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A B S T R A C T   

Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating 
cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest 
that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral 
sclerosis (ALS), Parkinson’s disease and Gaucher’s disease. In this review, we provide an overview of the role of 
sphingolipids in the development and maintenance of the nervous system. We describe the implications of 
altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a pri-
mary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the 
metabolism of sphingolipids in neurodegenerative diseases.   

1. Introduction 

Lipids represent around 60% of the constituents of nervous tissue and 
are essential in the propagation of electrical and chemical signals [1]. 
The sphingolipids represent almost 20% of the lipids of the nervous 
system [2]. They belong to a major class of complex lipids that are 
involved in various physiological and developmental processes, thus 
ensuring the proper functioning of the nervous system. In this review, 
we describe the generalities of sphingolipids and their physiological 
roles in the nervous system, as well as the importance of sphingolipids in 
neurodegenerative diseases. Finally, we discuss therapeutic approaches 
associated with sphingolipids in animal models and clinical trials. 

2. Biosynthesis of sphingolipids in the nervous system 

The biosynthesis of sphingolipids begins at the cytosolic layer of the 
endoplasmic reticulum (ER) and progresses through several subcellular 
structures. The general structure of sphingolipids is defined by a sphingo-
sine skeleton. Ceramide is the simplest sphingolipid. Made up of a sphin-
gosine molecule and one fatty acid, it is the key precursor for the synthesis of 
many sphingolipids. Ceramide is obtained by the transformation of sphin-
ganine into dihydroceramide by the ceramide synthase enzymes, which 
represent a large family of ER enzymes. Dihydroceramide is subsequently 
converted to ceramide by ceramidase [3]. During synthesis, the subclass of 
sphingolipids is determined through the addition of different chemical 
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groups (radical group "R") to the ceramide (Fig. 1). Among these subclasses 
are the glycosphingolipids which are characterized by the addition of one or 
more monosaccharides. Once formed in the ER, ceramide can be directly 
transformed into galactosylceramide through the addition of one galactose 
by the enzyme ceramide galactosyltransferase (UGT8), or transported to the 
Golgi apparatus to give rise to several glycosphingolipids and gangliosides 
(Fig. 2). For example, when ceramide is transported to the Cis-Golgi 
network, the addition of glucose leads to the formation of glucosylcer-
amide. At this stage, glucosylceramide is transported to the trans-Golgi 
apparatus via two mechanisms: through vesicular transport or through 
the transport protein four-phosphate adaptator protein 2 (FAPP2) [4,5]. At 
the trans-Golgi network, glucosylceramide is transformed into different 
glycosphingolipids (e.g. lactosylceramide, gangliosides, etc.). Using the 
ceramide transferase protein, ceramide can be transported directly to the 
trans-Golgi network, where the addition of a phosphocholine produces 
sphingomyelin. At the trans-Golgi network, several glycosphingolipids are 
formed. These glycosphingolipids are transported to the plasma membrane 
where they are integrated into lipid rafts. Finally, the addition of glucose 
and galactose to the ceramide allows for the formation of lactosylceramide. 
Addition of sialic acid to lactosylceramide leads to the production of the first 
ganglioside, GM3. Various derivatives can then be generated through the 
addition of N-acetylgalactosamine and galactose, which gives rise to GM2, 
GM1, and so on (Fig. 1). 

The degradation of glycosphingolipids occurs in the endosomes and 
lysosomes. Endosomal glycosphingolipids are recycled to subcellular 
compartments (ER and Golgi apparatus) while the glycosphingolipids 
that are redirected to the lysosomes are hydrolyzed to ceramide and then 
to sphingosine. 

3. Sphingolipids have major roles in the nervous system 

Several studies show that sphingolipids are widely distributed across 
the central nervous system (CNS). The CNS is mainly composed of gly-
cosphingolipids and gangliosides [6,7]. Gangliosides are mainly located 

in neurons, whereas galactosylceramide is mainly localized in the oli-
godendrocytes [8]. The distribution of sphingolipids in the CNS high-
lights their importance in the formation of different cell types, and in 
neurodevelopment. 

3.1. Sphingolipids: driving the maturation of the nervous system 

The gangliosides are the major class of sphingolipids that are found 
at high concentrations in the CNS. As such, they are indispensable for the 
development of the nervous system, axonal growth, and neuronal dif-
ferentiation [9,10]. During embryonic development, ganglioside levels 
vary depending on the stage of maturation (Fig. 3). During the early 
stages of development, GM3 and GD3 are synthesized in large quantities 
during the formation of the neural tube, and they also participate in the 
proliferation and differentiation of neural stem cells [7,10,11]. Next, 
several derivatives of GM3 (like GD1a, GM1, GD1b and GT1b) partici-
pate in neuronal differentiation, synaptogenesis, and myelination until 
adulthood [12]. Sphingomyelin, galactosylceramide and sulfatide also 
participate in axonal arborization during development. Not surprisingly, 
an absence of GD3 synthase drastically delays axonal growth and mye-
lination in mice [13]. By contrast, administration of GD3 improves the 
regeneration process after sciatic nerve injury in GD3 synthase knockout 
(KO) mice [14]. This age- and development-dependent expression of 
gangliosides highlights their crucial role in neurogenesis. 

