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Abstract

Background: In many clinical applications, evolution of a longitudinal marker is censored by an event occurrence,
and, symmetrically, event occurrence can be influenced by the longitudinal marker evolution. In such frameworks
joint modeling is of high interest. The Joint Latent Class Model (JLCM) allows to stratify the population into groups
(classes) of patients that are homogeneous both with respect to the evolution of a longitudinal marker and to the
occurrence of an event; this model is widely employed in real-life applications. However, the finite sample-size
properties of this model remain poorly explored.

Methods: In the present paper, a simulation study is carried out to assess the impact of the number of individuals, of
the censoring rate and of the degree of class separation on the finite sample size properties of the JLCM. A real-life
application from the neurology domain is also presented. This study assesses the precision of class membership
prediction and the impact of covariates omission on the model parameter estimates.

Results: Simulation study reveals some departures from normality of the model for survival sub-model parameters.
The censoring rate and the number of individuals impact the relative bias of parameters, especially when the classes
are weakly distinguished. In real-data application the observed heterogeneity on individual profiles in terms of a
longitudinal marker evolution and of the event occurrence remains after adjusting to clinically relevant and available
covariates;

Conclusion: The JLCM properties have been evaluated. We have illustrated the discovery in practice and highlights
the usefulness of the joint models with latent classes in this kind of data even with pre-specified factors. We made
some recommendations for the use of this model and for future research.
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Background
Joint models for longitudinal and time-to-event data are
now widespread due to large cohort studies allowing col-
lection of repeated measures of biomarkers and clinical
events times [1]. The most popular way to analyze this
kind of combined data are the shared random effects
models, proposed by Wulfsohn and Tsiatis [2], where a
function of random effects, issued from the model for
longitudinal marker, is included as a covariate into the sur-
vival model. This approach allows to explain the relation
between a longitudinal parameter and a time-to-event,
assuming a homogeneous population. However, for cer-
tain diseases, the homogeneity assumption is not met and
existence of different profiles of biomarker progression
and/or of the time to-event should be accounted for in the
model.
Mixture models are widely used in medical research.

Different extensions allowing to account for the poten-
tial heterogeneity in population were proposed. Verbeke
and Lesaffre [3] extended the mixture model to longi-
tudinal data, assuming a latent profile of the biomarker
progression (growth mixture model GMM). Muthén and
Shedden [4] jointly studied longitudinal data with a binary
outcome. Lin et al. [5] developed the joint latent class
model (JLCM) replacing the binary outcome by a time-
to-event. The JLCM allows firstly to account for the
dependency between a longitudinal biomarker and a
time-to-event by distinguishing between different pro-
files of biomarker progression associated with the risk
of event. Secondly, it allows to analyze different pro-
files of longitudinal biomarker process censored by the
event occurrence. Finally, the JLCM provides predic-
tions for the risk of event conditional on the biomarker
progression.
Very flexible, the JLCM remains quite complex. Indeed,

it is composed of 3 sub-models (a multinomial logis-
tic regression for latent classes, a linear mixed model
for longitudinal process and a survival model for the
time-to-event) and each of these sub-models can include
covariates with effects specific or common to the latent
classes.
To our knowledge, very few papers deal with study-

ing the properties and the behaviour of the JLCM, for
example Proust-Lima et al. [6], therefore it is rarely used
in published clinical studies. Using a literature search
of MEDLINE and WOS until december 2020, we found
only 8 medical papers published since the model devel-
opment in 2002 [5]. These papers appeared following
a comprehensive methodology review concerning the
JLCM [7] and have different objectives. These objectives
can be summarized as follows: 1) to study the relation-
ship between a longitudinal biomarker and the risk of
event [8–11]; 2) to identify sub-groups of longitudinal

biomarker progression censored by the event occurrence
[12]; 3) to study the impact of different factors on the
longitudinal biomarker progression censored by the event
occurrence [13]; 4) to predict the risk of an event based on
the longitudinal biomarker progression [14, 15]. Different
implementations of the model were proposed to achieve
a same objective. For example, for the first objective,
Syrjälä et al. [8] search for the relation between child-
hood food consumption and the risk of advanced islet
autoimmunity using a JLCM without covariates; Brille-
man et al. [9] explore the relationship between the changes
in body mass index and the risk of death and/or trans-
plant in hemodialysis patients by means of the JLCM
for competing risks, including the pre-specified covari-
ates with a common effect on latent classes only in the
survival sub-model; Ogata et al. [10] and Portegies et al.
[11] analyze the association between fasting plasma glu-
cose progression and the risk of cardiovascular disease
and the association between the blood pressure trajecto-
ries and the risk of stroke respectively by including the
pre-specified covariates with a latent class-specific effect
into the linear mixed sub-model and into the survival
sub-model. As other examples, for the fourth objective,
[14] search to prevent Alzeihmer disease using MMSE
(Mini-Mental State Examination) score progression and
creating a predictive risk model with class-specific covari-
ates in both linear mixed sub-model and in the survival
sub-model; Stamenic et al. [15] defined latent classes to
assess the impact of serum creatinine on graft failure
risk with no covariates in JLCM, and performed a multi-
variable multinomial logistic analysis after defining these
latent classes in order to analyze the factors associated to
the classes.
A few simulation studies concerning the JLCM and its

extensions (competing risks, interval censoring, multi-
state survival sub-model) were carried out [6, 16–18].
However, these simulations focus on the model usabil-
ity and aim at validating the estimation procedure rather
than exploring the general properties of the model and its
finite-sample properties.
Thus the usage of the model is heterogeneous and its

properties in terms of sample size and censoring rate are
not comprehensively studied.
In this context, the objective of this paper is to empiri-

cally, by a simulation study, explore the asymptotic prop-
erties of the JLCM model, namely, the impact of the
censoring rate and of the number of individuals on bias
and normality of parameter estimates as well as on the
quality of latent class identification. A real data applica-
tion will also be carried out. Within this application, the
impact of covariates omission and inclusion in the model
on estimations and class membership prediction will be
investigated.
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Methods
Joint latent class model
The joint latent class model is composed of three sub-
models: a multinomial logistic regression defining the
probability of belonging to a latent class, a mixed linear
model for each latent class describing the evolution of
the longitudinal marker, and a survival model accounting
for the time-to-event for each class. The sub-models are
detailed as follows.

• The multinomial logistic regression is defined by
πig, the probability of individual i to belong to a given
latent class g, conditional on a covariate vectorXXXi:

πig = P(ci = g|XXXi) = eξ0g+XXXT
i ξξξ1g

∑G
l=1 eξ0l+XXXT

i ξξξ1l
, (1)

where ci is the latent class for patient i,
ci ∈ (1, · · · ,G),XXXT

i is a vector of explanatory variables
for i necessarily independent of time, ξξξ1g the vector of
coefficients associated to the covariates effects within
class g. Note that ξξξ0G = 0 and ξξξ1G = 0 to assure the
model identifiability. If no prior information about
the latent class is available, it is possible to use the
marginal probability of the class g, eξξξ0g

∑G
l=1 e

ξξξ0l
in Eq. (1).

