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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by
progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually
leading to death due to respiratory failure. While generally considered an intrinsic motor neuron
disease, data obtained in recent years, including our own, suggest that motor neuron protection is
not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked
to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia)
and mitochondrial alterations described in patients and murine models of ALS are associated with
the development and progression of disease pathology and they appear long before motor neurons
die. It is clear that these metabolic changes participate in the pathology of the disease. In this review,
we summarize these changes seen throughout the course of the disease, and the subsequent impact
of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that
show that correcting this loss of metabolic flexibility should now be considered a major goal for the
treatment of ALS.

Keywords: skeletal muscle; ALS; neuromuscular junction; hypermetabolism; PDK4; metabolic
imbalance; trimetazidine

1. Introduction

In humans, the muscular system is divided into two distinct categories: smooth
and striated muscles. The number, organization, and function of striated muscle require
considerable energy consumption when compared to the entire human body. In this review,
we first present a summary of amyotrophic lateral sclerosis (ALS). Second, we examine the
role of muscle energy metabolism in the pathophysiology of ALS and we further discuss
how targeting muscle offers an avenue for treating the disease.

1.1. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease.
The gradual loss of weight and muscle strength and the onset and progression of muscle
paralysis are the main visible presentations of this disease. From a cellular perspective, the
loss of cortical motor neurons and spinal and bulbar motor neurons is clearly established [1].
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ALS typically affects patients between the ages of 50 and 60 and invariably causes death 3 to
5 years after onset [2]. Worldwide, 60,000 people die of ALS each year [3] with an incidence
of 1.75 to 3 per 100,000 per year [4]. In France, there are 3 to 4 new cases per year per 100,000
individuals and a prevalence of 6000 [5]. Many genes have been directly linked with the
sporadic (90% of cases) and familial forms (10% of cases) of ALS [6]. In the latter, the pattern
of inheritance is generally autosomal dominant. Among the main major susceptibility
genes, C9ORF72, SOD1, FUS and TARDBP account for 48%, 12%, 5% and 5% in familial
forms, respectively [5–11]. Currently, only two FDA-approved treatments are indicated for
the treatment of ALS: Rilutek and Edaravone. These molecules increase the life expectancy
of some patients by a few months [12,13]. The pathogenic mechanisms that are proposed
to contribute to the degeneration of motor neurons include excitotoxicity, oxidative stress,
protein aggregation, alteration of RNA metabolism and mitochondrial dysfunction [14–20]
(Figure 1). Two hypotheses integrating these pathogenic mechanisms leading to ALS
are currently proposed: the corticofugal dying-forward hypothesis which describes the
progressive descending neurodegeneration, initiated in the motor cortex, spreading to the
motor neuron and ultimately affecting the neuromuscular junctions (NMJ) [21–23] and
the dying back hypothesis which is initiated at the NMJ with a retrograde progression of
degeneration [24]. These two hypotheses are not mutually exclusive and may coexist to
initiate ALS. The topic of this review is focused on the dying-back process of the motor
neurons initiated at the NMJ and how skeletal muscle can be involved in ALS.

Figure 1. Pathogenic mechanisms thought to contribute to the development of ALS. Current data
support several hypotheses that may explain the onset of ALS. Taken individually, these toxic events
can mimic some of the hallmarks of ALS. This representation shows the complexity and multifactorial
character of this disease.

1.2. Neuromuscular Junction

While ALS is clearly a complex disease, skeletal muscle is now being considered
a key player in its pathogenesis. Although recent neurophysiological data obtained in
ALS patients support an early hyperexcitability of cortical motor neurons, the dismantling
of the NMJ is one of the first anatomical pathogenic events in ALS [25]. In both ALS
patients and in SOD1 mouse models of ALS [26–30], the dismantling of the NMJ takes
place before the degeneration of motor neurons [31–34], when no clinical motor signs are
visible [35] (see Table 1). This supports the idea that motor neuron death is not the only
cause of NMJ dismantlement but that degeneration begins in the most distal portion of
the axon, namely the synapse. In addition, the safeguard of soma does not prevent the
loss of NMJs [36,37]. Indeed, the destabilization of NMJs precedes motor neuron death
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and induces the dying-back phenomenon of motor neurons [24]. To clarify the reasons of
this dismantling, several studies have been carried out. It was shown that the expression
of mutant SOD1G93A and SOD1G37R specifically in muscle led to the loss of NMJ before
the loss of motor neuron [38–40]. These data demonstrate that expression of SOD1 mutant
limited to skeletal muscle is sufficient by itself to induce NMJ destabilization and may lead
to motor neuron death.

Table 1. Summary of the main NMJ alterations found in ALS patients and in ALS mouse models.

Change Relative to
Onset of Symptoms Results Ref.