3.2. Implication of glycosphingolipids in neuronal differentiation and 
axonal growth 

The other actors involved in the development of the nervous system 
are the glycosphingolipids. As gangliosides, glycosphingolipids are 
involved in establishing neuronal proliferation and maturation, as well 
as axonal growth [7,15,16]. In addition, many glycosphingolipid en-
zymes such as the synthetic enzymes of ceramide and glucosylceramide, 
ceramide synthase and the UDP-glucose ceramide glycosyltransferase 

Fig. 1. Synthesis, degradation, and recycling of sphingo-
lipids. The ceramide synthesized in the endoplasmic retic-
ulum (ER) can be transformed into different metabolites. 
(1) Ceramide (Cer) is transformed to galactosylceramide 
(GalCer) in the ER. (2) Cer is transported from the ER to the 
trans-Golgi apparatus by the ceramide transfer protein 
(CERT) (3) where it is transformed into sphingomyelin 
(SM). (4) Ceramide can also be transported from the ER to 
the cis-Golgi network to be transformed into glucosylcer-
amide (GlcCer). (5) GlcCer can be transported to the trans- 
Golgi apparatus through vesicular transport. At the trans- 
Golgi network, GlcCer is transformed into different glyco-
sphingolipids (GSLs). (6) Four-phosphate adaptator protein 
2 (FFAP2) can transport GlcCer back to the ER where it can 
be degraded to Cer by GBA2. (7) GlcCer is transported to 
the membrane by the glycolipid transfer protein (GLTP) 
where it can integrate into lipid rafts. (8) GSLs are trans-
ported to the plasma membrane through vesicular trans-
port, (9) where they can integrate into lipid rafts. (10) GSLs 
are recycled at the endosome (11) to the ER or Golgi 
apparatus (12) or degraded by lysosomal pathway. (13) 
Degradation of GlcCer at the lysosome level occurs by 
GBA1 (inspired by [6]).   
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(UGCG), have been shown to be essential for axonal and dendritic 
growth. In this regard, inhibition of ceramide synthase activity in mu-
rine neurons in vitro leads to a considerable decrease in levels of gly-
cosphingolipid, thereby impairing neuronal growth [17,18]. Similarly, 
deletion of UGCG in the neural cells of mice causes axonal degeneration 
and demyelination of peripheral nerves, leading to the death [19]. In 

2009, it was also shown that inhibition of UGCG with a shRNA led to a 
decrease in the expression of glycosphingolipids in mouse embryonic 
stem cells [20]. In sum, sphingolipids and the degradation of gluco-
sylceramide into ceramide is crucial for the development of the nervous 
system. 

3.3. Location and function in cell membranes of the nervous system 

Cell membranes are composed of micro-domains, called lipid rafts, 
which are supplemented with phospholipids, cholesterol and sphingo-
lipids. These lipid rafts play a structural role in cells but are also critical 
for signal transduction. Cholesterol is critical for the formation and 
maintenance of lipid rafts where they play a structural and anchoring 
role for membrane proteins involved in endocytosis, signal transduction, 
cell adhesion and rearrangement of the cytoskeleton [21–24]. Sphin-
golipids are an integral part of cell membranes where they act as mod-
ulators of signaling pathways. Ceramides, by their degree of saturation 
or chain length, can induce membrane gel domains, with far-reaching 
effects on signal transduction [25,26]. 

Several studies also suggest that lipid rafts, including sphingolipids, 
are directly responsible for the spatial organization of signaling mole-
cules. These rafts group G proteins and neurotransmitter receptors to 
promote signal transmission [21]. Indeed, several sphingolipids (e.g. 
SM, GM1, etc.) interact with G protein coupled receptors [27–29]. 
Moreover, the glycosylated region of gangliosides, such as GM1, are 
positioned in the extracellular environment in a way that allows inter-
action with BDNF and NGF receptors [30–32]. Of note, GM1 is also 
found in the nuclear envelope of cells, where it regulates gene expres-
sion through its association with a sodium-calcium exchanger as during 
neuronal development [33–35]. To ensure the integrity of tissue in the 
nervous system, the gangliosides stabilize the myelin-associated glyco-
proteins (MAGs), thereby allowing strong architecture between the axon 
and the myelin sheath [7,36,37]. In 2005, Yamashita and collaborators 
reported disruptions in axon-myelin interactions in mice lacking GM3 
and GM2 synthases, two enzymes that synthesize gangliosides [38]. 
Finally, sphingolipids are involved in cellular communication through 
the vesicles of endosomes and exosomes. Indeed, sphingomyelinase 
(SMase) for example, participates in the formation and secretion of 
exosome vesicles, and sphingosine kinase is involved in the regulation of 
endosomes [28]. All these data underline the importance of sphingoli-
pids in cell integrity but also in the establishment of cellular 
communication. 

Fig. 2. Schematic representation of sphingolipid meta-
bolism. Sphingolipids are characterized by the addition of a 
radical group to determine the subclass of sphingolipids; in 
this diagram the different classes of ceramide/dihydrocer-
amide are not shown (e.g. hydrogen atom for ceramide is 
not shown). Sphingomyelin degradation by sphingomyeli-
nase (SMase) generates ceramide (Cer). From the Cer, 
sphingosine and galactosylceramide (GalCer) are then 
synthesized by acid ceramidase (ASAH1) and ceramide 
galactosyltransferase (GALC) respectively. Glucosylcer-
amide (GlcCer) is a glycosphingolipid which is obtained 
from Cer by glucocerebrosidase (GBA1/GBA2). The addi-
tion of galactose to GlcCer by galactosyltransferase 
(B4GLNT6) leads to the generation of lactosylceramide 
(LacCer). Then, the addition of sialic acid to LacCer forms 
GM3, a precursor of gangliosides. Ganglioside synthesis is 
continued through the successive addition of N-acetylga-
lactosamine (GalNac) and galactose residues by GalNac 
transferase 1 (GM2 synthase/ B4GLNT1 and B3GALNT4) 
respectively for GM2 and GM1.   

