Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis - Inserm - Institut national de la santé et de la recherche médicale
Article Dans Une Revue Frontiers in Molecular Neuroscience Année : 2018

Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis

Résumé

Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in amyotrophic lateral sclerosis, we have performed RNA-sequencing and lipidomic profiling in spinal cord of symptomatic SOD1G86R mice. Spinal transcriptome of SOD1G86R mice was characterized by differential expression of genes related to immune system, extracellular exosome, and lysosome. Hypothesis-driven identification of metabolites showed that lipids, including sphingomyelin(d18:0/26:1), ceramide(d18:1/22:0), and phosphatidylcholine(o-22:1/20:4) showed profound altered levels. A correlation between disease severity and gene expression or metabolite levels was found for sphingosine, ceramide(d18:1/26:0), Sgpp2, Sphk1, and Ugt8a. Joint-analysis revealed a significant enrichment of glycosphingolipid metabolism in SOD1G86R mice, due to the down-regulation of ceramide, glucosylceramide, and lactosylceramide and the overexpression of genes involved in their recycling in the lysosome. A drug-gene interaction database was interrogated to identify potential drugs able to modulate the dysregulated genes from the signaling pathway. Our results suggest that complex lipids are pivotally changed during the first phase of motor symptoms in an animal model of amyotrophic lateral sclerosis.
Fichier principal
Vignette du fichier
fnmol-10-00433.pdf (1.18 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

inserm-03375253 , version 1 (12-10-2021)

Identifiants

Citer

Alexandre Henriques, Vincent Croixmarie, Alexandra Bouscary, Althéa Mosbach, Céline Keime, et al.. Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2018, 10, pp.433. ⟨10.3389/fnmol.2017.00433⟩. ⟨inserm-03375253⟩
31 Consultations
108 Téléchargements

Altmetric

Partager

More