N
M

J
al

te
ra

ti
on

s

Patients
Before

• Decrease of motor unit number measured by
MUNE in 2 asymptomatic SOD1 mutation
carriers out of 19 (no statistics)

[30]

After
• 33.8% of NMJ denervated in ALS (n = 10) vs.

9.8% in controls (n = 5) p < 0.05 [28]

SOD1G93A mice Before

• P47: Denervation of 40% of NMJ in medial
gastrocnemius (n = 890) (no statistics)

• P80: decrease by 60% of intact ventral root
axons (n = 4/genotype, n < 0.01 vs. control)

[26]

• P58: Denervation of 78% of type IIb and 30% of
type IIa fibers in medial gastrocnemius

(2 mice/genotype; 20–30 muscle fibers analyzed;
no statistics)

[31]

• P48: preferential denervation of type IIb NMJ
followed by IIa and I in gastrocnemius
(n = 3/genotype; 450 NMJ analyzed;
no statistics)

[32]

• P30: 40% denervation of type IIb NMJ in tibialis
anterior (n = 11/genotype; p ≤ 0.05) [33]

• P30-36: Decrease by 15.5% of motor unit
number measured by Baysian MUNE in
gastrocnemius (n = 10/genotype; p = 0.018)

[34]

MUNE: motor unit number estimation.

In the skeletal muscle of ALS patients [41,42] and in presymptomatic Sod1G86R mice,
expression of Nogo-A (neurite outgrowth inhibitor) was significantly increased and was
correlated with the severity of disease [43,44]. Nogo-A could therefore participate in
the destabilization of the NMJ and therefore in the degeneration of axon terminals of
motor neurons. Ablation of Nogo-A in the muscle of Sod1G86R mice was shown to prevent
muscle atrophy and denervation and to prolong survival by 10%. Conversely, muscle
overexpression of Nogo-A induced muscle atrophy and denervation, and significantly
reduced the size of the NMJ [45]. Thus, these data suggest that Nogo-A plays a role in
maintaining the integrity and stabilization of neuromuscular synapses in SOD1G93A mice.
However, none of these processes would, by itself, be the sole cause of ALS but they could
all contribute together to induce ALS.
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2. Mitochondrial Failure and Oxidative Stress in ALS
2.1. Muscle Mitochondria and Respiratory Complexes

One of the main features of ALS is mitochondrial dysfunction [19,46–50] (Figure 1).
Defects in mitochondrial structure [51–53] and function have been observed in the skeletal
muscle of sporadic ALS patients [54,55] and animal models of ALS [56,57] (Table 2).

Table 2. Summary of the main mitochondrial changes found in skeletal muscle of ALS patients and ALS mouse models.

Change Relative to
Onset of Symptoms Results Ref.
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cl
e

Patients After

• Complex I activity reduced by 40% (n = 26 ALS,
n = 28 controls; p < 0.01)

• Abnormal morphology (partially swollen,
para-crystalline inclusions, vacuoles)

[51]

• Mitochondrial aggregates in the sub-sarcolemma
zone in 49 out of 49ALS cases

• Ultrastructural abnormalities (giant mitochondria,
para-crystalline inclusions) in 5 out of 49 ALS cases

[52]

• 46% of patients with cytochrome c oxidase deficiency
• Respiratory chain complex activity decreased by at

least 30% in patients with severe COX deficiency (8
out of 50)

[54]

• Increase of the maximal oxidative phosphorylation
capacity of muscular mitochondria (Vmax) by 1.8 fold
(n = 7 ALS, n = 7 controls; p < 0.05)

• Progressive decrease of complex IV activity as disease
progresses (n = 7 ALS, n = 7 controls; p < 0.05)

[55]

• Complex I activity reduced by 47.5% (n = 14 ALS,
n = 28 controls; p < 0.01) [58]

• Complex I and IV activity reduced by 37.1% and
43.6% respectively (n = 17 ALS, n = 21 controls;
p < 0.01)

[59]

SOD1G93A mice Before

• P37: Localized loss of inner membrane potential near
the NMJ

• Localized increase of calcium release by altered
mitochondria after osmotic choc (n = 6/genotype;
p < 0.0001)

[57]

• P55: Complex I activity reduced by 20% in the tibialis
anterior (n = 5 independent experiments, p < 0.0001);

• P55: Decrease of oxygen consumption rate (OCR) by
30% (four independent experiments, with each
sample tested in quadruplicate, p < 0.0001)

[60]

Moreover, early abnormalities in mitochondrial dynamics contribute to the degen-
eration of motor neurons in culture [61] and may contribute to the pathophysiology of
ALS [56]. In addition, mitochondrial calcium overload occurs in the nerve endings of ALS
patients [29] and disruption in calcium homeostasis was seen in different cell models ex-
pressing mutant SOD1 [62,63], and in the CNS [62,64] and the skeletal muscles of SOD1G93A

mice [57]. Moreover, in asymptomatic ALS mice, mitochondria of muscle cells are no longer
able to regulate calcium signaling around NMJs, and an excessively high concentration of
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calcium in the cytosol may contribute to the progression of muscle atrophy in ALS [57,65].
These data confirm a close link between mitochondrial dysfunction and calcium deregula-
tion, where the latter would consequently cause a defect in the mitochondrial respiratory
chain, triggering a vicious cycle.