• The mixed linear model for a trajectory of a
longitudinal marker of an individual i over time
points tij, Yij in a latent class g is defined as:

Yij|(ci = g) = XXXT
1ijγγγ +XXXT

2ijβββg +ZZZT
ij bbbig + εij, (2)

whereXXXT
1ij is the vector of explanatory variables

common to all latent classes and γγγ the corresponding
vector of coefficients ,XXXT

2ij is the vector of
class-specific explanatory variables with βββg the
corresponding vector of coefficients, and ZZZij is the
vector of explanatory variables associated with the
random effects bbbig ∼ N (μμμg ,BBBg) (μμμg is a mean of
random effects, BBBg is a variance-covariance matrix of
random effects, both of which can be common or
specific to latent classes). Note thatXXXT

1ij andXXX
T
2ij have

no variables in common.
• The survival model for an individual i over time is

defined by its hazard function, αi(t), within each
latent class as:

αi(t)|
(
ci = g

) = α0
(
t,ζζζ g

)
exp

(
XXXT
1iϑϑϑ +XXXT

2iηηηg
)

(3)

with α0(·) the baseline risk function in latent class g,
parametrized by vector ζζζ g ,XXXT

1i is the vector of
explanatory variables andϑϑϑ the associated parameters
common to all latent classes,XXXT

2i is the vector of
class-specific explanatory variables and ηηηg the
corresponding class-specific parameters of the model.

We denote by Ti the observed time to a clinical event
of interest for individual i. In the framework of JLCM,
it is important to note that the measures of the
longitudinal marker after Ti, if there exist, are
excluded from the observed data. Indeed, the
objective is to describe the link between the risk of
the event and the marker change over time preceding
the event. The observed duration Ti = min(T�

i ,Ci),
where T�

i corresponds to the real time-to-event
(possibly not observed) and Ci corresponds to the
right-censored duration. The survival function
corresponding to the hazard of Eq. (3), is defined as:

S(t) = exp
(

−
∫ t

0
α(u)du

)

(4)

Note that the individual covariate vectors XXXT
i can be dif-

ferent in each of the three sub-models (Eqs. (1)-(3)), but
have same notations for simplicity.

Likelihood
The parameters of themodel can be estimated by themax-
imum likelihood method. The log-likelihood of the model
defined for G latent classes is defined by Commenges and
Jacqmin-Gadda [19] as:

L(θθθG) =
N∑

i=1
log

( G∑

g=1
πig fyyyi|ci(YiYiYi|ci = g)

αi(Ti|ci = g)δiSi(Ti|ci = g)
)
,

(5)

where πig is the probability of belonging to class g (Eq. (1)),
fyyyi|ci(YiYiYi|ci = g) is the probability density function of the
longitudinal marker data in class g, defined in Eq. (2),
αi(Ti|ci = g) is the hazard function defined in Eq. (3),
Si(Ti|ci = g) is the corresponding survival function. The
event indicator δi for each individual is defined as:

δi =
{
1, if T�

i < Ci.
0, otherwise. (6)

The model parameters are estimated using the maximum
likelihood estimator (MLE); the log-likelihood function is
maximized by Newton-Raphson-like algorithm [20].
The optimal number of latent classes, G, is defined

following Tofighi and Enders [21] by the BIC (Bayesian
information criterion): the number of classes correspond-
ing to the minimum value of BIC is preferred. However,
the choice of G is also based on the number of patients
per class and the concordance between the a posteriori
classification derived from the model and expert opinion.

Class prediction and goodness-of-fit
Model goodness-of-fit can be assessed by a measure
of class prediction accuracy. The class membership can
be identified by computing the posterior probability of
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belonging to a class g for each subject, based on the esti-
mated model parameters. This probability is conditional
on the observed covariate vector, i.e. the longitudinal data
YYY and the event timesTTT , and is defined in Eq. (7):

πig
Y ,T = P(ci = g|YiYiYi,Ti, δi; θ̂θθG)

= π̂ig fYiYiYi|ci (YiYiYi|ci = g; θ̂G)αi(Ti|ci = g; θ̂G)δi Si(Ti|ci = g; θ̂G)
∑G

l=1 π̂il fYiYiYi|ci (YiYiYi|ci = l; θ̂G)αi(Ti|ci = l; θ̂G)δi Si(Ti|ci = l; θ̂G)
.

(7)

The subject i is assigned to a class g corresponding to
the maximum estimated a posteriori probability πig .
Other approaches to goodness-of-fit can be employed,

in particular those based on different types of residuals
corresponding to different sub-models. These approaches
will not be developed in the present paper.

Results
Simulation study
In the present study the properties of the JLCM are
assessed by Monte-Carlo simulations. Simulations focus
on the general model properties, on the model robustness
to the number of individuals and the number of events,
and on the quality of class separation.
The general framework for the simulation study is pre-

sented below.

Simulations design
The simulations are carried out for different set-
tings in terms of the number of individuals n, n =
{100, 500, 1000, 5000}, and in terms of the censoring rate
τ , τ = {0.05, 0.10, 0.15, 0.25, 0.50}, allowing to explore
both possible asymptotic directions: the number of indi-
viduals and number of observed events [22]. The capacity
of the model to distinguish between the latent classes is
investigated by considering two different settings in terms
of class separation: high separation (the classes are very
different in terms of longitudinal marker evolution) and
low separation (the classes are quite similar). The censor-
ing mechanism was independent from the event process
and no covariates were included in simulated models.
Given the complex likelihood function, the optimisation
algorithm may not always converge. That’s why for each
setting in terms of n, τ and class separation, 120 datasets
were generated to assure obtaining at least 100 results in
each setting. The distribution of each of the estimated
parameters was then analyzed in terms of normality, rel-
ative bias and coverage rate. The normality was assessed
graphically by quantile-quantile plots. Indeed, normality
tests would often reject the null hypothesis due to outliers
in parameter estimations (this situation is probable due to
the likelihood complexity; it results in local maxima, but
is rare in practice) and/or to high test power. The relative
bias for a parameter θ is calculated as:

RB(θ , n) =
∣
∣
∣
∣

1
K

∑K
h=1 θ̂n,h − θ

θ

∣
∣
∣
∣,

with 1
K

∑K
h=1 θ̂n,h the average parameter estimation from

the sample of n individuals over K Monte-Carlo runs, and
θ the real parameter value. The absolute value will be
considered.
The coverage rate was calculated for each model param-

eter as the percentage of coverage of the real value by the
estimated confidence interval.
The capacity of the model to distinguish the latent

classes is assessed by the percentage of correctly predicted
class memberships.

