the gene of 
interest and the endogenous control(s) estimated from their respective calibration curves. Bottom, the variables 
specific to this dataset are shown in the general formula. (D) Bar chart showing the output from Auto-qPCR 
program using the absolute model for the normalized expression of the gene KCNJ6 for six cell lines at four 
different developmental stages (iPSC, induced pluripotent stem cells; NPC, Neural progenitor cells; DA4W, 
dopaminergic neurons at 4 weeks, DA6W: Dopaminergic neurons at 6 weeks). (E,G) Bar charts showing the 
average expression levels obtained from the three technical replicates for each cell line and time point for the 
three genes (SYP, KCNJ6 and GRIA1), normalized with two housekeeping genes (ACTB: beta-actin, GAPDH). 
(E) Mean RNA expression grouped by genes on the x-axis, cell lines and time points are indicated in legend. (G) 
Mean RNA expression grouped by cell lines and time points; the gene transcripts quantified are indicated in the 
legend. (F,H) Bar charts showing the mean expression levels of SYP, KCNJ6 and GRIA1 for four developmental 
stages (n = 6 cell lines). (F) Grouped by genes (x-axis), time points are indicated in the legend. (H) Grouped by 
time points (x-axis), the genes are indicated in the legend. One-way ANOVAs across differentiation stages for 
KCNJ6, SYP and GRIA1 (p < 0.001, p < 0.001, p = 0.002).
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open source, able to process data from different qPCR machines and all common experimental designs, that will 
be advantageous for any lab performing qPCR experiments.

Given the importance of qPCR in molecular biology, other programs are available to perform many steps of 
the qPCR data  treatment18,21–23,34. The Q-PCR and PIPE-T programs were designed to treat and display qPCR 
data generated according to a relative quantification  model23,34. SATQPCR is a web app that treats qPCR data 
using the relative quantification model and performs differential analyses. However, it does not take the exported 
results files directly from the qPCR data and requires manually preformatting of the data before  analysis22. 
ELIMU-MDx is a web-based interface conceived to collect specific information regarding qPCR assays for 
diagnostic purposes. EILMU-MDx functions as a data management system, processes qPCR data generated 
using the absolute quantification method and requires an account and login  information21. Finally, another web 
app “Do my qPCR calculations” requires no login but needs manual preformatting of an Excel sheet to upload 
or enter values directly. It also provides relative quantification results, but requires manual preformatting of an 
Excel sheet to upload or entering values  directly35. The main specifications of these programs relative to ours are 
presented in Supplementary Table S18 for side-by-side comparison.

Reviewing different software published to serve similar purposes highlights the unique characteristics of Auto 
qPCR, as no other web app combines all the features we have included in our software. First as a web app, Auto-
qPCR does not require installation or a user login and can be accessed from any device connected to internet. 
Furthermore, for the users who want to work on their analysis off-line, we also provide the option to install the 
program onto their computer, which entirely reproduces the environment of the web-app. Second, data processed 

Figure 4.  Auto-qPCR can process quantitative PCR data using two different relative models. Output of 
Auto-qPCR using the relative quantification with both the ∆CT and ∆∆CT models. (A) Amplification curves 
illustrating a difference of cycle threshold values (∆CT) between a gene of interest and an endogenous control. 
(B) Schematic of PCR workflow showing the two methods to calculate relative RNA quantity, ∆CT in dark blue 
and ∆∆CT in light blue. (C) Formula used to perform a qPCR using relative quantification models, according 
the ∆CT (right), or the ∆∆CT methods (left). (D–F) Bar charts showing the output of the delta-CT model 
 (RQ∆CT). (G–I) Bar charts showing the output from the ΔΔ-CT model  (RQ∆∆CT). (D) and (G) Mean normalized 
gene expression values from technical replicates for the genes PAX6, CAMK2A and GRIN1 indicated on the 
x-axis for 2 cell lines at two stages of differentiation (D0: Neural progenitor cells, and D7: cortical neurons at 
7 days of differentiation) as indicated. (E,H) Statistics output showing the mean gene expression from two cell 
lines at two stages of differentiation indicated, for the three genes indicated on the x-axis. (F,I) Statistics output 
showing the mean expression values for two cell lines at two time points on the x-axis and the three genes 
indicated. Differential expression between D0 and D7 is not significant (PAX6 p = 0.40, CAMK2A p = 0.18, 
GRIN1 p = 0.16), t tests, n = 2.
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by Auto-qPCR does not require any preformatting of the results file to be performed manually. Instead, once the 
qPCR experiment is complete, our program takes the csv or txt export file directly from the thermocycler so there 
is no copy/paste or formatting step to be done by the user. Third, Auto-qPCR can manage the data from multiple 
separate absolute files at once, as well as batch process multiple results files from a relative quantification. The 
program creates a clean data set (with all technical replicates) and a summary data table. Fourth, unlike the other 
software mentioned above, Auto-qPCR includes three different models, conceived to support qPCR data gener-
ated from absolute and two methods of relative quantification designs. No other program provides the option 
of choosing between the two relative quantification methods. Fifth, we provide normalization to multiple refer-
ence genes and calculate the mean normalized value for each replicate, and not the sample mean, an important 
feature implemented in relatively few other programs. This avoids the RNA quantity value being influenced by 
extreme values. Sixth, we extend the use of the program to suit qPCR data from DNA quantification. Finally, 
we provide an extensive statistics module for calculating differential gene expression that requires no additional 
input files. Options are included for experimental designs that include two or more sample comparisons (t test, 
one- and two-way ANOVA and the equivalent non-parametric tests) and automatically generates bar charts for 
data visualization and summary tables with the statistical results. In summary, we have created a unique, easy to 
use qPCR analysis program that can benefit any researcher or lab that needs to analyze qPCR data on a regular 
basis, by saving time, avoiding errors and generating reproducible, figure-ready plots.