The main mitochondrial abnormalities found in ALS concern respiratory complexes.
Wiedemann and colleagues [58] reported severe deregulation of the respiratory chain
complex I, and a decrease in the activity of respiratory complexes I and IV in the muscle
of sporadic ALS patients as well as in the muscles of the SOD1G93A mouse model from a
presymptomatic stage [51,54,55,59,66,67]. Mitochondrial functions also become progres-
sively impaired when disease progresses [55] and abnormalities in mitochondrial DNA
result in decreased activity of certain enzymes (e.g., NADH, COX) [59]. In addition, a
significant induction of UCP3 protein has been observed in the muscles of ALS patients
and ALS mice [68]. UCP3 is an uncoupling protein mainly expressed in the mitochondria
of skeletal muscles, and overexpression of UCP3 in this tissue would induce an increase in
lipid oxidation (β-oxidation) and energy expenditure [69,70]. Finally, the overexpression
of UCP1 in Sod1G86R mice leads to the degeneration of motor neurons, dismantling of
the NMJ and decreased survival [71]. Importantly, the alterations observed in skeletal
muscle can be detrimental to the integrity of the NMJ [39] without necessarily representing
a causal link [72]. Despite data indicating a strong relationship between mitochondrial
abnormalities and the progression of ALS, it is still impossible to establish a causal link
between these two phenomena [39,71–74].

2.2. ROS and Oxidative Stress

Reactive oxygen species (ROS) are very short-lived metabolites produced during ox-
idative phosphorylation. Under normal physiological conditions, a cell consumes oxygen
to produce energy, and at the same time must eliminate the ROS produced via defense
mechanisms such as superoxide dismutase (SOD) and antioxidant metalloenzymes [75].
Under conditions of oxidative stress and reduced mitochondrial respiration, large amounts
of ROS are produced and lead to cellular damage such as inflammatory response, excitotox-
icity, protein aggregation and apoptosis [76,77]. Furthermore, increased β-oxidation of fatty
acids leads to the generation of lipid by-products which contribute to lipotoxicity and to
ROS production [78,79]. Several studies have already demonstrated the implication of ox-
idative stress in aging and in ALS [14,80,81]. Abnormally high levels of ROS markers were
observed in fluids [82,83] and post-mortem tissues from sporadic ALS patients [84–86]
(Figure 1). In muscle of Sod1G86R mice, oxidative stress was observed even before the
onset of motor symptoms and obvious signs of denervation [87]. Moreover, in muscle
of SOD1G93A, SOD1 activity was increased throughout ALS progression, indicating the
presence of oxidative stress in muscle [81,88]. Dobrowolny and colleagues demonstrated
that muscle expression of mutant SOD1G93A was sufficient to induce oxidative damage,
muscle atrophy and dismantlement of the NMJs [38,73]. Recently, an increased production
of ROS was shown in the muscle of SOD1G93A mice and in muscle of wild-type mice
with transient overexpression of the SOD1G93A mutation [89]. Changes in mitochondrial
functions were dependent on the progression of pathology, and the SOD1G93A mutation
was found to directly contribute to mitochondrial dysfunction long before the death of
motor neurons. Although the induction of oxidative stress was not sufficient to cause
motor neuron death, the above evidence supports the contribution of uncontrolled ROS
production in skeletal muscle to ALS development. However, other studies suggest that
mitochondrial disorders in ALS are minor [66,90–92] but are increased as ALS escalates [55].
Altogether, these data support the hypothesis of a major involvement of oxidative stress
and mitochondrial alterations in ALS progression.
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3. Metabolic Alterations in Amyotrophic Lateral Sclerosis
3.1. Discovery of Hypermetabolism

Classically presented as a strict disease of the cortical, bulbar and spinal motor neurons,
the alterations of skeletal muscle observed in ALS are often considered to reflect the loss
of these neurons. However, many studies examining the involvement of altered energy
metabolism in ALS are starting to challenge this dogma. One of the major symptoms of
ALS is weight loss, which is often studied through the measurement of the body mass
index (BMI). As ALS progresses, a reduction in BMI and body fat is reported in patients
with ALS [93]. Early insulin resistance [94] and glucose intolerance [95] have also been
reported in ALS patients. This insulin resistance, which leads to a decreased sensitivity of
the peripheral tissues to insulin and limits nutrients entry into the cells, could participate
to the reduced BMI seen in patients. The loss of BMI in ALS is also associated with
malnutrition due to dysphagia, and a worse survival outcome [96,97], whereas a high BMI
is linked to a lower risk of developing ALS [98,99]. BMI is therefore a prognostic factor for
ALS [96,100–103].