Data generation
The real parameters were chosen to mimic the real data,
described in Stamenic et al. paper [15], dealing with
a prognostic tool for individualized prediction of graft
failure risk within ten years after kidney transplanta-
tion, using serum creatinine progression as a longitudinal
marker. Following Eqs. (1 - 4), the generated data were
governed by the following general model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πi1 = Constant
for a 2-class modelξ01 = ln

(
πi1

1−πi1

)
, see Eq. (1)

Yij|(ci = g) = β0g + β1gtij + big + εig

big ∼ N
(
0, σ 2

b,g

)
, εig ∼ N

(
0, σ 2

ε,g

)

S(t)|(ci = g) = exp
(

−
(

t
ζ1g

)ζ2g
)

T� ∼ Weibull
(
ζ1g , ζ2g

)

M(t)|(ci = g) = exp
(

−
(

t
ζ̃1g

)ζ̃2g
)

C ∼ Weibull
(
ζ̃1g , ζ̃2g

)
,

M(t) being the survival function of the censoring dis-
tribution and C the censoring time. Note that the fact
that there is no covariate in logistic model for class mem-
bership implies constant probability for each class mem-
bership. The considered longitudinal model is a random
intercept mixed model and it implies that in Eq. (2),XXXT

1ij is
a zero matrix (no common covariates) andXXXT

2ij = (
1 tij

)
.

The considered survival and censoring distributions imply
that the survival and censoring times are Weibull ran-
dom variables. The parameters of the censoring distri-
bution were chosen empirically to meet the required
censoring rate given the corresponding survival distribu-
tion. These nuisance parameters are not presented in the
article.
The time points for repeated measures of the longitu-

dinal marker are fixed to 1, 3, 6, 12, 18 and 24 months,
following Stamenic et al. [15]. The parameters vector for
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a 2-classes model, with class common random effect and
error variance of mixed sub-model is as follows:

θθθ =
(
ξ01,β01,β11,β02,β12, σ 2

b , σ
2
ε , ζ11, ζ21, ζ12, ζ22

)
. (8)

The real values for the parameters were chosen as fol-
lows:

1 High separation framework.
This setting is directly derived from Stamenic et al.
[15], resulted in β01 = 170, β02 = 100, β11 = 88 by
year, β12 = 1.2 by year, σ 2

b,1 = σ 2
b,2 = 50 and

σ 2
ε,1 = σ 2

ε,2 = 60, ζ11 = 4.5, ζ21 = 2, ζ12 = 50,
ζ22 = 1.01.

2 Low separation framework.
In this setting the values of the mixed model from
high separation are divided by 2 to obtain quiet
similar classes in terms of longitudinal marker
evolution; survival model as well as random
parameters were not modified, resulting in
β01 = 135, β02 = 100, β11 = 44 by year, β12 = 1.2 by
year.

In both settings, the shape parameter for the Weibull
distribution for censoring was fixed to 1.5, inspired from
real life, wheremore censoring occurs with time. The scale
parameter for this distribution was empirically derived to
meet the required censoring rate. The probability of class
1 membership was set to 0.3 in both settings, resulting in
the logistic model parameter from Eq. (1) ξ01 = −0.84.
The examples of simulated trajectories for the high separa-
tion and low separation settings are illustrated in Fig. 1; the
observed longitudinal trajectories are rather confounded
in the low separation setting in comparison with the high
separation.

Normality assessment
The normality of the estimated parameters is assessed by
plotting quantile-quantile plots for each setting in terms of
classes, the number of individuals n and of the censoring
rate τ .
Figure 2 illustrates the results for the mixed and the sur-

vival sub-models, for 100 individuals, censoring rate 0.05
and 0.5 in the high separation setting. For small censoring
rate (0.05) the normality of all the parameters is globally
respected; heavy censoring (0.5) implies deviations from
normality for the parameters of the survival sub-model.
Similar trends are observed for the other settings in

terms of n and τ (results not presented). Note that the
normality of the longitudinal sub-model parameters is
not heavily impacted by small sample size and/or heavy
censoring. Also, the MLE’s normality is not considerably
influenced by the degree of class separation according to

the present simulation study (results not presented). How-
ever, this conclusion should be considered with caution,
since it can be different for different separation degrees.
As expected, departures from normality decrease with

increasing number of individuals (see Fig. 3 for the
Weibull scale and shape parameters, heavy censoring)
regardless of heavy censoring. Note that most of papers
dealing with asymptotic properties of survival models are
focused on the regression coefficients.Very few papers
focus on the Weibull distribution parameters. Sirvanci
and Yang [23] derives the asymptotic normality of the
Weibull model parameters for Type I censoring data (fixed
length of follow-up). However, in our study, empirically
the departures from normality are reported for small sam-
ple size in terms of the number of events and/or the
number of individuals (simulation results not presented
here); in this sense, the normality problem is not specific
to the joint latent class model, but is rather inherited from
survival analysis.

Relative bias assessment
The relative bias (RB) of class-specific parameters esti-
mates is illustrated in Figs. 4 and 5 for the high separa-
tion setting and in Figs. 6 and 7 for the low separation
setting. The detailed numerical results are provided in
Tables 1 and 2 for the high and low separation settings
respectively.
The general trends for the RB range and for its evolu-

tion according to the sample size and to the censoring rate
depend on model parameter and on degree of class sepa-
ration. Concerning the variance parameters (the variance
of error and of the random effect in the mixed sub-model)
there is no clear trend in their RB evolution; the following
trends are revealed for the remaining parameters:

• As for the absolute values, in the high separation
setting (Fig. 6 and Table 1), the RB is the most
important for two parameters of class 2: 1) the
survival sub-modelWeibull shape parameter (RB over
10% for small number of individuals) and 2) the mixed
sub-model slope parameter (RB varies from 10% to
120% depending on number of individuals and on the
censoring rate, the mean number of longitudinal
markers in the worse case (100 patients and a censor
of 50%) is 5.1). For the remaining parameters the RB
does not exceed 10%. The trend is quite similar for
the low separation setting (Fig. 6 and Table 2), but to
a higher extent: the RB varies from over 30% to 530%
in the worst setting (small n and high τ ).

• As for the impact of the censoring rate, the RB
increases linearly for a given number of individuals
according to the decreasing number of events
(increasing censoring rate). This trend is the same for
both settings in terms of degree of class separation,
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Fig. 1 Simulated survival curves and longitudinal marker trajectories that mimic the real data from Stamenic et al. [15]. The number of individuals
n = 500; the censoring rate τ = 0.05. Class 1: individual trajectories in darkgray, dashed line for mean trajectory; class 2: individual trajectories in
lightgray, solid line for the mean trajectory. Figure at the top left: Generated survival curves for two classes and resulted examples of individual
trajectories (same results for high separation and low separation settings). Figure on the top right: Simulated longitudinal marker evolution curves
and the resulted examples of individual trajectories for the high separation setting. Bottom figure: Simulated longitudinal marker evolution curves
and the resulted examples of individual trajectories for the low separation setting

but, in the same manner that the RB absolute values,
in a higher extent for the low separation setting.
Precisely, in the high separation setting the RB
decreases by around 1% for the parameters of class 1
(2-8% in the low separation case) and for around
3-5% (2-15% in the low separation case) for the
parameters of class 2, for the exception of the mixed
model slope: 100% decrease in the RB in the high

separation (respectively 400% in the low separation
setting) for τ decreasing from 50% to 5%). Note that
the linear trend for RB evolution in terms of τ is not
always respected for small n.