Auto-qPCR provides users the option for relative quantification by two methods: expression relative to endog-
enous control genes only (∆CT method) or relative to endogenous genes and also normalized to a control condi-
tion (∆∆CT method). Although the ∆∆CT method is considered the gold standard to express, in one number, 
the variation in gene expression between two conditions and the amplitude of that change in  expression36, it 
does not account for inter gene expression variation within the control  condition37. The differences between 
quantifying relative expression with or without a control condition used as a calibrator, are clearly demonstrated 
above (Fig. 4). Expression levels of GRIN1 and CAMK2a calculated with either relative quantification model 

Figure 5.  Auto-qPCR can process data from different thermocyclers and produce the same results as manual 
processing. (A) Bar chart showing the mean Nrxn3 expression level normalized to B2M levels assessed with 
an absolute quantification design manually processed and plotted in Prism, grouped by brain regions (STN: 
subthalamic nucleus, GP: globus paladus, SN: substantia nigra) on the x-axis, with and without cocaine 
treatment. (B) Output of Auto-qPCR processing the same dataset. Nrxn3 normalized expression levels from 
technical replicates for each biological sample. The treatment conditions are indicated below the x-axis. (C) 
Statistics output of Auto-qPCR program comparing cocaine and control groups. Nrxn3 normalized expression 
levels in the combined brain regions. Expression is not significantly different, p = 0.113, t test, n = 13. (D) Auto-
qPCR statistical output showing mean Nrxn3 expression combining treatments and comparing the three brain 
regions. One-way ANOVA shows significant effect of brain regions, FDR adjusted p < 0.001, n = 9 for GP and SN, 
n = 10 STN. (E) Bar chart of Nrxn3 expression shown as six groups distinguished by brain region and treatment 
generated by Auto-qPCR program after a one-way ANOVA, p < 0.001, n = 4 or 5. Post hoc analysis using 
multiple t test with FDR correction comparing treatment at each brain region: SNT p = 0.990, GP p = 0.033, 
SN p = 0.413. (F) Bar chart of Nrxn3 average normalized by brain region (x-axis) and treatment, generated by 
Auto-qPCR program after a two-way ANOVA, brain region p < 0.001, treatment p = 0.2265, n = 4 or 5. Post hoc 
analysis using multiple t test with FDR correction comparing each brain region with and without cocaine: SNT 
p = 0.0.998, GP p = 0.053 and p-unadjusted = 0.017, SN p = 0.619 (G) Bar chart of the average Nrxn3 normalized 
expression levels in the GP compared between the two groups with a t test (p = 0.0176).
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was increased at seven days of differentiation (D7) compared to day zero (DO). However, we also found that 
GRIN1 and CAMK2A had different levels in the baseline condition (∆CT), thus we observe that information is 
lost when using a ∆∆CT normalization. For relative quantification using a ∆∆CT normalization we measured a 
fold change of variation compared to a control condition for a given  gene38, but information about differences 
of expression between two genes in control condition were not observed (Fig. 4F). We have provided both the 
gold standard method of relative quantification and a method to calculate gene expression without a reference 
sample, to allow users to quickly determine expression changes without losing information about the level of 
expression in control conditions.

