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to have an active role in the termination of synaptic dopa-
mine signals and also in the release of dopamine.14 Thus,
DAT imaging could reflect synaptic dopamine levels or
DAT expression, a hypothesis which should be investi-
gated in detail in future imaging studies.
To conclude, there appears to be no correlation

between striatal DAT binding and the number of post-
mortem striatal axons or nigral neurons. The precise
mechanism of changes in DAT binding signal in PD
remains to be elucidated, but the amount of synaptic
dopamine may have a key role. These results do not
support the use of DAT imaging as a surrogate marker
for striatal axonal loss.
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ABSTRACT: Background: The pathophysiology
of the hypothalamic involvement in Parkinson’s dis-
ease (PD) is not well understood. The objective of this
study was the quantification of hypothalamic volumes
in vivo in PD.
Methods: High-resolution T1-weighted magnetic res-
onance imaging (MRI) data from 232 individuals with
PD and 130 healthy non-PD individuals were used for
quantification of the hypothalamic volumes.
Results: The hypothalamus in PD was not atrophied,
as indicated by volumetric analyses in the prospec-
tively collected subcohort (30 PD, V = 921 � 78 mm3

vs 30 non-PD, V = 917 � 67 mm3; P = 0.850) and vali-
dated in a large cohort (202 PD, V = 925 � 88 mm3 vs
100 non-PD, V = 932 � 114 mm3; P = 0.602).
Conclusions: Hypothalamic involvement in PD as
shown by a large body of histopathological evidence
does not appear to be detectable by MRI-based volu-
metric quantification. © 2019 The Authors. Movement
Disorders published by Wiley Periodicals, Inc. on
behalf of International Parkinson and Movement
Disorder Society.
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The hypothalamus plays a pivotal integrative role in a
broad spectrum of body functions, including energy
metabolism1,2 and circadian control.3 Pathological changes
in the hypothalamus in Parkinson’s disease (PD) were
noted decades ago, including early observations by Fritz
Jakob Lewy4 and the work by Braak and colleagues, who
reported that the PD-associated pathology targets the
hypothalamic tuberomammillary and ventromedial nuclei
in an early symptomatic phase.5,6 In addition, the impor-
tance of a dopaminergic contribution to a broad spectrum
of nonmotor symptoms is supported by dopamine dys-
function in the hypothalamus in PD.7

Breen and colleagues recently reported hypothalamic
volume loss in a small PD cohort.8 Other neurodegener-
ative diseases, such as amyotrophic lateral sclerosis
(ALS) or frontotemporal dementia (FTD), are also
known to be associated with metabolic changes9 in cor-
relation with severe atrophy of the hypothalamus10,11

These findings suggest that identification of pathways
leading to perturbed energy balance might provide
novel therapeutic targets.12 We tested the hypothesis of
whether hypothalamic involvement in PD could be
shown by volumetric hypothalamus mapping using a
well-established manual segmentation procedure based
on high-resolution MRI. A MRI-based quantitative
analysis of the hypothalamic volume was performed in
>200 individuals with PD compared with matched
healthy non-PD individuals.

Materials and Methods
Study Population

The study population was organized into a prospective
and a retrospective cohort, including a total of

362 participants including non-PD individuals. All
232 individuals with PD were idiopathic (sporadic)
PD cases without any known PD-associated gene muta-
tions. Details on the inclusion and exclusion criteria for
both PD cohorts are provided in the Supplementary
Material.