Fig. 3. Expression of gangliosides in the nervous system during development. 
Ganglioside composition changes during development. The gangliosides GD3 
and GM3 are produced during the formation of the neural tube, and during 
neural stem cell proliferation. During neuronal differentiation, the expression of 
GD3 and GM3 decreases. In parallel, gangliosides necessary for neuronal dif-
ferentiation, such as GD1a, GM1, GD1b and GT1b, are synthesized. In adult-
hood, the levels of GD1a and GM1 decrease while the levels of GD1b and GT1b 
continue to increase. Galactosylceramide (GalCer), sphingomyelin (SM) and 
sulfatide are synthesized during synaptogenesis. Their synthesis is maintained 
until adulthood (inspired by [8,11]). 
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3.4. GM1 and neurotrophic factors 

It is widely accepted that GM1 interacts with neurotrophins, which 
themselves are essential for the growth and survival of neurons. GM1 is 
anchored to the cell membrane via its ceramide group, and 5 sugars 
(radical R) are exposed to the extracellular environment. The extracel-
lular portion of GM1 can interact with growth factor receptors. Pio-
neering studies demonstrated that GM1 promoted the neurite growth in 
murine neuroblastomas [39–41]. Subsequently, a direct interaction 
between GM1 and the TrkA receptor, as well as the ability of GM1 to 
increase the activation of TrkA induced by NGF, was shown [30,42]. In 
the early 2000s, the enhanced effect of NGF on GM1-potentiated TrkA 
receptor activity was demonstrated in vivo in rats [32]. More recently, it 
has been proposed that this effect is due to the binding of NGF to the 
TrkA receptor, and activation of the Ras/Raf/MEK/Erk pathway [7]. 
Interestingly, cells deficient in GM1 do not express the TrkA receptor 
[43]. In line with these data, it has been shown that endogenous GM1 
directly modulates the activity of the TrkA and TrkB receptors, as well as 
their associated signaling cascades [31,44,45]. GM1 also activates the 
various Trk receptors (A, B and C) by phosphorylation [32] and par-
ticipates in the autophosphorylation of TrkC [46]. Critically, a 2002 
study by Bachis and colleagues noted that GM1 appeared to prevent 
glutamate-related excitotoxicity by mimicking the action of BDNF on 
TrkB [47]. Collectively, these studies consolidate the close link between 
GM1 and Trk receptors in neuronal survival. 

4. Sphingolipids in neurodegenerative diseases 

Currently, more than 30 million people are affected by neurode-
generative diseases. Alzheimer’s disease (AD) is the most common of 
these diseases and affects 25 million people worldwide, while 6.3 
million people have Parkinson’s disease (PD), and 220,000 have 
amyotrophic lateral sclerosis (ALS) [48]. The accumulation or dysre-
gulation of sphingolipids is proposed to contribute to the pathogenesis of 
these neurodegenerative diseases by severely affecting lysosomal 
enzyme activity, which triggers an accumulation of lipids within or-
ganelles of the "endosomal-autophagic-lysosomal" system [49]. 

4.1. Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease 
that is characterized by the irrevocable degeneration of upper and lower 
motor neurons. The progressive loss of neurons results in debilitating 
motor weakness, increasing paralysis, and death usually occurs within 
3–5 years from symptom onset [50]. It is becoming evident that ALS 
pathology extends beyond the motor system [51]. 

Several studies have identified metabolic alterations in ALS patients. 
These are mostly defined by hypermetabolism and dyslipidemia, which 
are clinically associated with the severity of symptoms [52–54]. Hy-
permetabolism is an early phenomenon that is present throughout the 
disease [55–57], and that appears to negatively impact prognosis 
[58–60]. By contrast, hyperlipidemia appears to be a protective factor in 
ALS, and it is known that a hyperlipidemic diet significantly improves 
survival of ALS mice (Sod1G86R) [61] and slows progression of disease in 
ALS patients [62]. Congruent with this, high levels of total cholesterol 
[63] and elevated levels of serum triglyceride [64] appear to be bene-
ficial in ALS patients. More recently, the beneficial effects of high-caloric 
nutrition on the survival of ALS patients with fast-progressing disease 
were shown [65]. While the cause for metabolic dysregulation in ALS 
remains unknown, consistent observations of the beneficial effects of 
lipids has spurred extensive research into the contribution of lipid 
metabolism to the disease. 

An abnormal increase in sphingolipid levels (sphingomyelin, cer-
amide, cholesterol, etc.) has been observed in the spinal cord of ALS 
patients, and in the spinal cord of asymptomatic and symptomatic 
SOD1G93A mice [66]. Subsequent studies confirming an increase in 

metabolites of sphingolipids (glucosylceramide, ceramide, gal-
actosylceramide, GM3, GM1, etc.) and their associated enzymes (GBA1, 
GBA2, etc.) in the spinal cord of Sod1G86R mice [67], SOD1G93A mice and 
ALS patients [68] indicate that altered metabolism of sphingolipids 
could be integral to the progression of ALS pathology [69]. Interestingly, 
the inhibition of glucosylceramide synthesis dramatically accelerates 
disease progression in SOD1G93A mice while the intracerebroventricular 
perfusion of GM3 is able to significantly delay the onset of paralysis in 
SOD1G93A mice [68]. While the clinical relevance of altered sphingolipid 
metabolism remains to be established, levels of sphingomyelin and long 
chain triglycerides in the CSF of ALS patients has been shown to 
correlate with the progression of ALS [70,71]. 

The detection of antibodies targeting gangliosides, in particular 
GM1, in serum [72,73], brain [74] and spinal cord [75] of some patients 
with ALS led to clinical trials of ganglioside administration. These trials 
have not been conclusive [76–78]. However, Xu et al. have shown that a 
single injection of human IgM (rHIgM12) binding gangliosides extends 
the survival of two ALS mouse models [79] thus emphasizing a role for 
glycosphingolipids in ALS. 