Reprocessing the external dataset highlighted two main advantages of treating qPCR dataset with a program. 
First, manual analysis of qPCR data is time consuming. Second, comparing both data treatments (manual and 
program-assisted) has shown that one important source of variation between results of manual analysis is the 
inconsistent rules used for data exclusion. Although removing one outlier from technical replicates, in the vast 
majority of cases, improves the CT standard deviation (CT-SD) by decreasing it under the commonly accepted 
threshold of 0.3, in many cases researchers decide to keep a technical replicate even if the CT-SD value is above 
0.3. These judgement calls frequently occur when transcripts have low expression levels and the high variance 
between technical replicates does not permit a decision based on the adjustment of the CT-SD. To account for 
these situations, we incorporated a second rule for data inclusion/exclusion based on the distance between the 
arithmetic mean and the median value of technical replicates to determine the most acceptable set of technical 
replicates. Applying such an algorithm to the user’s judgement removes variability and potential bias in the result-
ing normalized gene expression levels. We were able to reprocess external data using Auto-qPCR and acquired 
the same summary output, reaching the same conclusions as the initial study. We showed that Auto-qPCR can 
process data from different PCR machines and matched the expected outcome from manual processing without 
the risk of bias or errors. Using a double rule for data inclusion/exclusion for highly variable signal between 
technical replicates, the program provides a unique treatment that will considerably reduce the risk of variability 
and mistakes generated by and between users during manual data processing.

The Auto-qPCR program does have has some limitations, but it also has and a number other potential uses 
not included in this manuscript. Although the program is able to compute data from independent qPCR plates 
in single plex (where each plate has a different amplicon), Auto-qPCR has not been adjusted at this stage to 
manage duplex qPCR (with one endogenous control and one transcript of interest quantified in the same well). 
Auto-qPCR has also not been equipped to process an inter-plate calibrator, required to cover a sample size of 
more than one plate, in absolute quantification mode experimental designs. Finally, as most of the primer sets 
for gene expression are now predesigned and eventually pretested by companies taking in consideration optimal 
efficiencies of amplification, correction factors for efficiencies have not been added into the Auto-qPCR algo-
rithms. Despite these caveats, we propose that Auto-qPCR could be employed in a variety of molecular biology 
protocols and many of these features could be added in future iterations. Auto-qPCR is capable of analyzing 
data from a chromatin immunoprecipitation experiment followed by specific DNA  amplification15. The analyses 
could be performed using either the absolute or the relative quantification models. The absolute quantification 
method would permit testing primer efficiency through the calibration  curve39, and the DNA target amplification 
would be normalized to an unbound DNA as previously  described40,41. Alternatively, the level of DNA/protein 
interaction can be estimated using the relative quantification models with one or several regions, known to be 
unbound by a protein of interest, as endogenous control(s) (∆CT mode) and with a biological condition as a 
calibrator (∆∆CT mode). Auto-qPCR is flexible enough to let the user choosing the most appropriate model to 
use, based on the information available on the DNA regions to amplify and analyze.

The Auto-qPCR program was conceived to treat, analyze, and display qPCR data generated using either rela-
tive or absolute quantification designs, while limiting errors related to manual processing. Data processing tools 
cannot replace or supplement appropriate experimental design and statistical power. The conditions included 
with the design and interpretation of the results still remain in the user’s hand. We have provided a tool that will 
provide easy, reproducible analysis without user errors for unlimited samples. Although, we cannot computa-
tionally remove the need for replication and controls, analysis time will no longer be a limitation. Auto-qPCR 
permits researchers to conduct studies with larger experimental designs while minimizing the risk of mistakes 
during the data analysis.

Received: 9 June 2021; Accepted: 27 September 2021

References
 1. Saiki, R. K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell 

anemia. Science 230, 1350–1354. https:// doi. org/ 10. 1126/ scien ce. 29999 80 (1985).
 2. Magnuson, V. L. et al. Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: Implications 

for PCR-based genotyping and cloning. Biotechniques 21, 700–709. https:// doi. org/ 10. 2144/ 96214 rr03 (1996).
 3. Scharf, S. J., Horn, G. T. & Erlich, H. A. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Sci-

ence 233, 1076–1078. https:// doi. org/ 10. 1126/ scien ce. 34615 61 (1986).
 4. Beggs, A. H., Koenig, M., Boyce, F. M. & Kunkel, L. M. Detection of 98% of DMD/BMD gene deletions by polymerase chain reac-

tion. Hum. Genet. 86, 45–48 (1990).
 5. Mullis, K. B. & Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 