Prospective cohort

The study was approved by the Ethical Committee of
the University of Ulm, Ulm, Germany (reference 159/17),
and all participants provided written informed consent.
All individuals with PD underwent standardized clinical-
neurological examinations and were diagnosed according
to the UK Parkinson’s Disease Society Brain Bank clinical
diagnostic criteria.13 All measurements were performed in
the ON state. All non-PD individuals (n = 30) were well-
matched healthy elderly volunteers without a history of
neurological or psychiatric disease or other medical condi-
tions. Participants’ demographics and clinical data are sum-
marized in Table 1. Imaging data were acquired on a
3 Tesla MRI scanner (Prisma Siemens Medical, Erlangen,
Germany) using a high-resolution 3-D T1-weighted
magnetization-prepared gradient echo image (MPRAGE)
sequence. Whole-brain coverage comprised 192 sagittal
slices, no gap, 1.0 × 1.0 × 1.0 mm3 voxels, 240 × 192 ×
256 matrix, TE, 2.05 milliseconds; TR, 2300 milliseconds;
flip angle, 9�.

Retrospective cohort

All participants provided written informed consent as
above (reference 88/11). Hypothalamus volumes from a
large representative PD cohort (n = 202, 68 � 11 years,
6.7 � 6.3 years of disease duration; UPDRS III score,
24 � 13) and matched non-PD individuals (n = 100,

TABLE 1. Demographic and clinical data

Variable Individuals with PD (n = 30) Healthy non-PD individuals (n = 30) P

Age (years) 62.7 � 12.0 (36.2–81.6) 60.2 � 13.0 (36.1–79.5) 0.43a

Sex (male:female) 22:8 17:13 0.28b

Disease duration (years) 7.9 � 3.8 (1.4–17.8) na na
PD phenotype
Tremor dominant 10 (33.3%)
Akinetic-rigid 7 (23.3%) na na
Gait disturbance 1 (3.3%)
Mixed 12 (40.0%)

UPDRS III 16.7 � 4.6 (10.0–30.0) na na
MoCAd 24.9 � 4.9 (6.0–30.0) 27.2 � 2.2 (21.0–30.0) 0.030c

ESSe 7.8 � 4.5 (3.0–20.0) 5.7 � 3.0 (1.0–13.0) 0.122c

BMIf (kg/m2) 28.2 � 4.0 (21.6–39.0) 26.6 � 3.7 (21.8–35.5) 0.100a

Eucation (years) 13.0 � 2.3 (8.0–16.0) 14.6 � 2.9 (9.0–20.0) 0.052c

Values are given as mean � standard deviation (min-max).
at tests (2-sample, unpaired, unequal variances).
bFisher’s exact test.
cMann-Whitney U test.
dMontreal Cognitive Assessment.19
eEpworth Sleepiness Scale.16
fBody mass index.
na, not applicable.
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64 � 9 years) were retrospectively analyzed using the
identical segmentation procedure and volumetric analysis
pipeline (see Imaging Methods). Imaging data were
acquired at a 1.5 Tesla clinical MRI scanner (Symphony,
Siemens Medical, Erlangen, Germany) using an MPRAGE
sequence (144 sagittal slices, no gap, 1.0 × 1.2 × 1.0 mm3

voxels, 256 × 192 × 256 matrix, TE, 4.2 milliseconds;
TR, 1600 milliseconds).

MR-Based Hypothalamus Segmentation
Coronal slices were used for manual delineation of the

hypothalamus using a well-established landmark-based
procedure11 (Supplementary Fig. 1), which is implemented
in the Tensor Imaging and Fiber Tracking (TIFT) software
package.14 Prior to hypothalamus delineation, the follow-
ing steps were performed: (1) rigid brain normalization,
(2) spatial up-sampling into a study-specific grid (in-plane
resolution of 62.5 × 62.5 μm2, slice thickness of 0.5 mm)
to improve the accuracy in identifying landmarks and
hypothalamic borders, and (3) manual delineation of the
left and right hemispheric hypothalamus In particular,
rigid body normalization was performed along the ante-
rior commissure (AC) – posterior commissure (PC) axis

such that the coronal cutting plane was perpendicular to
the AC–PC axis.
The hypothalamus was manually delineated, as

described previously11 and shown in the Supplementary
Figure. The optical tract was excluded from all slices
(Supplementary Fig. 1b–i). Prior to the analysis, all data
sets were randomized such that the raters were blinded
to all demographic and clinical features. This delinea-
tion procedure is robust and achieves a high level of
reproducibility, as indicated by an intra- and interrater
reliability analysis in a subsample of 12 × 3 = 36 ran-
domized data sets. The coefficient of variation
(CV) was CV < 4% for 2 raters; the intraclass correla-
tion coefficient between the 2 raters was r > 0.9:
both can be safely accepted as robust and highly
reproducible.