• As for the impact of the number of individuals, the
increasing n does not seem to strongly impact the
RB. Moreover, the Weibull shape parameter is more
influenced than the Weibull scale. Also, the low
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Fig. 2 Simulations results : quantile-quantile plot for the parameter estimations, high separation setting, n = 100. In black: censoring rate τ = 0.5, in
lightgray: τ = 0.05. Results for Weibull scale, Weibull shape, mixed model intercept and mixed model slope, (ζ1g , ζ2g , β0g , β1g respectively form
Eq. (8)) are presented. g = {1, 2}

separation setting is more influenced than the high
separation setting.

Note that class 2 has the least number of patients with a
lower risk of death; therefore the parameters of this class
are more affected by the censoring rate. Also, the high bias
for the class 2 slope parameter is explained by the small
theoretical value for this parameter (β12 = 1.2).

Coverage rate assessment
The coverage rate is globally satisfactory (refer to Tables 3
and 4 for the 95% coverage rates in the high and
the low separation settings respectively). However, the
large sample size in terms of the number of individu-
als results in smaller confidence intervals, entailing lower
empirical coverage rate. This trend is especially visible
for heavy censoring. Departures from normality already
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Fig. 3 Simulations results : quantile-quantile plot for the parameter estimations, high separation setting, censoring rate τ = 0.5. Results for Weibull
scale and Weibull shape parameters of class 2 (ζ12 and ζ22 respectively form Eq. (8)) according to number of individuals n are presented

mentioned for these settings can also be a cause of this
phenomenon.

Classmembership prediction assessment
The quality of the class membership prediction is glob-
ally satisfactory (Table 5): it is over 90% for the majority of
settings in terms of n and τ . However, this quality is glob-
ally weaker for the low separation setting (less than 95%
comparing to a rate higher than 95% for the high separa-
tion setting) and for heavy censoring (83-85% for the low

separation setting, censoring rate 0.5). A decreasing cen-
soring rate results in a 1% to 3% of the class identification
improvement for all n, for the exception of heavy censor-
ing τ . The sample size n does not considerably influence
the quality of predictions, and in the low separation setting
the prediction accuracy is around 3-6% weaker compared
to the high separation setting, for the exception of heavy
censoring cases.
The obtained simulations results can be summarized

as follows: in general the MLE properties of the model
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Fig. 4 Simulations results: relative bias of the class 1 parameter estimations according to the censoring rate τ and to the number of individuals n,
high separation setting. Results for mixed model intercept, mixed model slope, Weibull scale and Weibull shape, (β01, β11, ζ11, ζ21, respectively form
Eq. (8)) are presented. Same vertical scale is used for the four figures

parameters are impacted by the number of individuals as
well as by the number of observed events and the num-
ber of longitudinal observations, which are both governed
by the censoring rate. Note that the frequency of longitu-
dinal marker observations also determines the number of
observed measures, although this parameter is left fixed
in the present study.
The quality of class membership identification depends

on the number of observed events rather than on the

number of observed individuals. The degree of class sep-
aration, determined by the class-specific slope of the lon-
gitudinal model, influences the bias and the normality of
the MLE as well as the class identification accuracy. The
assessment of the model properties was carried out after
removing simulations with estimation convergence prob-
lems. The convergence problems are principally due to
initial parameter values used in numerical estimation pro-
cedure. Such situations are quite rare : 1/120 (0.8%) for the
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Fig. 5 Simulations results: relative bias of the class 2 parameter estimations according to the censoring rate τ and to the number of individuals n,
high separation setting. Results for mixed model intercept, mixed model slope, Weibull scale and Weibull shape, (β02, β12, ζ12, ζ22, respectively form
Eq. (8)) are presented. A specific vertical scale is used for each figure

setting n = 100 in high separation case and 9/120 times
(7.5%) for the setting n = 100 in low separation case.
Other settings were not impacted.

Real data application
In the present section, the analysis of the Amyotrophic
Lateral Sclerosis (ALS) progression using a joint latent
class model is presented.

ALS is a rapidly progressive and ultimately fatal neu-
rodegenerative disease with an average life expectancy of
3–5 years from symptoms onset. However, longer than
10-years survival has been reported in 5–10% of patients
[24, 25]. Despite numerous clinical trials dealing with
treatments aimed at survival increase, only riluzole exhib-
ited moderate efficacy [26]. One of the reasons which can
explain the negative results of clinical trials is a strong
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Fig. 6 Simulations results: relative bias of the class 1 parameter estimations according to the censoring rate τ and to the number of individuals n,
low separation setting. Results for mixed model intercept, mixed model slope, Weibull scale and Weibull shape, (β01, β11, ζ11, ζ21, respectively form
Eq. (8)) are presented. Same vertical scale is used for the four figures

heterogeneity of ALS patients in terms of the disease pro-
gression. The disease progression is generally measured
at specific time points, resulting in a longitudinal marker.
In this context, the joint latent class model, allowing to
capture the patients heterogeneity and to simultaneously
account for a longitudinal marker and a survival time, is
better suited to analyze the ALS data.
The objective of our application is two-fold. Firstly, it

is focused on capturing and describing the profiles of

ALS patients in terms of the survival probability, the dis-
ease progression and clinical characteristics, described by
covariates. Secondly, it aims at exploring the results in the
light of model properties revealed by the simulation study.

Data collection
The data were collected in the framework of the Trophos
prospective cohort study (TRO19622), a multicenter, ran-
domized, placebo controlled, phase II/III clinical trial,
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Fig. 7 Simulations results: relative bias of the class 2 parameter estimations according to the censoring rate τ and to the number of individuals n,
low separation setting. Results for mixed model intercept, mixed model slope, Weibull scale and Weibull shape, (β02, β12, ζ12, ζ22, respectively form
Eq. (8)) are presented. A specific vertical scale is used for each figure

which showed no efficacy of olesoxime in ALS [27]. The
cohort consisted of 512 patients recruited across 15 Euro-
pean centres during the three-years period (2009–2011).
The study time scale is the time since inclusion. The mean
age of patients was 56 (sd = 11.2) years at inclusion and
55 (sd = 11.2) years at symptoms onset, with 331 (64.6%)
men and 181 (35.4%) women. The diagnosis was defi-
nite in 107 patients (20.9%) and probable in 404 patients
(79.1%) [28]; 101 (19.8%) patients suffered from bulbar

form. The disease duration spanned between 6 and 36
months. Patients were treated with 50mg riluzole twice a
day for at least one month and had a baseline slow vital
capacity (SVC) of 70%.
All patients were examined at inclusion and every 3

months thereafter for a maximum of 18 months for
clinical, biochemical and hematological parameters. The
disease-specific functional rating scale, revised ALSFRS
(ALSFRS-R), was also assessed 1 month post-inclusion
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Table 1 Simulations results: relative bias of model parameters for high separation setting according to the number of individuals, n,
and to the censoring rate, τ