335–350 (1987).
 6. Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B. & Erlich, H. A. Analysis of enzymatically amplified beta-globin and HLA-DQ 

alpha DNA with allele-specific oligonucleotide probes. Nature 324, 163–166. https:// doi. org/ 10. 1038/ 32416 3a0 (1986).

https://doi.org/10.1126/science.2999980
https://doi.org/10.2144/96214rr03
https://doi.org/10.1126/science.3461561
https://doi.org/10.1038/324163a0


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21293  | https://doi.org/10.1038/s41598-021-99727-6

www.nature.com/scientificreports/

 7. De la Vega, F. M., Lazaruk, K. D., Rhodes, M. D. & Wenz, M. H. Assessment of two flexible and compatible SNP genotyping plat-
forms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat. Res. 573, 111–135. https:// doi. org/ 10. 1016/j. 
mrfmmm. 2005. 01. 008 (2005).

 8. Ye, S., Dhillon, S., Ke, X., Collins, A. R. & Day, I. N. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic 
Acids Res. 29, E88–E88. https:// doi. org/ 10. 1093/ nar/ 29. 17. e88 (2001).

 9. D’Haene, B., Vandesompele, J. & Hellemans, J. Accurate and objective copy number profiling using real-time quantitative PCR. 
Methods 50, 262–270. https:// doi. org/ 10. 1016/j. ymeth. 2009. 12. 007 (2010).

 10. Charbonnier, F. et al. Detection of exon deletions and duplications of the mismatch repair genes in hereditary nonpolyposis 
colorectal cancer families using multiplex polymerase chain reaction of short fluorescent fragments. Cancer Res. 60, 2760–2763 
(2000).

 11. Wong, M. L. & Medrano, J. F. Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85. https:// doi. org/ 10. 2144/ 05391 RV01 
(2005).

 12. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 
1071–1076. https:// doi. org/ 10. 1038/ natur e08975 (2010).

 13. Shi, R. & Chiang, V. L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519–525. https:// 
doi. org/ 10. 2144/ 00011 2010 (2005).

 14. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F. & Hellens, R. P. Protocol: A highly sensitive RT-PCR method for detection 
and quantification of microRNAs. Plant Methods 3, 12. https:// doi. org/ 10. 1186/ 1746- 4811-3- 12 (2007).

 15. Mukhopadhyay, A., Deplancke, B., Walhout, A. J. & Tissenbaum, H. A. Chromatin immunoprecipitation (ChIP) coupled to detec-
tion by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat. Protoc. 3, 698–709. 
https:// doi. org/ 10. 1038/ nprot. 2008. 38 (2008).

 16. Dahl, J. A. & Collas, P. Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of 
developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046. https:// doi. org/ 10. 1634/ stemc ells. 2006- 0430 
(2007).

 17. Milne, T. A., Zhao, K. & Hess, J. L. Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-
associated proteins. Methods Mol. Biol. 538, 409–423. https:// doi. org/ 10. 1007/ 978-1- 59745- 418-6_ 21 (2009).

 18. Pabinger, S., Rodiger, S., Kriegner, A., Vierlinger, K. & Weinhausel, A. A survey of tools for the analysis of quantitative PCR (qPCR) 
data. Biomol. Detect. Quantif. 1, 23–33. https:// doi. org/ 10. 1016/j. bdq. 2014. 08. 002 (2014).

 19. Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. 
Endocrinol. 25, 169–193 (2000).

 20. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. https:// doi. 
org/ 10. 1093/ nar/ 29.9. e45 (2001).

 21. Krahenbuhl, S. et al. ELIMU-MDx: A web-based, open-source platform for storage, management and analysis of diagnostic qPCR 
data. Biotechniques 68, 22–27. https:// doi. org/ 10. 2144/ btn- 2019- 0064 (2020).

 22. Rancurel, C., van Tran, T., Elie, C. & Hilliou, F. SATQPCR: Website for statistical analysis of real-time quantitative PCR data. Mol. 
Cell Probes 46, 101418. https:// doi. org/ 10. 1016/j. mcp. 2019. 07. 001 (2019).

 23. Zanardi, N. et al. PIPE-T: A new Galaxy tool for the analysis of RT-qPCR expression data. Sci. Rep. 9, 17550. https:// doi. org/ 10. 
1038/ s41598- 019- 53155-9 (2019).