Volumetric Analysis
Intracranial volume as an important covariate for

volumetric analyses was determined with the Freesurfer
image analysis suite (V.6.0.0; http://surfer.nmr.mgh.
harvard.edu/). Given the distinct structural connectivity
and histopathologically confirmed involvement of
the hypothalamus,6 we performed anterior-posterior

FIG. 1. Volumetric analysis of the hypothalamus in Parkinson’s disease (PD). (a) Volumes of the hypothalamus did not differ between PD and non-PD
individuals. (b) Slice volumetric analysis provided as mean � SD of 20 coronal section spanning from the most anterior to the most posterior part of
the hypothalamus indicated that the volumes of the coronal slices did not differ between PD (blue error bars) and non-PD individuals (black); t test
P > 0.05). (c, d) Retrospective volumetric analysis from a large cohort of PD and non-PD individuals revealed similar results indicating no significant dif-
ferences in hypothalamic volumes for (c) the total hypothalamus and (d) at the single coronal slice level. [Color figure can be viewed at
wileyonlinelibrary.com]
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segmentation using a technique that was adapted from
reference 10 with a refined normalization technique
that provides normalization to 20 coronal slices for
each data set. All reported volumes were corrected for
sex, intracranial volume, and age in a linear regression
model15 as in our previous study.11 The MATLAB-
based “Statistical Toolbox” (The Mathworks Inc.,
Natick, MA) was used for statistical data analysis.
Parametric unpaired 2-sample t tests for unequal vari-
ances were used to test for statistical differences
between groups, as indicated by Lilliefors tests for nor-
mality. All correlations were studied using Spearman
rank order correlation coefficient. All statistical tests
were 2-sided, and P < 0.05 was considered significant.

Results
Clinical Features

Clinical features are summarized in Table 1. Age, sex,
education duration, daytime sleepiness (Epworth Sleepiness
Scale16), and body mass index17,18 were not significantly
different between PD and non-PD individuals. Individuals
with PD displayed worse cognitive performance (Montreal
Cognitive Assessment,19 Mann-Whitney U test z = -2.16,
P = 0.030) compared with non-PD individuals.

Morphometric Analyses of the Hypothalamus
The total hypothalamus volumes in the prospective cohort

were normally distributed (Lilliefors test P = 0.10), and the
distribution largely overlappedwithin the same volume range
for both groups (Fig. 1a); the volumes for PD (n = 30,
V = 921 � 78 mm3) and healthy non-PD individuals
(n = 30, V = 917 � 67 mm3) did not differ (t = 0.19,
P = 0.850). There were also no differences for anterior (t test
t = 1.05, P = 0.300) and posterior (t = -0.61, P = 0.543)
hypothalamic volumes, respectively, betweenPDandnon-PD
individuals. The coronal slice-wise hypothalamic volumetric
comparisonbetweenPDandnon-PD individuals indicatedno
significant effects (Fig. 1b). There were no significant correla-
tions between the hypothalamus volume and either theMon-
trealCognitiveAssessment score (r = -0.18,P = 0.360), years
of education (r = 0.14, P = 0.500), disease duration
(r = 0.13, P = 0.505), Epworth Sleepiness Scale (r = -0.14,
P = 0.501), orUPDRS IIImotor score (r = 0.03,P = 0.903).
To confirm the volumetric findings, a large cohort of

PD and healthy non-PD individuals was retrospectively
analyzed for volumetric differences of the hypothala-
mus. The total hypothalamus volumes were normally
well distributed (Lilliefors test P ≥ 0.5), largely over-
lapping between groups and did not differ (t = -0.52,
P = 0.602) for PD (n = 202, V = 925 � 88 mm3, vol-
ume range, 671–1153 mm3) and non-PD individuals
(n = 100, V = 932 � 114 mm3, 699–1194 mm3). Cor-
onal slice-wise volumetric comparisons also did not
reveal any significant volume difference at the single

hypothalamic slice level, so that these results were in
full accordance with the prospective study cohort.

