IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease

Helena Brigas, Miguel Ribeiro, Joana Coelho, Rui Gomes, Victoria Gomez-Murcia, Kevin Carvalho, Emilie Faivre, Sara Costa-Pereira, Julie Darrigues, Afonso Antunes de Almeida, et al.

To cite this version:

HAL Id: inserm-03366653
https://inserm.hal.science/inserm-03366653
Submitted on 5 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease

Graphical abstract

Highlights

- IL-17-producing cells accumulate in the brain and the meninges of 3xTg-AD mice
- The increase of IL-17 producers associates with short-term memory deficits
- Neutralization of IL-17 prevents cognitive impairments and synaptic dysfunction
- IL-17 triggers Alzheimer’s disease onset independently of Aβ and tau pathology

Authors
Helena C. Brigas, Miguel Ribeiro, Joana E. Coelho, ..., Bruno Silva-Santos, Luísa V. Lopes, Julie C. Ribot

Correspondence
lvlopes@medicina.ulisboa.pt (L.V.L.), jribot@medicina.ulisboa.pt (J.C.R.)

In brief
Using a mouse model of Alzheimer’s disease, Brigas et al. demonstrate that the onset of cognitive decline associates with an accumulation of IL-17-producing cells in the brain and the meninges. Targeting IL-17 into the ventricle prevents short-term memory and neuronal synaptic plasticity deficits at early stages of disease.
Neuroinflammation in patients with Alzheimer’s disease (AD) and related mouse models has been recognized for decades, but the contribution of the recently described meningeal immune population to AD pathogenesis remains to be addressed. Here, using the 3xTg-AD model, we report an accumulation of interleukin-17 (IL-17)-producing cells, mostly γδ T cells, in the brain and the meninges of female, but not male, mice, concomitant with the onset of cognitive decline. Critically, IL-17 neutralization into the ventricles is sufficient to prevent short-term memory and synaptic plasticity deficits at early stages of disease. These effects precede blood-brain barrier disruption and amyloid-beta or tau pathology, implying an early involvement of IL-17 in AD pathology. When IL-17 is neutralized at later stages of disease, the onset of short-memory deficits and amyloidosis-related splenomegaly is delayed. Altogether, our data support the idea that cognition relies on a finely regulated balance of "inflammatory" cytokines derived from the meningeal immune system.
IL-17+ cells accumulate in the CNS at the onset of cognitive decline in 3xTg-AD mouse model

An increase of IL-17 levels in the serum has been linked to dis-
function and neuronal death (Siffrin et al., 2010; Yang et al.,
2017). In line with this, neutralization of IL-17 was shown to
rescue neuroinflammation and memory impairments induced by
direct Aβ administration (Cristiano et al., 2019). However, the
impact of IL-17 on brain cognitive function at the onset and
during the course of AD remains to be addressed.

Herein, we report a substantial increase of IL-17-producing T
cells, mostly γδ T cells, in the CNS of a transgenic model of
AD—3xTg-AD mice—at early stages of the disease. Interest-
ingly, this phenotype associated with cognitive deficits observed
in females, but not in males, thus translating the sexual dimor-
phism observed in patients with AD (Fisher et al., 2019). Import-
antly, anti-IL-17 monoclonal antibody (mAb) intracerebro-
ventricular (ICV) treatment of females prevented short-term
memory deficits and synaptic plasticity impairments, prior to
the detection of Aβ or tau pathologies. Our data therefore
strongly suggest that exacerbated levels of meningeal IL-17 pro-
mote synaptic dysfunction underlying the cognitive decline in
early stages of AD.