Longitudinal sub-model Survival sub-model

n τ σ̂b σ̂ε

β̂0g β̂1g ζ̂1g ζ̂2g

g = 1 g = 2 g = 1 g = 2 g = 1 g = 2 g = 1 g = 2

100 5 0.1053 21.1797 0.0429 1.3974 0.0281 10.7052 0.3018 3.2362 2.5023 9.8304

10 0.0961 21.2395 0.1421 1.6954 0.0748 38.1642 0.2923 3.1830 2.4243 10.0367

15 0.0997 21.3986 0.2846 1.9987 0.1936 59.0676 0.4148 3.6286 2.3160 10.5283

25 0.0824 21.3810 0.4687 3.0567 0.4054 82.7586 0.4455 3.6646 2.2878 11.9084

50 1.7125 21.8392 1.3486 5.3694 0.8271 120.1328 1.1201 7.5050 3.5401 14.0533

500 5 0.2267 21.4488 0.1534 0.1412 0.0685 25.4826 0.0591 0.5932 0.0332 0.2021

10 0.2230 21.3820 0.2346 0.2261 0.1317 35.8174 0.1892 0.4996 0.1561 0.0727

15 0.2062 21.4656 0.3380 0.4738 0.2027 48.1685 0.3062 0.0501 0.1232 0.0229

25 0.2011 21.4412 0.5670 1.3390 0.4127 74.1988 0.2546 0.6707 0.4496 0.1703

50 0.1945 21.6664 1.3876 3.7674 0.9627 116.6916 0.7377 1.6005 0.6217 1.4936

1000 5 0.0004 20.1935 0.3260 0.7563 0.2925 8.4122 0.1684 0.1125 0.4160 0.2180

10 0.0015 20.2002 0.4197 1.0629 0.3599 19.7922 0.3399 0.0777 0.4994 0.0130

15 0.0117 20.1928 0.5181 1.3744 0.4324 31.9018 0.3658 0.2015 0.3471 0.1781

25 1.6848 20.2110 0.7436 2.1019 0.6690 60.0292 0.4954 0.6364 0.1559 0.4325

50 0.0072 20.3934 1.5776 4.6004 1.0896 102.7405 0.8822 1.3124 0.5011 1.9393

5000 5 1.6342 19.9957 0.0242 0.5270 0.2185 16.5831 0.1929 0.6064 0.0605 0.2997

10 1.6315 19.9945 0.1226 0.8526 0.3075 31.0770 0.2985 0.7797 0.0810 0.3320

15 0.0380 19.9728 0.2215 1.2091 0.3905 44.6046 0.4162 0.8876 0.0823 0.5370

25 0.0449 20.0112 0.4584 1.9183 0.5515 72.0024 0.6396 1.2441 0.0648 0.8037

50 0.0400 20.2601 1.2738 4.3253 1.0406 113.4169 1.0629 1.8816 0.5238 1.7593

The estimations of the error and the random intercept standard deviations (σ̂ε and σ̂b respectively), of the intercept and the slope (β̂0g , β̂1g respectively) from the

longitudinal sub-model and of Weibull scale and shape from the survival sub-model (ζ̂1g and ζ̂2g respectively) are presented. g: class membership identification

and then every 3 months until 18 months maximum. Sur-
vival time was defined as the duration between the date of
disease onset and the date of a composite end-point: ALS-
related death, tracheotomy, beginning of the non-invasive
positive pressure ventilation (NIPPV) over 23 hours per
day for 14 consecutive days or the date when last known
to be alive.

Model construction
In terms of class identification, from 1 to 4 latent classes
were considered. A quadratic trend for the longitudinal
marker evolution was specified, and the corresponding
mixed model was specific to each class, meaning that
the quadratic terms were eliminated if not significantly
different from 0, leading to a linear trend. The model per-
formance in terms of class identification was assessed by
the BIC.
To assess the impact of the sample size on parame-

ter estimations, the estimations were carried out for the
whole sample (512 patients) and for a subset of 100 ran-
domly chosen patients. The results from the reduced
sample appeared to be slightly different (results not

presented here), reflecting the potential bias, revealed by
the simulation study.
To better understanding of latent classes, modeling with

and without covariates was performed. The covariates
were included into the survival and themixed sub-models,
whereas the logistic regression, describing the probability
of belonging to a class, was defined without covariates in
all settings.

• Amodel without covariates (Eq. 9) includes a
random-intercept mixed model with a class-specific
quadratic function of time specified for the
longitudinal marker evolution Yij; the variances of the
random effect (σ 2

b ) and of the error (σ 2
ε ) were

considered common to all classes. Survival curves are
also considered as class-specific.
The originally interval-censored survival times,
collected at baseline and at months 1, 3, 6, 9, 12, 15
and 18, were imputed from a Weibull distribution of
these interval-censored dates to obtain the exact
event times. The imputation was carried out in order
to obtain the setting close to that used in simulations.
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Table 2 Simulations results: relative bias of model parameters for low separation setting according to the number of individuals, n, and
to the censoring rate, τ