In 2001, Desport et al. [104] identified an abnormal increase by 10% in resting energy
expenditure in patients with ALS (n = 62; sex ratio M/F = 1.07) compared to healthy control
group (n = 31). Defined as hypermetabolism, this phenomenon was subsequently con-
firmed, in a larger study, and was shown to be significantly increased by 14% and affected
62.3% of the 168 ALS patients (sex ratio M/F = 0.97) [105]. Data from the literature report
that hypermetabolism affects up to 66% of ALS patients [104–109] and is an early event that
persists throughout the course of disease [108,110,111]. Weight loss [112], hypermetabolism,
and dyslipidemia are now considered as three major risk factors for ALS [107,109,113,114],
and are associated with the severity of disease [108] (Figure 1). Remarkably, similar to
what was seen in ALS patients, Sod1G86R and SOD1G93A mice were hypermetabolic and
this metabolic change was already detectable at the clinically asymptomatic stage of the
disease [115]. Moreover, an experimental induction of muscle hypermetabolism was suffi-
cient to cause muscle denervation and motor neurons loss [71]. As such, it appears that
hypermetabolism negatively impacts the progression of the disease. ALS mice also develop
a loss of metabolic flexibility before any motor symptoms. This results in the inability
to use glucose for energy production, leading to a decreased glycolysis and an increased
β-oxidation in skeletal muscle [116] (Figure 2).

In addition, this loss of metabolic flexibility preceded hypermetabolism in SOD1G93A

mice [60]. Interestingly, both Sod1G86R [116] and SOD1G93A [60] mice had marked glucose
intolerance from an early stage of ALS, and glucose intolerance is, with dyslipidemia, one
of the key features of metabolic dysregulations in ALS patients [117]. One of the major
players in this energy imbalance is pyruvate dehydrogenase kinase 4 (PDK4), the major
muscle isoform of pyruvate dehydrogenase kinase [118,119], which plays a crucial role in
balancing glucose–fatty acid flux. A significant induction of this metabolic marker was
found in the skeletal muscles of Sod1G86R and SOD1G93A mice but also in the muscle of
ALS patients [116]. The main metabolic changes are summarized below in Table 3.

According to these observations, it can therefore be hypothesized that correcting the
energy balance (glucose vs. fatty acid) in skeletal muscle would reduce or slow down the
development and/or progression of ALS.
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Figure 2. Altered energy metabolism in ALS skeletal muscle. In skeletal muscle, glucose enters
into the cell through the GLUT4 transporter. It is then either stored as glycogen (not shown) or
phosphorylated to give rise to pyruvate, the final product of glycolysis. Once formed, pyruvate enters
into the mitochondria through a series of specific carriers (outer membrane: VDAC, inner membrane:
MPC). In the mitochondria, pyruvate is oxidized into acetyl-CoA by PDH before entering the Krebs
cycle to produce energy. Fatty acids enter the cell via FAT/CD36 transporters and get into the
mitochondrial matrix thanks to CPT1 where β-oxidation will begin and produce acetyl-CoA which
produces energy once in the Krebs cycle. In ALS, the oxidative pathway is greatly enhanced while the
glycolytic pathway is reduced by abnormal induction of PDK4 in skeletal muscle which inactivates
PDH by phosphorylation. PDK4 is believed to be at the root of this energy imbalance. Ac-CoA:
acetyl-coenzyme A; CPT1: carnitine palmitoyltransferase 1; FAT/CD36: fatty acid translocase/cluster
of differentiation 36; GLUT4: Glucose transporter type 4; MPC: mitochondria pyruvate carrier,
PDH: pyruvate deshydrogenase; PDK4: pyruvate deshydrogenase kinase 4; VDAC: voltage-gated
anionic channel.
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Table 3. Summary of the main alterations of metabolism and contractile properties of skeletal muscle in ALS patients and
ALS mouse models.