An increase in the levels of glucosylceramide and GM1 have been 
observed in the CSF of ALS patients [80]. Transcriptomic studies of 
muscle biopsies from ALS patients have reported a significant increase in 
the expression of the UGCG gene, encoding the enzyme responsible for 
the synthesis of glucosylceramide. Similar to ALS patients, mouse 
models of ALS show accumulation of glucosylceramide in skeletal 
muscle. Lipidomic analysis revealed complete modulation of sphingo-
lipids in skeletal muscles and spinal cords of Sod1G86R mice prior to the 
onset of disease phenotypes. Interestingly, the levels of GM2 and GM3 
were increased in Sod1G86R mice, but also in non-transgenic mice that 
had undergone axotomy, suggesting that altered sphingolipid metabolic 
might occurs as a consequence of denervation. In addition, inhibition of 
glucosylceramide synthesis by an UGCG inhibitor significantly delayed 
functional recovery after sciatic nerve injury [67]. Conversely, inhibi-
tion of the degradation of glucosylceramide by conduritol B epoxide, an 
irreversible inhibitor of GBA1 and GBA2, improved functional recovery 
in a model of sciatic nerve compression and slowed disease progression 
in Sod1G86R mice [80]. Thus, current evidence indicates that sphingoli-
pid metabolism is likely to be a key modulator of disease course in ALS. 

4.2. Other neurological diseases 

In recent years, there has been a growing body of evidence to indi-
cate that the metabolism of sphingolipids contributes to the patho-
physiology of other diseases such as Alzheimer’s disease, Parkinson’s 
disease and Gaucher disease. The gradual accumulation of protein ag-
gregates, which leads to toxicity and neurodegeneration of cells of the 
nervous system, occurs in response to defects in the metabolism of 
sphingolipids, major players in the lysosomal degradation of cellular 
debris. 

4.2.1. Alzheimer’s disease 
Alzheimer’s disease (AD) is the most common neurodegenerative 

disease characterized by the accumulation of extracellular amyloid 
plaques and intraneuronal deposits of the Tau protein [81,82]. Although 
the molecular mechanism that underpins the development of the disease 
is not clear, numerous studies suggest that sphingolipids play a crucial 
role in the pathogenesis of AD [83–88]. Indeed, the levels of sphingo-
lipids (e.g. sphingomyelin and ceramide) and their associated synthetic 
enzymes (sphingomyelin synthase and sphingomyelinase) are increased 
in the brains of AD mice and AD patients [89–91]. Several teams have 
also shown that elevated levels of serum ceramide in AD patients and AD 
model animals [92–96] may be predictive of AD and cognitive impair-
ment [97–99]. Ceramide, produced by sphingomyelinases, stabilizes 
β-secretase, which leads to an increase in the cleavage of the amyloid 
precursor protein [100]. In this regard, increasing ceramide and 
sphingomyelinase levels promotes the accumulation of amyloid-β 
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(Aβ42) in two mouse models of AD [90,91] and ceramide-enriched 
exosomes worsen disease pathology [91]. Conversely, genetic inhibi-
tion of sphingomyelinase enzyme in a mouse model of AD decreases 
amyloid-β deposits and cognitive impairment [91,101], and attenuates 
the progression of disease [91]. Furthermore, knocking out the SMS1 
gene in the hippocampus of an AD-like transgenic mouse appears to limit 
the formation of amyloid plaques and improve cognitive function [102]. 

4.2.2. Gaucher disease and parkinson’s disease 
Glucosylceramidase activity is critical in these two diseases, with the 

lysosomal enzyme (GBA1) playing a particularly important role. The 
loss of GBA1 activity strongly modulates lysosomal function, which is 
involved in the elimination of cellular material through autophagy. 
Mutations in the GBA1 gene lead to non-functional enzymes, either by 
total loss of functions or by driving a defect in the targeting of GBA1 to 
the lysosome, which results in the accumulation of glucosylceramide in 
the lysosomes. 

GBA1 mutations are associated with Gaucher disease [49,103,104]. 
Gaucher disease is a lysosomal overload disease characterized by a 
complete loss of function of the GBA1 protein. This leads to an accu-
mulation of glucosylceramide, which can be the cause of neuropathic 
forms of the disease [49,105]. Although no correlation has been made 
between the severity of Gaucher disease and the GBA2 gene, studies 
suggest that GBA2 is involved in the pathophysiology of the disease 
[103,106]. 

Parkinson’s disease is the second most common neurodegenerative 
disease that affects predominantly dopaminergic neurons of the sub-
stantia nigra. People with Parkinson’s disease usually have motor 
symptoms, but the disease is also characterized by insidious cognitive 
decline, which increases with the duration of the disease. Mutations in 
the GBA1 gene are considered a high-risk factor for Parkinson’s disease. 
Indeed, GBA1 mutations occur in 10–25% of patients with Parkinson’s 
disease [104,107–112]. GBA1 mutations cause a decrease in the levels of 
the GBA1 protein and its enzymatic activity, resulting in the toxic 
accumulation of α-synuclein and defecting autophagy [113,114]. 
Interestingly, activation of GBA1 induces clearance of α-synuclein and 
restores lysosomal function in dopaminergic neurons of Parkinson’s 
patients [115]. Moreover, inhibition of GBA1 activity in a mouse model 
of synucleinopathy leads to accumulation of glucosylceramide and 
worsening of motor and cognitive phenotypes. By contrast, increasing 
the activity of GBA1 leads to a slowing of disease progression [116]. 
While studies suggest that the accumulation of glucosylceramide might 
alter the mechanisms that regulate α-synuclein [117,118], the molecular 
mechanisms that link GBA1 and α-synuclein are still poorly understood. 