Longitudinal sub-model Survival sub-model

n τ σ̂b σ̂ε

β̂0g β̂1g ζ̂1g ζ̂2g

g = 1 g = 2 g = 1 g = 2 g = 1 g = 2 g = 1 g = 2

100 5 0.2157 22.3405 0.9001 1.1061 0.6187 77.4912 0.1821 5.5733 2.6803 14.4064

10 3.3939 22.1855 1.1485 0.5399 0.2169 129.4999 0.7945 5.9039 2.4429 14.9468

15 0.2315 22.2708 1.3985 0.0946 0.4619 175.0008 1.4886 6.5439 2.4417 16.5623

25 1.5321 22.1504 1.8233 1.7052 1.6413 273.7677 3.1293 6.4496 3.1511 20.3027

50 1.3699 21.7546 3.6344 5.3290 4.6976 532.4839 8.3763 9.3616 7.9156 30.6630

500 5 0.2556 21.5565 0.2726 0.0707 0.6062 36.0688 0.4649 0.1000 0.0440 0.5662

10 1.9185 21.3569 0.4126 0.8612 1.1048 79.5267 1.1380 0.1392 0.0640 0.9334

15 3.4729 21.2975 0.6091 1.3911 1.5773 120.2866 1.6905 0.6533 0.1375 1.3348

25 0.1728 20.9193 0.9847 3.0168 2.8914 212.8892 3.0037 1.7108 0.1707 2.2996

50 1.7796 19.8756 2.3534 7.4185 7.8224 444.8984 8.3268 2.8825 0.9417 4.7449

1000 5 0.0184 20.1206 0.5111 0.9550 0.8944 44.8903 0.6416 0.3375 0.6727 0.2864

10 0.0302 20.0392 0.6927 1.5469 1.3819 87.2876 1.2630 0.2644 0.8368 0.0338

15 0.0424 19.8918 0.8955 2.1650 1.8632 139.1406 1.8765 0.0905 0.9058 0.2346

25 0.0763 19.6487 1.3465 3.5027 3.2279 240.5047 3.3728 0.7920 1.0379 0.6998

50 0.2146 18.4371 2.7442 8.0212 7.5645 482.3023 8.8312 2.2757 1.4414 3.6641

5000 5 1.6360 19.8545 0.0630 0.8358 0.6849 48.0499 0.6231 0.9167 0.0643 0.5431

10 0.0529 19.7483 0.2447 1.4861 1.2312 95.3766 1.2469 1.1418 0.1531 0.6085

15 1.5950 19.6407 0.4366 2.1381 1.7922 142.7663 1.9299 1.3603 0.2632 0.9193

25 0.1003 19.3803 0.8741 3.5248 3.0292 240.2600 3.4624 1.9415 0.5656 1.3986

50 0.2294 18.2465 2.2807 7.9142 7.5368 487.8892 8.8603 3.0965 0.9679 3.1725

The estimations of the error and the random intercept standard deviations (σ̂ε and σ̂b respectively), of the intercept and the slope (β̂0g , β̂1g respectively) from the

longitudinal sub-model and of Weibull scale and shape from the survival sub-model (ζ̂1g and ζ̂2g respectively) are presented. g: class membership identification

Specifically, a Weibull distribution was first fitted to
the interval-censored dates, and then the exact event
times were sampled from this distribution truncated
by the limits of the observed intervals for each patient.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πig = eξ0g
∑G

l=1 e
ξ0l
, from Eq. (1)

Yij|(ci = g) = β0g + β1gtij + β2gt2ij + b0i + b1itij
+b2it2ij + εi,

bbbi ∼ N (0,BBB) , εij ∼ N
(
0, σ 2

ε

)
, from Eq. (2)

S(ti)|(ci = g) = exp
(

−
(

ti
ζ1g

)ζ2g
)

,

T� ∼ Weibull
(
ζ1g , ζ2g

)
, from Eq. (4)

(9)

with BBB covariance matrix of random effects.

• Amodel with covariates (Eq. 10, the hazard
function is specified for easier interpretation) was
specified based on clinical expertise and a preliminary
unpublished study. This model includes baseline
individual characteristics in the random intercept
mixed sub-model and in the survival sub-model; the
impact of these characteristics is specified common
to all classes, following the clinical considerations.
The quadratic term of time for the mixed sub-model
appeared to be not significantly different from 0 for
this model and is thus removed. Baseline covariates
and their interactions with time were as well chosen
from clinical expertise.
The following abbreviations are used: AO (Age at
onset), SO (Symptom Onset), BMI (Body Mass
Index), MUSC (Muscular capacity), SVC (Slow vital
capacity), MCV (Mean corposcular volume).
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Table 3 Simulations results: empirical coverage rates of estimated 95% confidence intervals according to number of individuals, n, and
to the censoring rate, τ , high separation setting

n τ
β̂0g β̂1g ζ̂1g ζ̂2g

g = 1 g = 2 g = 1 g = 2 g = 1 g = 2 g = 1 g = 2

100 5 0.9664 0.9496 0.9328 0.9496 0.8824 0.8655 0.9580 0.9160

10 0.9664 0.9496 0.9328 0.9412 0.8571 0.8655 0.9496 0.9076

15 0.9664 0.9496 0.9412 0.9496 0.8824 0.8908 0.9412 0.9328

25 0.9580 0.9496 0.9412 0.9580 0.8487 0.7899 0.9496 0.9076

50 0.9328 0.9076 0.9748 0.9328 0.8403 0.7899 0.8824 0.8571

500 5 0.9667 0.9667 0.9833 0.9500 0.9250 0.9167 0.9333 0.9500

10 0.9667 0.9750 0.9833 0.9417 0.9583 0.9250 0.9250 0.9500

15 0.9667 0.9667 0.9750 0.9750 0.9250 0.9083 0.9417 0.9333

25 0.9583 0.9500 0.9750 0.9417 0.8667 0.7750 0.9083 0.9167

50 0.8750 0.9167 0.9333 0.9083 0.9000 0.8333 0.9333 0.9250

1000 5 0.9833 0.9333 0.9500 0.9250 0.8667 0.8750 0.9500 0.9417

10 0.9750 0.9167 0.9500 0.9333 0.8833 0.9417 0.9583 0.9417

15 0.9750 0.9167 0.9333 0.9333 0.8833 0.8917 0.9833 0.9583

25 0.9500 0.9000 0.9167 0.9083 0.8917 0.8917 0.9417 0.9000

50 0.8667 0.8000 0.8917 0.9083 0.9000 0.7000 0.9083 0.9167

5000 5 0.9750 0.9083 0.9333 0.8750 0.8917 0.9000 0.9667 0.9500

10 0.9833 0.9083 0.9417 0.8583 0.9000 0.9250 0.9500 0.9417

15 0.9667 0.8667 0.9083 0.8333 0.8250 0.8750 0.9417 0.9333

25 0.9333 0.7917 0.9000 0.8250 0.8167 0.8667 0.8917 0.9333

50 0.5000 0.2833 0.8000 0.7167 0.7750 0.7750 0.8500 0.9000

The results for the intercept and the slope from the longitudinal sub-model (β̂0g , β̂1g respectively) and for the Weibull scale and shape from the survival sub-model (ζ̂1g and

ζ̂2g respectively) are presented. g: class identification

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πig = eξ0g
∑G

l=1 e
ξ0l
, from Eq. (1)

Yij|(ci = g) = β0g + β1gtij + γ1SOi + γ2BMIi+
γ3MUSCi + γ4SVCi + γ5MCVi+
tij × (γ6SOi + γ7MUSCi + γ8SVCi)+
b0i + b1itij + εij,
bi ∼ N

(
0, σ 2

b
)
,

εij ∼ N
(
0, σ 2

ε

)
from Eq. (2)

αi(t)|(ci = g) = ζ
ζ2g
1g ζ2gtζ2g−1

︸ ︷︷ ︸
α0(t)

exp(ϑ1SOi + ϑ2BMIi+

ϑ3MUSCi + ϑ4SVCi+
ϑ5AOi), from Eq. (3)

(10)

Real data analysis results
According to the BIC, 4 latent classes were retained for the
model without covariates (BIC=15110 for 1 latent class,
14974 for 2 classes, 14911 for 3 latent classes and 14901
for 4 latent classes)and 2 latent classes for the model
with covariates (BIC=14517 for 1 latent class, 14408 for 2

classes, 14410 for 3 latent classes and 14420 for 4 latent
classes). Estimation results are presented in Table 6 and
in Table 7 for the two models respectively. Models with-
out and with covariates using the complete cases sample
included 511 and 497 patients respectively. The difference
in the number of patients is caused by missing covariates.
Estimated survival curves and predicted ALSFRS evolu-
tion profiles are illustrated in Figs. 8 and 9 for the two
considered models respectively.
The resulting latent classes are quite distinct both for

the 4-classes no covariate model and for the 2-classes
model including the covariates. The classes are character-
ized by a degree of ALSFRS decline and by the survival
probability: a more rapid ALSFRS evolution is associated
to a worse survival prognosis (refer to Figs. 8 and 9). In
particular, the latent classes identified within the model
without covariates can be interpreted in the following
manner (refer to Fig. 8 for illustration).