Change Relative to
Onset of Symptoms Results Ref.
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er
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n

of
sk

el
et

al
m

us
cl

e
m

et
ab

ol
is

m
an

d
co

nt
ra

ct
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e
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ti
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Patients After

• 3-fold increase of PDK4 mRNA level compared to
controls (ALS: n = 11, control n = 7; p = 0.035) [116]

• 4-fold increase of PDK4 mRNA level and 20% decrease
GAPDH mRNA level in ALS vs control cases (anconeus or
deltoid muscle; ALS: n = 10, control: n = 6; p < 0.05)

[120]

• Switch in muscle fiber type from glycolytic to oxidative
in muscle biopsies of ALS patients (ALS: n = 9,
200–300 fibers/biopsy, p < 001)

[121]

SOD1G93A mice Before

• P55: Pdk4 mRNA level is increased 2.5-fold in tibialis
anterior (p < 0.05)

• P70: decrease of type IIb fiber mRNA level by 0.5-fold
(n ≥ 4; p < 0.05) and Glut4 mRNA level by 0.4-fold (n ≥ 4;
p < 0.05), and increase of CPT1 by 4.8-fold (n = 4, p < 0.01)
in TA

→Bioenergetics defects

[60]

• P70: glucose tolerance is significantly decreased
(n = 6/genotype, p < 0.05) [120]

• P40: 22% decrease of motor unit number in the glycolytic
gastrocnemius muscle compared to control mice
(p < 0.05)

• P80: 45% decrease of tetanic force in the glycolytic
muscle (extensor digitorum longus) and 48% decrease of
motor units number compared to control mice (p < 0.05)

→ Sequential denervation of glycolytic muscles with
disease progression

[122]

• P60: the tetanic contractile force developed by the
glycolytic muscle TA is reduced by 80% (p < 0.01) and the
number of motor units declines by 60% (p <0.01)
compared to control mice

• P60: the number of innervated type IIb fibers is reduced
by 40% in TA (p < 0.01)

• P60: decrease of cross sectioning area of type IIbfibers
(p < 0.001)

→ Selective vulnerability of fast-twitch type IIb muscle fibers
→ Preferential denervation of fast motor neurons

[123]

• P60: decrease of fast-twitch muscle fibers diameter by
12.5% compared to control mice (gastrocnemius muscle,
number of fibers analyzed: ALS n = 63, control n = 65;
p < 0.01)

[124]
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Table 3. Cont.

Change Relative to
Onset of Symptoms Results Ref.
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SOD1G93A mice After

• Swimming straining started at P70 delays disease onset
by 2 weeks (p < 0.001) and extends survival by 3 weeks
(p < 0.01) (n = 8/genotype)

• P115: the fast-to-slow myofiber transition in the
fast-twitch plantaris and TA are significantly limited by
the swimming program

[125]

• P115: Glut4 and Gapdh mRNA level are reduced by
around 75% in the TA and soleus muscles (p < 0.05);
Swimming training increases Glut4 and Gapdh mRNA
levels to control levels in TA but not in soleus; Pdk4
mRNA level is increased by 2-fold in TA (n = 5/genotype,
p < 0.05)

→ Impairment of glycolytic pathway
→ Physical activity improves metabolism

[120]

• P105: Swimming training started at P70 maintains grip
strength in ALS mice (n = 8/genotype, p < 0.05 vs ALS
sedentary mice

• P105: Citrate synthase activity is reduced by 30% in ALS
sedentary mice compared to control (p = 0.0007) and
swimming training prevents this decrease
(n = 8/condition).

• P105: Malate dehydrogenase activity is increased ed by
25% (n = 8/condition, p < 0.0001)

→ Altered glucose metabolism
→ Swimming exercise modulates skeletal muscle energy
metabolism

[126]

Sod1G86R mice

Before

• P65: ALS mice have improved performance during
endurance exercise

• P65: glucose handling is altered. In TA, glycogen stores
are increased, PFK activity is decreased by 23% (ALS
mice n = 7, control: n = 6; p = 0;016), pyruvate level is 1.7
fold increased (n = 5/genotype; p = 0;019) Pdk4 mRNA
level is 2.2-fold increased in TA compared to control mice
(ALS mice n = 8, control: n = 7; p = 0;014) while
unchanged in soleus.

• Relative mRNA levels of genes involved in lipid
handling pathway (Lpl; Cd36; Acsf2; Cpt1; PparB/∂) are
increased in TA

→Metabolic switch: glycolytic pathway is strongly inhibited,
and β-oxidation is enhanced

[116]

After

• P95: grip strength is decreased in ALS mice
(n = 8/genotype, p = 0.03) and dichloraoacetate
treatment prevents grip strength loss (ALS mice: n = 8;
control: n = 9, p = 0.0003)

DCA corrects the metabolic switch in TA

[116]

Acsf2: acyl-CoA synthetase family member 2; Cd36/Fat: fatty acid translocase; Cpt1: carnitine palmitoyltransferase 1; Gapdh: glyceraldehyde-
3-phosphate dehydrogenase; Glut4: glucose transporter 4; Lpl: lipoprotein lipase; Pdk4: pyruvate dehydrogenase kinase 4; Pfk: phospho-
fructokinase; Pparβ/δ: Peroxisome proliferator-activated receptor β/δ; TA: tibialis anterior.
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3.2. Impairment of Skeletal Muscle Metabolism by Physical Activity