All of these data underline the importance of potential molecular 
targets (e.g. GBA1 and GBA2) in order to develop effective pharmaco-
logical strategies to limit the progression of these neurological diseases. 

5. Therapeutic targeting of sphingolipids in neurodegeneration 

With a growing body of evidence to show that sphingolipids actively 
participate in the pathophysiology of neurodegenerative disease 
[5,49,119], there is an increased focus on the targeting of the meta-
bolism of sphingolipids for therapeutic development. Due to the 
complexity of the sphingolipid pathway, only the most common players 
in neurodegenerative diseases will be discussed. 

5.1. Sphingolipids at the centre of new therapies in animal and cell models 

Some molecules have proven to be promising candidates for atten-
uating various pathologies in in vitro and in vivo models of neurode-
generative disease. 

5.1.1. Fingolimod (FTY720) 
Fingolimod is an analogue of sphingosine. In the brain, it is con-

verted to fingolimod -phosphate (FTY720-P). Fingolimod-P is a 

sphingosine-1-phosphate (S1P) receptor agonist [120], which is reduced 
in Alzheimer’s disease and Parkinson’s disease [121–124]. Stimulation 
of S1P by FTY720 improves memory, synaptic plasticity, reduces 
β-amyloid production and enhances motor function in several distinct 
animal models of these diseases [125–128]. More recently, FTY720 was 
shown to significantly improve survival in the SOD1G93A mouse model of 
ALS [129]. 

5.1.2. Isofagomine 
In 2009, Liebermann and co-workers demonstrated that isofagomine 

by acting as a chaperone of GBA1 ensured good conformational stability 
and activity of human GBA1 while also increasing its enzymatic activity 
[130] (see Table 1). In support of this, isofagomine was shown to extend 
the lifespan in animal models of Gaucher disease and increase the ac-
tivity and levels of GBA1 in the brain and visceral tissues, although its 
effects on the accumulation of glucosylceramide and glycosphingosine is 
yet to be determined [131]. Finally, isofagomine reduces aggregates of 
human wildtype α-synuclein in dopaminergic neurons in the substantia 
nigra of a mouse model of synucleinopathy [132]. In general, current 
data on the use of isofagomine in Gaucher disease and synucleinopathies 
is encouraging. 

5.1.3. Ambroxol 
Ambroxol is a molecule known for its mucolytic, antioxidant and 

anaesthetic properties [133]. It can cross the blood-brain barrier (BBB) 
and improve the activity of GBA1 in Gaucher disease patient cells in 
vitro, and in wildtype mice in vivo [134] (see Table 1). In 2009, Mae-
gawa and collaborators demonstrated that ambroxol stabilizes the 
conformation of GBA1, thereby increasing its enzymatic activity, and 
reducing the accumulation of glucosylceramide in fibroblasts from 
Gaucher disease patients [135]. Ambroxol has also been shown to 
enhance the activity of GBA1 in fibroblasts of Parkinson’s disease pa-
tients, and to reduce the aggregation of α-synuclein [114,136]. In 
wildtype and transgenic mice overexpressing human α-synuclein, 
treatment with ambroxol led to an increase in GBA1 mRNA and enzyme 
activity in the brain, and a concomitant reduction in levels of α-synu-
clein [137]. Finally, the activities of GBA1 and β-hexosaminidase are 
significantly improved in non-human primates after treatment with 
ambroxol [138]. In the context of ALS, our laboratory has demonstrated 
that ambroxol prevents the loss of muscle strength, delays disease pro-
gression, and extends survival of Sod1G86R mice. Moreover, ambroxol 
promotes axonal growth and neuronal network complexity in vitro and 
in vivo [139,140]. Overall, ambroxol appears to be highly effective in 
modulating GBA1 activity to exert neuroprotective effects across a 
number of mouse models of neurodegeneration. 

5.2. Sphingolipid modulation in humans 

There is growing interest in targeting the metabolism of sphingoli-
pids as a therapeutic strategy in human neurodegenerative diseases. In 
this section, we will only present clinical studies for Gaucher disease and 
Parkinson’s disease. 

5.2.1. Isofagomine 
The defective activity of GBA1 in patients with Gaucher disease can 

be restored by isofagomine treatment. By stabilizing the binding of the 
GBA1 enzyme with its substrate [141], isofagomine increases GBA1 
activity in Gaucher disease patient fibroblasts, thus preventing the toxic 
accumulation of glucosylceramide [130]. However, isofagomine has 
poor cell penetration and clinical trials for Gaucher disease have been 
inconclusive. 

5.2.2. Ambroxol 
In 2013, Zimran et al. showed that ambroxol was safe and had no 

adverse effects in patients with Gaucher disease [142]. In another pilot 
study, ambroxol was found to improve motor functions and neurological 
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symptoms by decreasing myoclonus in Gaucher disease patients [143]. 
Recently, a phase II clinical trial, which aimed to assess the therapeutic 
potential of ambroxol in Parkinson’s disease patients with or without 
GBA1 mutations was carried out [144] (NCT02941822). Interim results 
for this trial are positive. Seventeen patients (8 with GBA1 mutations, 9 
without) received increasing doses of ambroxol (up to 420 mg, 3 times a 
day at the end of the study). Ambroxol did not cause any specific side 
effects and was well tolerated by patients. Given that ambroxol crosses 
BBB [144], this molecule seems to be a promising therapeutic candidate 
for the treatment of diseases that are characterized by defective GBA1 
enzyme activity in parallel with the accumulation of misfolded proteins. 