RESULTS

IL-17+ cells accumulate in the CNS at the onset of cognitive decline in 3xTg-AD mouse model

We hypothesized that IL-17 could trigger AD onset; therefore,
we assessed whether changes in cognitive function would be
associated with alterations on the provision of IL-17 in the
CNS or in the periphery. For this, we analyzed by flow cytom-
etry the brain, meninges, cervical lymph nodes (cLNs), and
spleens of WT and 3xTg-AD mice upon disease progression
(Figure 2). We found that, at the onset of memory deficits
(5 to 6 months of age), the meninges, the brain, and the cLNs
of female 3xTg-AD mice, but not the spleen, showed higher
percentages and absolute numbers of IL-17A+ cells compared
with age-matched WT controls (Figures 2A–2C). These differ-
ences on IL-17+ cells were maintained at later stages (8 to
9 months of old). Interestingly, in contrast to females, 3xTg-
AD male mice—that did not display particular cognitive decline at
5 months of age—did not exhibit any accumulation of IL-17+ cells
(Figures 2B and 2C). This led us to hypothesize that exac-
erbated IL-17 associates with memory deficits at the onset of
AD, selectively in female mice (which were used in all subse-
quent experiments).

Figure 1. Age-dependent sexual dimorphism in 3xTg-AD mice: only females display cognitive deficits starting at 5 months of age

WT and 3xTg-AD females and males 2 to 3 months old (n = 10–15 for female mice; n = 9–10 for male mice), 5 to 6 months old (n = 20–34 for female mice; n = 9–16 for male mice), and 8 to 9 months old (n = 8–9 for female mice; n = 4–5 for male mice) were tested in the (A and B) MWM-maze, (C) Y-maze, (D) open field, and (E) elevated plus maze.

(A) The escape latency, i.e., the time required for the mice to find and climb onto the platform, was recorded for 60 s.

(B) % time in the quadrant where the platform was evaluated, in the 60-s probe test.

(C) The discrimination ratio between novel (N) and the other (O) arm was evaluated.

(D) Animals were placed in a box for 5 min and allowed to explore, and total distance (cm) was evaluated.

(E) Anxiety was evaluated by the total number of transitions between open and closed arms.

Results are representative of 1–3 independent experiments. Error bars, mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 as calculated by one-way ANOVA or t test.
γδ T cells are the major source of IL-17 in the CNS of 3xTg-AD mice

IL-17 can be produced by CD4⁺ T cells, CD8⁺ T cells, γδ T cells, group 3 innate lymphoid cell (ILC3), and (natural killer) NKT cells, among other immune subsets (Hatfield and Brown, 2015; Zenaro et al., 2015; Kwong et al., 2017). In our experimental context, CD3⁺ T cells accounted for most of the IL-17⁺ CD45⁺ cells in the meninges, brain, and cLNs of WT and AD mice (Figure 3A). In the healthy steady state, γδ T cells are known to be the main source of IL-17 in the meninges (Benakis et al., 2016; Ribeiro et al., 2019). Expectedly, IL-17 was mainly produced by γδ T cells in both WT and AD mice (Figure 3A). Also worth mentioning are other sources of meningeal IL-17, namely CD4⁺ or CD8⁺ T cells as well as CD3⁻ non-T cell leukocytes, including ILC3s (Hatfield and Brown, 2015; Kwong et al., 2017) and neutrophils (Zenaro et al., 2015; Figures 3A and 3B). Accordingly to the observed accumulation of meningeal IL-17⁺ cells at AD onset (Figures 2A and 2B), the percentages of γδ T cells, of IL-17⁺ cells among γδ T cells, as well as the numbers of IL-17-producing γδ (γδ17) T cells were significantly higher in the meninges of 5- to 6-month-old AD mice compared with aged-matched WT controls (Figure 3B). Interestingly, this accumulation was associated with an increase of the myeloid compartment in the meninges, brain, and cLNs of AD female mice (Figures S1A and S1B). In fact, γδ T cell numbers positively correlated with the numbers of macrophages, monocytes, and neutrophils in the meninges (Figure 3C).