• Classes 1 and 4 from the model without covariates
are each composed of 5.1% of population. They
represent patients with the most rapid decrease of
ALSFRS and the highest risk of death, with a median
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Table 4 Simulations results: empirical coverage rates of estimated 95% confidence intervals according to number of individuals, n, and
to the censoring rate, τ , low separation setting

n τ
β̂0g β̂1g ζ̂1g ζ̂2g

g = 1 g = 2 g = 1 g = 2 g = 1 g = 2 g = 1 g = 2

100 5 0.9664 0.9496 0.9328 0.9496 0.8824 0.8655 0.9580 0.9160

10 0.9664 0.9496 0.9328 0.9412 0.8571 0.8655 0.9496 0.9076

15 0.9664 0.9496 0.9412 0.9496 0.8824 0.8908 0.9412 0.9328

25 0.9580 0.9496 0.9412 0.9580 0.8487 0.7899 0.9496 0.9076

50 0.9328 0.9076 0.9748 0.9328 0.8403 0.7899 0.8824 0.8571

500 5 0.9667 0.9667 0.9833 0.9500 0.9250 0.9167 0.9333 0.9500

10 0.9667 0.9750 0.9833 0.9417 0.9583 0.9250 0.9250 0.9500

15 0.9667 0.9667 0.9750 0.9750 0.9250 0.9083 0.9417 0.9333

25 0.9583 0.9500 0.9750 0.9417 0.8667 0.7750 0.9083 0.9167

50 0.8750 0.9167 0.9333 0.9083 0.9000 0.8333 0.9333 0.9250

1000 5 0.9833 0.9333 0.9500 0.9250 0.8667 0.8750 0.9500 0.9417

10 0.9750 0.9167 0.9500 0.9333 0.8833 0.9417 0.9583 0.9417

15 0.9750 0.9167 0.9333 0.9333 0.8833 0.8917 0.9833 0.9583

25 0.9500 0.9000 0.9167 0.9083 0.8917 0.8917 0.9417 0.9000

50 0.8667 0.8000 0.8917 0.9083 0.9000 0.7000 0.9083 0.9167

5000 5 0.9750 0.9083 0.9333 0.8750 0.8917 0.9000 0.9667 0.9500

10 0.9833 0.9083 0.9417 0.8583 0.9000 0.9250 0.9500 0.9417

15 0.9667 0.8667 0.9083 0.8333 0.8250 0.8750 0.9417 0.9333

25 0.9333 0.7917 0.9000 0.8250 0.8167 0.8667 0.8917 0.9333

50 0.5000 0.2833 0.8000 0.7167 0.7750 0.7750 0.8500 0.9000

The results for the intercept and the slope from the longitudinal sub-model (β̂0g , β̂1g respectively) and for the Weibull scale and shape from the survival sub-model (ζ̂1g and

ζ̂2g respectively) are presented. g: class identification

survival around 7 months and 14 months for class 1
and 4 respectively.

• Class 2 is the largest (68.5% of patients) and is
characterized by the slowest evolution of ALSFRS
and the highest survival rate (median survival over 20
months).

• Class 3 is composed of 21.3% of population and
represents an “average” class with an ALSFRS
progression similar to that in class 1 but with a lower
baseline value: from Table 6 we observe the baseline
value of 37 in class 3 vs 39 for class 2. The survival
probability in class 3 is lower than that in class 2, with
a median survival around 15 months.

The latent classes identified within the model with
covariates can be interpreted in the following manner
(refer to Fig. 9 for illustration).

• Class 1 is the largest (92.6% of patients), is
characterized by a moderate ALSFRS progression
(-2.3 point by months) and by a better survival
prognosis (over 20 months median survival
compared to around 8 months for class 2, for a
patient with the average covariates vector).

• Class 2 is composed only of 37 patients (7.4%) and
describes a specific patient profile, worsening and
dying very quickly.

Note that after adjustment on the pre-specified fac-
tors from literature, known to be associated to ALSFRS
progression and survival, two latent patient profiles are
identified by the model, indicating a lack of explanatory
capacity of these factors and motivating the use of the
latent class model. This remaining latency in the model
with covariates confirms the interest of using the JLCM to
analyze this kind of data, and suggests a need for further
clinical analysis of the disease progression.

Discussion
Several general considerations and recommendations
concerning the use of the joint latent class model can be
derived from the results of simulations.
To summarize, the departures from normality are par-

ticularly present for the survival sub-model parameters,
and these departures disappear for a large enough num-
ber of observed events (small censoring rate) and/or large
enough sample size (from 500 individuals normality is
generally respected even for heavy censoring).
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Table 5 Simulations results: class identification accuracy,
calculated as the rate of correctly predicted class memberships,
according to the number of individuals, n, and to the censoring
rate, τ . The difference between the rates of the high and the low
separation settings is provided

n τ High separation Low separation Difference

100 5 0.9760 0.9418 -0.0342

10 0.9767 0.9347 -0.0420

15 0.9748 0.9248 -0.0500

25 0.9689 0.9039 -0.0650

50 0.9556 0.8335 -0.1221

500 5 0.9790 0.9440 -0.0350

10 0.9778 0.9376 -0.0402

15 0.9764 0.9321 -0.0443

25 0.9720 0.9148 -0.0572

50 0.9586 0.8458 -0.1128

1000 5 0.9814 0.9477 -0.0337

10 0.9798 0.9419 -0.0379

15 0.9782 0.9354 -0.0428

25 0.9745 0.9186 -0.0559

50 0.9605 0.8488 -0.1017

5000 5 0.9817 0.9480 -0.0337

10 0.9801 0.9417 -0.0384

15 0.9784 0.9348 -0.0436

25 0.9748 0.9189 -0.0559

50 0.9618 0.8504 -0.1114

In terms of the relative bias, the trends are more com-
plex. The parameters of the survival sub-model are also
more impacted, especially for a small sample size n. The
large number of individuals does not compensate for
heavy censoring, as it was the case for normality. There
is no particular trend in terms of n, except for the sur-
vival sub-model parameters, whose bias is considerably
increased for n = 100. The bias decreases quasi lin-
early for almost all parameters with increasing number
of observed events (decreasing censoring rate). The esti-
mations in the low separation case are less robust to the
sample size and to the censoring rate than in the high
separation case.
Finally, the class identification accuracy is slightly