6. Conclusion 

The pathophysiological mechanisms that underpin neuro-
degeneration are complex. The deregulation of sphingolipid metabolism 
appears to be common across a number of neurodegenerative diseases, 
yet the mechanisms by which the dysregulation in sphingolipid meta-
bolism contributes to the degenerative process remains to be elucidated. 
While the targeting of sphingolipid metabolism has reached clinical 
stages for Parkinson’s disease, this is yet to occur in Alzheimer’s disease 

or ALS. Nonetheless, results in mouse models of neurodegenerative 
diseases, and in particular ALS, highlight that the modulation of 
sphingolipid metabolism may be beneficial. Future studies that clarify 
the role of sphingolipids in neurodegeneration, with the view to trans-
late this knowledge into clinical trials and effective drug treatments are 
desperately needed. 
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Table 1 
Summary of studies using treatments that modulate the metabolism of sphingolipids.  

Drug Disease Model Dose Effects References 

Fingolimod 
(FTY720) 

AD Mouse 0.5 mg/kg  • Reduces amyloid-β production [127] 
AD-like 
neurodegeneration 

Rats 1 mg/kg  • Attenuates Aβ42-induced learning and 
memory impairment 

[125] 

AD-like 
neurodegeneration 

Rats 1 mg/kg  • Reduces inflammatory markers [126] 

– Chemical model of neurodegeneration 10–1000 nM  • Attenuates excitotoxicity and 
neuroinflammation 

[145] 

– Rats (Focal cerebral ischemia) 0.5 mg/kg  • Improves synaptic plasticity and memory 
deficit 

[143] 

PD Mouse 1 mg/kg  • Attenuates motor deficits  
• Reduces the loss of dopaminergic neurons 

[146] 

ALS Mouse 0.1 and 1 mg/ 
kg  

• Improves neurological scores and survival [129] 

Isofagomine GD Patients lysosomal enzyme (GBA1) –  • Ensure good conformation and stability  
• Increases GBA1 enzymatic activity 

[130] 

GD Mouse 20 or 600 mg/ 
kg  

• Increases the activity and levels of GBA1  
• Extends survival 

[147] 

α-synucleinopathy Mouse 100 mg/kg  • Reduces aggregates in dopaminergic 
neurons 

[132] 

Ambroxol GD Patients fibroblasts 20–125 µM  • Ensure good conformation and stability  
• Increases GBA1 enzymatic activity  
• Reduces GlcCer storage 

[135] 

GD Patients fibroblasts 0.3–10 mM  • Improves the activity of GBA1  
• Neither toxicity in vivo 

[134] 

GD Patients 150 mg/d  • Safe  
• No adverse effects 

[142] 

GD Patients fibroblasts 60 µM  • Reduces ROS production  
• Improves the activity of GBA1 

[136] 

GD Patients 1.3 g/d  • Increases the activity of GBA1  
• Reduces of myoclonus  
• Improves motor functions 

[143] 

GD Patients 21 mg/kg/d  • No effect [148] 
GD Patients 27 mg/kg/d  • Beneficial effects on neurological 

manifestation progression 
[148] 

PD Mouse 4 mM  • Increases brain GBA1 activity  
• Reduces α-synuclein levels 

[137] 

PD Neural crest stem cells line from PD and GBA1 
mutations patients 

60 µM  • Improves lysosomal process  
• Reduces α-synuclein levels 

[114] 

PD Non-human primate 100 mg/d  • Increases brain GBA1 activity [138] 
PD Patients 1.23 g/d  • Safety  

• Cross the BBB  
• Modulation of GBA activities  
• Stimulation of lysosomal activity 

[144] 

ALS Mouse 3 mM  • Prevents the loss of muscle strength  
• Delays disease progression  
• Extends survival 

[139] 

AD: Alzheimer’s disease, ALS: amyotrophic lateral sclerosis, BBB: blood brain barrier, GBA: glucocerebrosidase, GD: Gaucher disease, GlcCer: glucosylceramide, PD: 
Parkinson’s disease, ROS: reactive oxygen species 
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J. Gröne, Cell-specific deletion of glucosylceramide synthase in brain leads to 
severe neural defects after birth, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 
12459–12464, https://doi.org/10.1073/pnas.0500893102. 

[20] J.U. Jung, K. Ko, D.H. Lee, K. Ko, K.T. Chang, Y.K. Choo, The roles of 
glycosphingolipids in the proliferation and neural differentiation of mouse 
embryonic stem cells, Exp. Mol. Med. 41 (2009) 935–945, https://doi.org/ 
10.3858/emm.2009.41.12.099. 

[21] J.A. Allen, R.A. Halverson-Tamboli, M.M. Rasenick, Lipid raft microdomains and 
neurotransmitter signalling, Nat. Rev. Neurosci. 8 (2007) 128–140, https://doi. 
org/10.1038/nrn2059. 

[22] G. Van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: where they are, 
Nat. Rev. Mol. Cell Biol. 101 (2009) 1–4, https://doi.org/10.1038/nrm2330. 
Membrane. 

[23] A. Prinetti, N. Loberto, V. Chigorno, S. Sonnino, Glycosphingolipid behaviour in 
complex membranes, Biochim. Biophys. Acta - Biomembr. 1788 (2009) 184–193, 
https://doi.org/10.1016/j.bbamem.2008.09.001. 

[24] E. Posse de Chaves, S. Sipione, Sphingolipids and gangliosides of the nervous 
system in membrane function and dysfunction, FEBS Lett. 584 (2010) 
1748–1759, https://doi.org/10.1016/j.febslet.2009.12.010. 

[25] S.N. Pinto, L.C. Silva, A.H. Futerman, M. Prieto, Effect of ceramide structure on 
membrane biophysical properties: the role of acyl chain length and unsaturation, 
Biochim. Biophys. Acta Biomembr. 1808 (2011) 2753–2760, https://doi.org/ 
10.1016/j.bbamem.2011.07.023. 