 24. Chen, C. X. Q. et al. Standardized quality control workflow to evaluate the reproducibility and differentiation potential of human 
iPSCs into neurons. Methods Protoc. 4,  https:// doi. org/ 10. 3390/ mps40 30050 (2021).

 25. Bell, S. et al. A rapid pipeline to model rare neurodevelopmental disorders with simultaneous CRISPR/Cas9 gene editing. Stem 
Cells Transl. Med. 6, 886–896. https:// doi. org/ 10. 1002/ sctm. 16- 0158 (2017).

 26. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 
480, 547–551. https:// doi. org/ 10. 1038/ natur e10648 (2011).

 27. Chen, E. S. et al. Induction of Dopaminergic or Cortical neuronal progenitors from iPSCs. Zenodo. https:// doi. org/ 10. 5281/ zenodo. 
33648 31 (2019).

 28. Chen, E. S., Lauinger, N., Rocha, C., Rao, T. & Durcan, T. M. Generation of dopaminergic or cortical neurons from neuronal 
progenitors. Zenodo. https:// doi. org/ 10. 5281/ zenodo. 33610 05 (2019).

 29. Abeysooriya, M., Soria, M., Kasu, M. S. & Ziemann, M. Gene name errors: Lessons not learned. PLoS Comput. Biol. 17, e1008984. 
https:// doi. org/ 10. 1371/ journ al. pcbi. 10089 84 (2021).

 30. Kelai, S. et al. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction. NeuroReport 19, 751–755. https:// 
doi. org/ 10. 1097/ WNR. 0b013 e3282 fda231 (2008).

 31. Tosca, L. et al. Genomic instability of human embryonic stem cell lines using different passaging culture methods. Mol. Cytogenet. 
8, 30. https:// doi. org/ 10. 1186/ s13039- 015- 0133-8 (2015).

 32. Yoshihara, M., Hayashizaki, Y. & Murakawa, Y. Genomic instability of iPSCs: Challenges towards their clinical applications. Stem 
Cell Rev. 13, 7–16. https:// doi. org/ 10. 1007/ s12015- 016- 9680-6 (2017).

 33. Ovstebo, R., Haug, K. B., Lande, K. & Kierulf, P. PCR-based calibration curves for studies of quantitative gene expression in human 
monocytes: Development and evaluation. Clin. Chem. 49, 425–432. https:// doi. org/ 10. 1373/ 49.3. 425 (2003).

 34. Pabinger, S. et al. QPCR: Application for real-time PCR data management and analysis. BMC Bioinform. 10, 268. https:// doi. org/ 
10. 1186/ 1471- 2105- 10- 268 (2009).

 35. Tournayre, J., Reichstadt, M., Parry, L., Fafournoux, P. & Jousse, C. “Do my qPCR calculation”, a web tool. Bioinformation 15, 
369–372. https:// doi. org/ 10. 6026/ 97320 63001 5369 (2019).

 36. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108. https:// 
doi. org/ 10. 1038/ nprot. 2008. 73 (2008).

 37. Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. Jr. Statistical analysis of real-time PCR data. BMC Bioinform. 7, 85. https:// doi. org/ 
10. 1186/ 1471- 2105-7- 85 (2006).

 38. Rao, X., Huang, X., Zhou, Z. & Lin, X. An improvement of the 2(−delta delta CT) method for quantitative real-time polymerase 
chain reaction data analysis. Biostat. Bioinform. Biomath. 3, 71–85 (2013).

 39. Brankatschk, R., Bodenhausen, N., Zeyer, J. & Burgmann, H. Simple absolute quantification method correcting for quantitative 
PCR efficiency variations for microbial community samples. Appl. Environ. Microbiol. 78, 4481–4489. https:// doi. org/ 10. 1128/ 
AEM. 07878- 11 (2012).

 40. Mathieu, O., Probst, A. V. & Paszkowski, J. Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation 
in Arabidopsis. EMBO J. 24, 2783–2791. https:// doi. org/ 10. 1038/ sj. emboj. 76007 43 (2005).

 41. Maussion, G. et al. Investigation of genes important in neurodevelopment disorders in adult human brain. Hum. Genet. 134, 
1037–1053. https:// doi. org/ 10. 1007/ s00439- 015- 1584-z (2015).