The muscular system requires a considerable supply of energy to handle a variety
of physical challenges. To do this, skeletal muscle adapts its energy needs continuously,
according to its environment. The selection of fuel source is based on the interaction
between the metabolism of glucose and that of fatty acids and is controlled by the Randle
cycle [127]. During short and intense exercise (e.g., sprinting), the involvement of fast-type
glycolytic fibers necessitates that glucose oxidation (glycolysis) is favored as the primary
fuel pathway. Conversely, during sustained moderate exercise (e.g., a marathon, jogging),
which mobilizes slow type oxidative fibers, the oxidation of fatty acids (β-oxidation) is
preferred [128]. Subjected to different conditions (e.g., intensive and repeated sports
activity), muscle fibers adapt and change their phenotypic profile. For example, endurance
training is correlated with a strong release of fatty acids and an improved fatty acid muscle
absorption [129], thus reflecting improved β-oxidation and changes in muscle fiber type
composition [130]. Intense physical exercise is increasingly studied in ALS due to the large
number of patients diagnosed with ALS having had a sustained athletic career (Figure 1).
Several studies reported a high risk of ALS for athletes such as soccer players, baseballers
or tennis players [131–134]. However, one cannot exclude that other associated factors
such as exposure to pesticides, doping agents or repeated injuries could be the cause or
could participate in the development of the disease [135–137].

However, this link between high level athletes [133] or people with an intense lifestyle [138,139]
and ALS is still debated. Indeed, some studies do not observe any link between physical activity
and ALS [140,141] nor report activity as being a risk factor for the disease [142] given that ALS
patients who perform moderate exercise in the clinic have improved ALSFRS scores [143]. As
such, considering physical activity as a risk factor is highly controversial. Based on published
data, it appears that if physical activity is not directly causative of ALS, it might in some cases
worsen disease progression. Interestingly, in ALS mice, the type of physical exercise performed
appeared to be either deleterious or protective. Indeed, Mahoney and his colleagues showed that
high intensity exercise was detrimental to motor performance and survival in male SOD1G93A

mice [144]. In contrast, in the same ALS mouse line, high frequency and large amplitude exercise,
such as swimming, improved motor functions, delayed the loss of motor neurons, and significantly
lengthened survival [125]. In addition, swimming had significant benefits on energy metabolism
in the muscle, allowing it to reuse glucose as an energy source at the expense of lipids [120], while
improving muscle strength [126]. Moreover, moderate exercise (low-speed treadmill running or
free access to running wheel) significantly preserved motor performance as well as motor neuron
density [145,146], unlike intense exercise (high-speed treadmill running) which slightly accelerated
the onset of motor disorders [145]. The differences in effects between these two types of exercise
result from the documented fact that swimming causes fast twitch fiber type transition and lactate
production which promotes glucose metabolism [147]. Overall, the beneficial effects of swimming
can be explained by the type of fibers recruited during this type of physical exercise. Swimming
preferentially solicits fast fibers while endurance exercise recruits slow fibers [147]. These data
demonstrate the benefit of preserving and/or stimulating glycolytic metabolism in skeletal muscle
which is compromised in ALS.

3.3. The Metabolic Switch of Muscle Fiber Types in ALS

In ALS, fast-type synaptic connections are more vulnerable as the disease progresses,
while slow-type synapses are relatively spared until the end stage of the disease [31]. In
2007, Hegedus and colleagues proposed that the loss of motor units occurred before the
detection of key motor symptoms and loss of motor neurons [122]. In addition, in the
SOD1G93A mouse model, they showed that contraction force of the tibialis anterior (TA),
a glycolytic muscle, was reduced when compared to the gastrocnemius, an oxidative
muscle. This observation was correlated with a selective and progressive degeneration
of motor neurons innervating glycolytic fibers twitch (especially IIB fibers) [123]. It is
now accepted that there is a change in muscle fiber types from glycolytic to oxidative in
muscle of ALS patients [121], of SOD1G93A mice [123–125] and of mice expressing SOD1
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mutant specifically in skeletal muscle [38,39,73]. Interestingly, at the onset of the disease,
the entry of glucose into muscle fibers was not affected [115,148], suggesting that glucose
is rerouted to glycogen stores, rather than being immediately used as a source of energy.
Indeed, a decrease in glycogen synthase was observed at the presymptomatic stage of
disease in Sod1G86R mice, and this was associated with the deterioration of glycolysis as
well as unused glycogen stores in muscle [116]. In SOD1G93A, the proportion of glycolytic
fibers was reduced when compared to oxidative fibers. This was consistent with the
induction of oxidative myosin heavy chains and the repression of glycolytic myosin heavy
chains [60,125]. Additionally, a muscle transition from a glycolytic to oxidative phenotype
was described in Sod1G86R mice throughout the development of ALS [116]. In short, these
studies demonstrate that metabolic changes in skeletal muscle are a hallmark of ALS,
appear before the motor symptoms in mouse models and can have consequences at the
NMJ. They further show that altered energy balance plays a role in the progression of ALS.