[26] B.M. Castro, M. Prieto, L.C. Silva, Ceramide: a simple sphingolipid with unique 
biophysical properties, Prog. Lipid Res. 54 (2014) 53–67, https://doi.org/ 
10.1016/j.plipres.2014.01.004. 

[27] E. Kiyokawa, T. Baba, N. Otsuka, A. Makino, S. Ohno, T. Kobayashi, Spatial and 
functional heterogeneity of sphingolipid-rich membrane domains, J. Biol. Chem. 
280 (2005) 24072–24084, https://doi.org/10.1074/jbc.M502244200. 

[28] M. Trayssac, Y.A. Hannun, L.M. Obeid, Role of sphingolipids in senescence: 
Implication in aging and age-related diseases, J. Clin. Invest. 128 (2018) 
2702–2712, https://doi.org/10.1172/JCI97949. 

[29] R. Ledeen, G. Wu, Gangliosides of the nervous system, 2018. https://doi.org/ 
10.1007/978–1-4939–8552-4_2. 

[30] S.J. Rabin, I. Mocchetti, G.M.1 Ganglioside, Activates the high-affinity nerve 
growth factor receptor trkA, J. Neurochem. 65 (1995) 347–354, https://doi.org/ 
10.1046/j.1471-4159.1995.65010347.x. 

[31] M. Pitto, T. Mutoh, M. Kuriyama, A. Ferraretto, P. Palestini, M. Masserini, 
Influence of endogenous GM1 ganglioside on TrkB activity, in cultured neurons, 
FEBS Lett. 439 (1998) 93–96, https://doi.org/10.1016/S0014-5793(98)01344-1. 

[32] A.M. Duchemin, Q. Ren, L. Mo, N.H. Neff, M. Hadjiconstantinou, GM1 
ganglioside induces phosphorylation and activation of Trk and Erk in brain, 
J. Neurochem 81 (2002) 696–707, https://doi.org/10.1046/j.1471- 
4159.2002.00831.x. 

[33] G. Wu, X. Xie, Z.H. Lu, R.W. Ledeen, Sodium-calcium exchanger complexed with 
GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to 
endoplasmic reticulum, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 10829–10834, 
https://doi.org/10.1073/pnas.0903408106. 

[34] Y.-T. Tsai, Y. Itokazu, R.K. Yu, GM1 ganglioside is involved in epigenetic 
activation loci of neuronal cells, Neurochem. Res. 41 (2016) 107–115, https:// 
doi.org/10.1007/s11064-015-1742-7. 

[35] X. Xie, G. Wu, Z.H. Lu, R.W. Ledeen, Potentiation of a sodium-calcium exchanger 
in the nuclear envelope by nuclear GM1 ganglioside, J. Neurochem 81 (2002) 
1185–1195, https://doi.org/10.1046/j.1471-4159.2002.00917.x. 

[36] B. Pan, S.E. Fromholt, E.J. Hess, T.O. Crawford, J.W. Griffin, K.A. Sheikh, R. 
L. Schnaar, Myelin-associated glycoprotein and complementary axonal ligands, 
gangliosides, mediate axon stability in the CNS and PNS: neuropathology and 
behavioral deficits in single- and double-null mice, Exp. Neurol. 195 (2005) 
208–217, https://doi.org/10.1016/j.expneurol.2005.04.017. 

[37] P.H. Lopez, R.L. Schnaar, Gangliosides in cell recognition and membrane protein 
regulation, Curr. Opin. Struct. Biol. 19 (2009) 549–557, https://doi.org/ 
10.1016/j.sbi.2009.06.001. 

[38] T. Yamashita, Y.P. Wu, R. Sandhoff, N. Werth, H. Mizukami, J.M. Ellis, J. 
L. Dupreell, R. Geyer, K. Sandhoff, R.L. Proia, Interruption of ganglioside 
synthesis produces central nervous system degeneration and altered axon-glial 
interactions, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 2725–2730, https://doi. 
org/10.1073/pnas.0407785102. 

[39] F.J. Roisen, H. Bartfeld, R. Nagele, G. Yorke, Ganglioside stimulation of axonal 
sprouting in vitro, Science 214 (1981) 577–578, https://doi.org/10.1126/ 
science.7291999. 

[40] M.C. Byrne, R.W. Ledeen, F.J. Roisen, G. Yorke, J.R. Sclafani, Ganglioside- 
induced neuritogenesis: verification that gangliosides are the active agents, and 
comparison of molecular species, J. Neurochem. 41 (1983) 1214–1222, https:// 
doi.org/10.1111/j.1471-4159.1983.tb00814.x. 

[41] A. Ferreira, J. Busciglio, C. Landa, A. Caceres, Ganglioside-enhanced neurite 
growth: evidence for a selective induction of high-molecular-weight MAP-2, 
J. Neurosci. 10 (1990) 293–302, https://doi.org/10.1523/jneurosci.10-01- 
00293.1990. 