Discussion

Using in vivo MRI, there was no statistical difference in
hypothalamus size between PD and non-PD individuals
for 2 separate cohorts. The involvement of the hypothala-
mus was demonstrated in PD several decades ago, includ-
ing evidence from postmortem studies. First, a subset of
hypothalamic neurons become selectively targeted during
disease,4,20,21 with the tuberomammillary nucleus becom-
ing affected in an early stage of the symptomatic phase,5,6

whereas other neuronal populations remain spared.22-24

Second, a number of hypothalamic-dependent functions,
such as sleep and circadian rhythmicity, are severely
affected by disease progression.3,25,26 This hypothalamic
involvement could be secondary to dopaminergic7,27,28 or
serotonergic29 and related to involvement of the auto-
nomic nervous system.30

In the current study, despite these repeatedly observed
features of hypothalamic involvement by others, we were
unable to observe gross atrophy of the hypothalamus. This
contrasts with a previous effort by Breen and colleagues,8

who reported volumetric loss in the hypothalamus. How-
ever, our study included more than 230 patients, com-
pared with 12 patients in that study,8 and we used a
different well-established segmentation method for the
hypothalamus that overcomes the main challenge of defin-
ing its lateral boundaries.
Importantly, when we applied the identical method of

hypothalamic volumetry to ALS, we observed a significant
hypothalamic atrophy, even in presymptomatic gene car-
riers, in a large sample of patients11 similar to what has
been documented in FTD patients,10,12 Thus, our method
is sufficiently sensitive to detect differences in volume
when present. We think that this differential involvement
of the hypothalamus between ALS and FTD, on the one
hand, and PD, on the other, could reflect different mecha-
nisms at work between these different neurodegenerative
diseases selectively targeting this brain region. Alterna-
tively, the gradually progressive nature of PD might not
result in global hypothalamic atrophy while, at the same
time, affecting only discrete sets of neurons and their con-
nectivities.30 These results suggest hypothalamus vol-
umetry as a possibly specific biomarker for the ALS-FTD
spectrum in contrast to PD.
This study was limited by the lack of postmortem val-

idation of hypothalamic involvement and of the diagno-
ses. The individuals with PD were all medicated
because untreated PD patients might otherwise have
experienced difficulties leading to discomfort-induced
motion artifacts during MRI scans. In addition, differ-
ent imaging protocols were used for 2 different cohorts,
which might be regarded as a confounding factor when
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comparing cross-cohort volumetric data. As a further
limitation, it has to be noted that only one specific
imaging method was used, and the data analyses did
not include other potentially more sensitive approaches
such as shape analysis. Future (and ideally, autopsy-
controlled) studies should examine the microstructure
of the hypothalamus in vivo, for example, by diffusion-
weighted imaging, and in so doing also address
connectome-based analyses of the structural and func-
tional networks of the hypothalamus in PD.
In conclusion, involvement of the hypothalamus in PD as

histopathologically evidenced does not appear to be detect-
able in vivo by using MRI-based volumetric quantification.
The results further suggested that the macrostructure of the
hypothalamus remains stable throughout the course of PD,
and this raises the question of whether the involvement of
the hypothalamus might be identifiable in vivo by investi-
gating its microstructure by diffusion-weighted imaging
techniques. Heterogeneity in neurodegenerative diseases
with potentially different propagation schemes suggests
that the link between involvement at the cellular level and
the morphometry of the hypothalamus may depend on the
specific underlying neurodegenerative process.
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