3.4. Main Actors of the Randle Cycle

To best ensure energy homeostasis, the Randle cycle continuously adapts specific fuel
usage (glycolysis vs. ß-oxidation) to cellular demand by modifying blood glucose and
free fatty acid concentrations via their respective GLUT4 and FAT/CD36 transporters
(Figure 2). GLUT4 expression is drastically reduced in patients with ALS [149] and
SOD1G93A mice [60,120] while FAT/CD36 is significantly increased in presymptomatic
Sod1G86R mice [116]. Thus, the supply of glucose to muscle fibers is no longer assured,
leading to insulin resistance [150–152] and glucose intolerance [94,95,153,154] in ALS. At
the same time, the CPT1 transporter which allows the entry of fatty acids into the mitochon-
dria was also overexpressed in the SOD1G93A [60] and Sod1G86R models [115,116]. These
data are indicative of a disturbance in the assimilation of energy substrates and highlight
metabolic imbalance at the level of the muscle.

Once in the cell, glucose enters glycolysis or is stored as glycogen through the action of
glycogen synthase. In Sod1G86R mice, at the asymptomatic stage, glycogen synthase activity
and glycogen accumulation are significantly increased in skeletal muscle, suggesting that
muscle cells are no longer able to use glycogen to produce energy, reflecting a problem
with carbohydrate metabolism [116]. Regarding glycolysis, one of the first enzymes to be
affected in ALS is phosphofructokinase 1 (PFK1). Indeed, from a presymptomatic stage,
the expression of PFK1 and its activity were significantly reduced in the muscle of Sod1G86R

mice [116]. The decrease in PFK1 expression in Sod1G86R mice could be a consequence of an
increased uptake of fatty acid, enabled by induction of FAT/CD36 and CPT1 transporters,
known to strongly inhibit PFK1 [155]. The reduction in PFK1 expression and activity
occurs in response to an overexpression of PDK4 and high levels of PDK4 have been
observed in the muscle of ALS patients, and in SOD1G93A and Sod1G86R mice even before
any detectable sign of denervation [60,120]. While suggesting that the overexpression of
PDK4 is not specific for mutations in the SOD1 gene, these data highlight that Randle cycle
intermediates become altered in response to changes in glucose–fatty acid flux.

The expression of PDK4 depends on several transcription factors including Foxo1,
PGC1α and PPARβ/δ. Foxo1 is an ubiquitous transcription factor that was strongly in-
duced in muscles of SOD1G93A and Sod1G86R mice, as well as non-transgenic animals
after sciatic nerve injury [116]. PGC1α plays an essential role in regulating the expres-
sion of genes involved in energy metabolism, lipid metabolism and in mitochondrial
biogenesis [156–160]. Muscle overexpression of PGC1α leads to an induction of genes
involved in the oxidative pathway, causing repression of glycolytic enzymes and glucose
intolerance [161]. In mutant SOD1G37R mice, skeletal muscle induction of PGC1α led to
maintenance of mitochondrial biogenesis, improved muscle function at the latter stages
of disease [162], and was associated with an increase in oxidative type IIA fibers [163].
Alternatively, overexpression of PPARβ/δ in skeletal muscle increased the proportion
of type 1 oxidative fibers [164], and constitutive overexpression of PPARβ/δ increases
mitochondrial biogenesis and caused a switch from fast to slow fiber type [165].
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Taken together, these studies demonstrate the crucial role of muscle energy balance
in the pathogenesis of ALS, and are in agreement with the idea that correcting for, or
preventing the loss of, metabolic flexibility could be a promising therapeutic approach
in ALS.

4. Pharmacological Strategies for Targeting Energetic Imbalance in ALS

Below, we present a brief overview of two pharmacological modulators of energy
balance that were studied for their possible repositioning as ALS treatments and a third
one which is currently under investigation.