A. Bouscary et al.                                                                                                                                                                                                                               

https://doi.org/10.1159/000323189
https://doi.org/10.1159/000323189
https://doi.org/10.1051/medsci/2006224411
https://doi.org/10.1111/febs.12559
https://doi.org/10.1038/nature12423
https://doi.org/10.1038/nature12423
https://doi.org/10.3389/fnmol.2018.00010
https://doi.org/10.1152/physrev.2001.81.2.871
https://doi.org/10.1152/physrev.2001.81.2.871
https://doi.org/10.1098/rsob.170069
https://doi.org/10.1098/rsob.170069
https://doi.org/10.1046/j.1471-4159.1995.65052267.x
https://doi.org/10.1007/s11064-012-0744-y
https://doi.org/10.1194/jlr.R800028-JLR200
https://doi.org/10.1194/jlr.R800028-JLR200
https://doi.org/10.1111/j.1471-4159.1988.tb02484.x
https://doi.org/10.3390/nu7053891
https://doi.org/10.3390/nu7053891
https://doi.org/10.1523/JNEUROSCI.2275-14.2014
https://doi.org/10.1523/JNEUROSCI.2275-14.2014
https://doi.org/10.1371/journal.pone.0108919
https://doi.org/10.1007/978-1-4939-1154-7_10
https://doi.org/10.1007/978-1-4939-1154-7_10
https://doi.org/10.1111/j.1471-4159.2010.07019.x
https://doi.org/10.1111/j.1471-4159.2010.07019.x
http://refhub.elsevier.com/S1084-9521(20)30103-8/sbref17
http://refhub.elsevier.com/S1084-9521(20)30103-8/sbref17
http://refhub.elsevier.com/S1084-9521(20)30103-8/sbref17
https://doi.org/10.1046/j.1471-4159.1995.65041551.x
https://doi.org/10.1046/j.1471-4159.1995.65041551.x
https://doi.org/10.1073/pnas.0500893102
https://doi.org/10.3858/emm.2009.41.12.099
https://doi.org/10.3858/emm.2009.41.12.099
https://doi.org/10.1038/nrn2059
https://doi.org/10.1038/nrn2059
https://doi.org/10.1038/nrm2330.Membrane
https://doi.org/10.1038/nrm2330.Membrane
https://doi.org/10.1016/j.bbamem.2008.09.001
https://doi.org/10.1016/j.febslet.2009.12.010
https://doi.org/10.1016/j.bbamem.2011.07.023
https://doi.org/10.1016/j.bbamem.2011.07.023
https://doi.org/10.1016/j.plipres.2014.01.004
https://doi.org/10.1016/j.plipres.2014.01.004
https://doi.org/10.1074/jbc.M502244200
https://doi.org/10.1172/JCI97949
https://doi.org/10.1007/978-1-4939-8552-4_2
https://doi.org/10.1007/978-1-4939-8552-4_2
https://doi.org/10.1046/j.1471-4159.1995.65010347.x
https://doi.org/10.1046/j.1471-4159.1995.65010347.x
https://doi.org/10.1016/S0014-5793(98)01344-1
https://doi.org/10.1046/j.1471-4159.2002.00831.x
https://doi.org/10.1046/j.1471-4159.2002.00831.x
https://doi.org/10.1073/pnas.0903408106
https://doi.org/10.1007/s11064-015-1742-7
https://doi.org/10.1007/s11064-015-1742-7
https://doi.org/10.1046/j.1471-4159.2002.00917.x
https://doi.org/10.1016/j.expneurol.2005.04.017
https://doi.org/10.1016/j.sbi.2009.06.001
https://doi.org/10.1016/j.sbi.2009.06.001
https://doi.org/10.1073/pnas.0407785102
https://doi.org/10.1073/pnas.0407785102
https://doi.org/10.1126/science.7291999
https://doi.org/10.1126/science.7291999
https://doi.org/10.1111/j.1471-4159.1983.tb00814.x
https://doi.org/10.1111/j.1471-4159.1983.tb00814.x
https://doi.org/10.1523/jneurosci.10-01-00293.1990
https://doi.org/10.1523/jneurosci.10-01-00293.1990


Seminars in Cell and Developmental Biology 112 (2021) 82–91

89

[42] T. Mutoh, A. Tokuda, T. Miyadai, M. Hamaguchi, N. Fujiki, Ganglioside GM1 
binds to the Trk protein and regulates receptor function, Proc. Natl. Acad. Sci. U. 
S. A. 92 (1995) 5087–5091, https://doi.org/10.1073/pnas.92.11.5087. 

[43] T. Mutoh, T. Hamano, S. Yano, H. Koga, H. Yamamoto, K. Furukawa, R. 
W. Ledeen, Stable transfection of GM1 synthase gene into GM1-deficient NG108- 
15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to 
its ligand, NGF, Neurochem. Res 27 (2002) 801–806, https://doi.org/10.1023/A: 
1020209008169. 

[44] S. Fukumoto, T. Mutoh, T. Hasegawa, H. Miyazaki, M. Okada, G. Goto, 
K. Furukawa, T. Urano, K. Furukawa, GD3 synthase gene expression in PC12 cells 
results in the continuous activation of TrkA and ERK1/2 and enhanced 
proliferation, J. Biol. Chem. 275 (2000) 5832–5838, https://doi.org/10.1074/ 
jbc.275.8.5832. 

[45] K. Furukawa, Y. Ohmi, Y. Ohkawa, O. Tajima, K. Furukawa, Glycosphingolipids 
in the regulation of the nervous system, 2014, pp. 307–320. https://doi.org/10.1 
007/978–1-4939–1154-7_14. 

[46] S.J. Rabin, A. Bachis, I. Mocchetti, Gangliosides activate Trk receptors by 
inducing the release of neurotrophins, J. Biol. Chem. 277 (2002) 49466–49472, 
https://doi.org/10.1074/jbc.M203240200. 

[47] A. Bachis, S.J. Rabin, M.D. Fiacco, I. Mocchetti, Gangliosides prevent 
excitotoxicity through activation of TrkB receptor, Neurotox. Res. 4 (2002) 
225–234, https://doi.org/10.1080/10298420290015836. 

[48] K.C. Arthur, A. Calvo, T.R. Price, J.T. Geiger, A. Chiò, B.J. Traynor, Projected 
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