Acknowledgements
T.M.D. received funding through the McGill Healthy Brains for Healthy Lives (HBHL) initiative, the CQDM 
FACS program, the Alain and Sandra Bouchard Foundation, the Ellen Foundation and the Mowafaghian Founda-
tion. T.M.D is supported by a project grant from CIHR (PJT-169095). R.A.T was funded by a Healthy Brains for 

https://doi.org/10.1016/j.mrfmmm.2005.01.008
https://doi.org/10.1016/j.mrfmmm.2005.01.008
https://doi.org/10.1093/nar/29.17.e88
https://doi.org/10.1016/j.ymeth.2009.12.007
https://doi.org/10.2144/05391RV01
https://doi.org/10.1038/nature08975
https://doi.org/10.2144/000112010
https://doi.org/10.2144/000112010
https://doi.org/10.1186/1746-4811-3-12
https://doi.org/10.1038/nprot.2008.38
https://doi.org/10.1634/stemcells.2006-0430
https://doi.org/10.1007/978-1-59745-418-6_21
https://doi.org/10.1016/j.bdq.2014.08.002
https://doi.org/10.1093/nar/29.9.e45
https://doi.org/10.1093/nar/29.9.e45
https://doi.org/10.2144/btn-2019-0064
https://doi.org/10.1016/j.mcp.2019.07.001
https://doi.org/10.1038/s41598-019-53155-9
https://doi.org/10.1038/s41598-019-53155-9
https://doi.org/10.3390/mps4030050
https://doi.org/10.1002/sctm.16-0158
https://doi.org/10.1038/nature10648
https://doi.org/10.5281/zenodo.3364831
https://doi.org/10.5281/zenodo.3364831
https://doi.org/10.5281/zenodo.3361005
https://doi.org/10.1371/journal.pcbi.1008984
https://doi.org/10.1097/WNR.0b013e3282fda231
https://doi.org/10.1097/WNR.0b013e3282fda231
https://doi.org/10.1186/s13039-015-0133-8
https://doi.org/10.1007/s12015-016-9680-6
https://doi.org/10.1373/49.3.425
https://doi.org/10.1186/1471-2105-10-268
https://doi.org/10.1186/1471-2105-10-268
https://doi.org/10.6026/97320630015369
https://doi.org/10.1038/nprot.2008.73
https://doi.org/10.1038/nprot.2008.73
https://doi.org/10.1186/1471-2105-7-85
https://doi.org/10.1186/1471-2105-7-85
https://doi.org/10.1128/AEM.07878-11
https://doi.org/10.1128/AEM.07878-11
https://doi.org/10.1038/sj.emboj.7600743
https://doi.org/10.1007/s00439-015-1584-z


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21293  | https://doi.org/10.1038/s41598-021-99727-6

www.nature.com/scientificreports/

Healthy Lives Fellowship. Thanks to Ivan Castanon Niconoff for helping create and set up the virtual machine 
used to host the Auto-qPCR web app. Thanks to Maria José Castellanos Montiel, Vincent Soubannier and 
Nguyen-Vi Mohamed, for testing the web app.

Author contributions
G.M. and R.A.T. conceptualized the program. I.D., G.G., E.C. and R.A.T. wrote and tested the program. R.A.T. 
managed the program development and GitHub repository and ran all the analysis using the webapp. G.G. built 
the graphical user interface and website. T.J.P.S. transferred the website to run online through a virtual machine. 
G.M. generated the qPCR data used to test the absolute and relative quantification models of Auto-qPCR pro-
gram. C.X.Q.C., N.A. and A.N.J. extracted DNA and performed the PCR used to improve the pipeline related 
to the genomic instability model of Auto-qPCR program. S.K., N.R. and P.G. generated the external data set 
used for Fig. 5. R.A.T., I.D. and G.M. made the figures. G.M., R.A.T., L.K.B. and T.M.D wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 99727-6.

Correspondence and requests for materials should be addressed to T.M.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-99727-6
https://doi.org/10.1038/s41598-021-99727-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Auto-qPCR; a python-based web app for automated and reproducible analysis of qPCR data
	Methods
	Culture of iPSC lines. 
	Generation of cortical and dopaminergic neurons. 
	DNA and RNA extraction. 
	cDNA synthesis, quantitative PCR, and data export. 
	Collection of external data set. 
	Program development and structure. 
	Program function—input data processing and quantification. 
	Program function—statistical analysis. 
	Program function—visualization. 
	Data availability and reproducibility. 
	Illustrations. 

	Results
	The Auto-qPCR program functions with the workflow of a qPCR experiment. 
	Genomic instability. 
	Absolute quantification. 
	Relative quantification. 
	Auto-qPCR produces the same results as manual processing of a previously published dataset. 

	Discussion
	References
	Acknowledgements