4.1. Dichloroacetate (DCA)

DCA is a drug that restores optimal glucose oxidation while inhibiting the oxidation
of fatty acids [166]. DCA inhibits the activity of PDK and thus stimulates the activity
of PDH [167] (Figure 3). In 2012, Miquel and colleagues found that DCA improved
mitochondrial function in astrocytes expressing the SOD1G93A mutation, while preventing
their toxicity on cultured motor neurons. Additionally, they found that DCA improved
muscle strength, preserved the integrity of NMJs, reduced motor neuron loss and prolonged
survival in SOD1G93A mice [168]. In addition, DCA also delayed the onset of motor
symptoms in Sod1G86R mice by limiting denervation and muscle atrophy [116]. The benefits
observed in Sod1G86R mice could be explained by the protective effect of DCA on muscle
fibers by restoring the energy balance or preventing its imbalance. Treatment with DCA
limited the expression of genes controlling the oxidative pathway (e.g., PDK4, Foxo1 and
PPARβ/δ) and increased the expression of those involved in the glycolytic pathway (e.g.,
PFK1). Moreover, DCA treatment improved motor functions, reduced the expression of
denervation and atrophy markers, and limited oxidative stress [116]. These data therefore
prove that restoring or preserving the metabolic balance can prevent oxidative stress,
protect mitochondria, and prevent denervation and muscle atrophy in Sod1G86R mice.
Although DCA exerts a number of beneficial effects, translation into the clinic is limited as
long-term use of DCA leads to hepatotoxicity [169].

Figure 3. Metabolic reprogramming of skeletal muscle by pharmacological approaches.
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In ALS skeletal muscle, energy metabolism is disturbed: glycolysis is decreased while
β-oxidation is increased. The three presented drugs could help normalize this energy
imbalance. DCA can restore glycolysis by inhibiting PDK4 activity. RAN and TMZ inhibit
β-oxidation. A correction of the glucose–fatty acid balance could explain the beneficial
effects of these molecules found in various studies on ALS.

4.2. Ranolazine (RAN)

RAN is a β-oxidation inhibitor approved by the FDA for the treatment of angina
pectoris [170–173]. RAN increases the oxidation of glucose [174–176] in patients with
symptoms of chronic angina pectoris [177] or congenital myotonia [178] (Figure 3). Several
studies have shown its efficacy against insulin resistance in animals [179] and patients
with type 2 diabetes [180,181]. Despite its beneficial effects on energy metabolism, only
one group of researchers working on ALS have exploited RAN efficacy. In 2020, RAN was
shown to significantly improve motor functions, restore metabolic homeostasis of skeletal
muscle, and prevent hypermetabolism in SOD1G93A mice. Due to the extreme severity of
ALS, the positive effects of RAN could not be sustained until the final stage of the disease
and could not affect the survival of animals [60]. Therefore, the putative utility of RAN
remains an open question. Further preclinical studies, followed by clinical trials, are still
needed at this stage to clarify whether RAN can be used as a clinically relevant drug to
cure ALS.

4.3. Trimetazidine (TMZ)

TMZ is an anti-anginal and anti-ischemic agent [182,183] that inhibits the oxidation
of fatty acids and promotes the oxidation of glucose [175,184,185]. The target of TMZ is
the 3-ketoacyl thiolase, an enzyme involved in the last step of β-oxidation [184] (Figure 3).
Recently, Ferraro and colleagues showed improved motor performance in a mouse model
of sarcopenia after TMZ treatment [186]. In addition, this molecule increased the differenti-
ation of C2C12 myoblasts and induced myogenesis in a tumor-bearing mouse model [187].
A recent study investigating the effects of TMZ on the peripheral nervous system demon-
strated an antioxidant effect of TMZ, which resulted in a microenvironment conducive
to nerve regeneration and increased remyelination [188]. Based on its pharmacological
properties, TMZ appears as an interesting drug to test on ALS models. In preliminary
experiments, TMZ significantly increased the motor functions of Sod1G86R mice. We are
currently pursuing these experiments to decipher the molecular mechanisms by which
TMZ exerts its positive effects on ALS mice.

5. Open Questions and Future Directions

From recent works, it is now clear that ALS is not solely a neuronal disease but
that the target of motor neurons, namely the skeletal muscle, is also a major player in
disease initiation and progression. Further, the type of metabolism (e.g., glycolysis versus
β-oxidation) is also decisive. There is clearly a shift in metabolism from glycolytic toward
β-oxidation when disease progresses. This might account for the increased oxidative stress
since, at a given ATP demand, producing the cellular fuel from β-oxidation consumes more
oxygen and subsequently increases ROS production. We saw above that several molecules
such as DCA, but also FDA-approved drugs such RAN or TMZ, can be repositioned for
treating ALS to restore glycolysis in ALS mouse models and exert positive effects on muscle
strength. Future studies should now be aimed at studying the effects of these drugs in ALS
patients.

6. Conclusions

In conclusion, ALS is a highly complex disease. ALS etiology and the multiple patho-
physiological mechanisms that trigger the disease remain poorly understood. However, it
is clear that skeletal muscle and its bioenergetic disturbances are involved in the develop-
ment of the disease. Metabolic alterations observed in skeletal muscle in patients with ALS,
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and in mouse models of the disease prior to motor neuron degeneration, challenge the idea
of ALS being a disease that originates from the neuron. Further investigations of muscle
energy metabolism are essential and necessary to define new therapeutic approaches and
to develop drug candidates for treating ALS.
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