higher for the high separation setting and for smaller cen-
soring, but not considerably influenced by the number of
individuals, except for the case of heavy censoring; in the
low separation setting the class identification accuracy is
quite poor.
In the light of the obtained results, several remarks can

be formulated concerning the general model usability.
Concerning implementation, the low separation setting,

i.e., the small difference in the longitudinal model slopes,

Table 6 Real data results: parameter estimates with standard
errors and p-values from the four-latent classes modelwithout
covariates

number of observations 2591

number of patients 511

average number of longitudinal measure 5

number of events 132

censoring rate 0.74

Sub-model Parameter Estimate (se) p-value

Multinomial logistic
regression

ξ01 -0.29 (0.49) 0.55

ξ02 2.26 (0.44) < 0.001

ξ03 1.21 (0.53) 0.022

Weibull survival model ζ11 0.37 (0.02) < .001

ζ21 1.52 (0.13) < 0.001

ζ12 0.12 (0.02) < 0.001

ζ22 1.25 (0.14) < 0.001

ζ13 0.24 (0.01) < 0.001

ζ23 1.56 (0.12) < 0.001

ζ14 0.26 (0.01) < 0.001

ζ24 2.02 (0.31) < 0.001

Linear mixed model : fixed
effects

β01 35.22 (1.11) < 0.001

β11 -5.29 (0.32) < 0.001

β21 0.31 (0.04) < 0.001

β02 39.37 (0.34) < 0.001

β12 -0.52 (0.06) < 0.001

β22 -0.01 (0.00) 0.007

β03 37.44 (0.66) < 0.001

β13 -1.92 (0.16) < 0.001

β23 0.04 (0.01) < 0.001

β04 39.00 (1.30) < 0.001

β14 -0.36 (0.20) < 0.001

β24 -0.10 (0.02) < 0.001

Linear mixed model :
random effects

σ 2
b0

22.93

σ 2
b1

0.20

σ 2
b2

0.00

σ 2
ε ,1 1.67

the likelihood optimization procedure is more likely to
converge to a local maxima. Thus, several estimations
with different initial parameter values should be carried
out to assure that the obtained estimation is the global
maxima.
Concerning the general model properties, the following

should be accounted for.
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Table 7 Real data results: parameter estimates with standard
errors and p-values from the two-latent classes modelwith
covariates

number of observations 2525

number of patients 497

average number of longitudinal measure 5

number of events 129

censoring rate 0.74

Sub-model Parameter Estimate (se) p-value

Multinomial logistic regression ξ01 2.22 (0.31) < 0.001

Weibull model ζ11 0.48 (0.17) 0.004

ζ21 1.48 (0.08) < 0.001

ζ12 0.68 (0.21) 0.001

ζ22 1.64 (0.12) < 0.001

ϑ1 -0.05 (0.01) 0.008

ϑ2 -0.05 (0.03) 0.079

ϑ3 -0.03 (0.01) < 0.001

ϑ4 -0.41 (0.12) < 0.001

ϑ5 0.04 (0.01) < 0.001

Linear mixed model : fixed effects β̂01 9.79 (4.02) 0.015

β11 -2.32 (0.27) < 0.001

β02 7.83 (4.12) 0.057

β12 -4.06 (0.39) < 0.001

γ1 (SO) -0.06 (0.02) < 0.001

γ2 (BMI) -0.13 (0.05) 0.009

γ3 (MUSC) 0.16 (0.00) < 0.001

γ4 (SVC) 1.04 (0.18) < 0.001

γ5 (MCV) 0.10 (0.04) 0.007 1

γ6 (SO×tj) 0.02 (0.00) < 0.001

γ7 (MUSC×tj) 0.01 (0.00) < 0.001

γ8 (SVC×tj) 0.06 (0.02) 0.018

Linear mixed model : random
effects

σ 2
b0

14.10 (0.00)

σ 2
b1 0.18

σ 2
ε ,1 1.97

Note: the following covariates and their interactions with time (if significant) are
presented: SO (Symptom Onset), BMI (Body Mass Index), MUSC (Muscular capacity),
SVC (Slow vital capacity), MCV (Mean corposcular volume)

1 Small sample size in terms of the number of
individuals results in deviations from normality,
especially for the survival model parameters. The
provided confidence intervals may not be valid.

2 Heavy censoring implies bias in parameter
estimation, especially in case of weak separation
between latent classes. This bias is not compensated
by large sample size.

3 Heavy censoring gives poor class identification
accuracy, especially in the case of weak separation
between latent classes.

4 The model parameters are generally more sensible to
censoring rate than to the number of individuals in
terms of bias, thus, increasing the time of observation
is more beneficial for the accuracy of estimates than
increasing the sample size in terms of the number of
individuals.

5 In case of poor separation between latent classes, the
bias increases and the class predictions accuracy
decreases, the results should be interpreted with
caution.

6 Small latent groups with few events (heavy censoring)
should be characterized with caution, since the
parameter estimations can be considerably biased.

As for the real data application results, using the joint
latent class model for the described data is beneficial.
Indeed, the latency remains in data after adjustment on
covariates known from clinical expertise. Note however
that the observed ALSFRS profiles are rather distin-
guished, i.e. the observed data are close to the high separa-
tion setting, implying better general results. As shown by
simulations, in case of lower separation, it could be more
difficult to obtain and interpret the latent classes. More-
over, the results obtained from the whole and reduced
samples differ (results not presented). Thus, care should
be taken when interpreting the parameters derived from
small samples due to possible bias and inference problems
resulting from departures from normality.
In the present paper, we focus on JLCM as the approach

to account for unobserved heterogeneity when modelling
censored longitudinal outcomes. Other alternatives to this
approach exist as the mixed latent Markov models pro-
posed by Bartolucci et al.

Conclusion
The JLCM properties have been evaluated. We have illus-
trated the discovery in practice and highlights the use-
fulness of the joint models with latent classes in this
kind of data even with pre-specified factors. We made
some recommendations for the use of this model and
for future research. Further work is needed to assess the
role of covariates, their place in different sub-models of
the JLCM, and the impact of their omission on parame-
ter estimations and class membership identification. Also,
precise recommendations concerning a minimum num-
ber of events or individuals needed to obtain satisfac-
tory results within the JLCM can be formulated. Impact
of longitudinal observation frequency on parameter
estimations and latent classes identification can also be
study considered in further work.
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Fig. 8 Real data results: class-specific estimations of the mean ALSFRS evolution and of the survival probability for the model without covariates

Fig. 9 Real data results: class-specific estimations of the ALSFRS evolution and of the survival probability for a model with covariates. The mean
values of explanatory variables were used for illustration
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