Of note, γδ T cells from WT and AD mice displayed a typical signature of IL-17 producers, being enriched for the expression of CCR6, RORγt, and IL-1R, when compared to their αβ counterparts, as well as a particularly activated phenotype, enriched for CD44⁺/C0⁺ CD69⁺ cells (Figures S2A and S2B). Importantly, we observed a similar percentage of γδ17 T cells expressing Ki67, a marker of cell proliferation (Figure S2B). In the healthy meninges, γδ T cell receptor (TCR) repertoire is mostly restricted to gamma chain variable region 6 (Vγ6) (that was operationally defined by default as double negative for Vγ1 and Vγ4; Ribeiro et al., 2019). In EAE, CNS-infiltrating γδ17 T cells are mostly restricted to the Vγ4⁺ subset (Sutton et al., 2009), whereas, in models of ischemic stroke, infiltrating γδ T cells bear the Vγ6 chain (Arunachalam et al., 2017). Here, we show that the TCR repertoire of γδ17 T cells in the meninges and brain of AD mice remained highly biased for Vγ1⁺ Vγ4⁻ (assumed as Vγ6⁺) subset, although Vγ4⁺ represented only a small fraction of total γδ17 T cells (Figure S2C).

Of note, besides meninges, brain, cLNs, and spleen, we also observed an inflammatory response of the myeloid, NK, and NKT compartments in the liver of both male and female mice (Figure S3), which was consistent with the previously described amyloidosis in this organ (Marchese et al., 2014).

IL-17 neutralization prevents short-term cognitive deficits in 3xTg-AD mice

Next, we assessed whether the exacerbated levels of IL-17 in the brain and meninges of female 3xTg-AD mice had a detrimental role on cognitive performances. For this, neutralizing anti-IL-17 mAb (anti-IL-17A; 32.5 μg/day) or isotype control IgG1a (immunoglobulin G [IgG]; 32.5 μg/day) was chronically diffused through a micro-pump delivery system into the right ventricle of 3xTg-AD and WT mice. This chronic delivery of anti-IL-17 was made for a period of 6 weeks at a rate of 0.15 μL/h starting at 3.5 months of age, prior to any detectable cognitive deficit (3.5 months old; Figure 4A). Of note, treated animals did not show any weight alteration (Figure 4B) or particular signs of locomotor impairments or anxiety, as evaluated in the open-field (OF) test or in the elevated plus maze (EPM) (Figures 4C and 4D). Strikingly, at 5 months of age, we observed that anti-IL-17-treated AD mice (AD+aIL-17) were able to discriminate between the novel and the familial arm of the Y-maze test, similarly to WT controls (WT+IgG), whereas control IgG-treated AD mice were not (Figure 4E). These data indicate that anti-IL-17 treatment prevents short-term cognitive decline observed in 5-month-old AD mice when tested in the Y-maze. Conversely, the ICV administration of 300 ng of IL-17 alone to WT mice was sufficient to induce short-term memory deficits (Figure S4A), which demonstrates the potent detrimental effects of dysregulated and exacerbated levels of IL-17 on brain cognitive functions. This notwithstanding, the long-term cognitive impairments assessed in the MWM could not be rescued by the anti-IL-17 treatment (Figures 4F and 4G). These data indicate that early intervention with neutralizing IL-17 is efficient in preventing short-term reference memory deficits, but not the long-term spatial memory defect observed in AD mice at 5 months of age.

To assess whether manipulation of IL-17 could be efficient in altering the progression of the disease until later stages, a set of 3xTg-AD mice were treated for a prolonged period, from 3.5 to 7 months of age, with either control IgG or anti-IL-17 mAb (Figure S5). We verified that the procedure did not impact on the weight, exploratory behavior, or anxiety of animals (Figures S5A–S5C). Interestingly, the anti-IL-17 treatment in the AD group resulted in preservation of short-term memory performance in the Y-maze, whereas IgG alone did not alter the impaired discrimination of AD mice (Figure S5D). Again, no differences were observed in the MWM between mice treated with either IgG or anti-IL-17 (Figures S5E and S5F). Further histological analysis of the amyloid load and of the phosphoTau levels in the...
3xTg-AD showed no impact of the anti-IL-17 infusion, measured by 6E10 and AT8 antibody staining, respectively (Figure S5G). Regarding neuronal counting and microglial and astrocytic markers (Nissl, Iba1, and GFAP stainings, respectively), we only observed a slight increase in Iba1 staining upon anti-IL-17 treatment and no changes in the remaining markers. As anticipated in our previous study (Ribeiro et al., 2019), this suggests that synaptic function, rather than amyloid-related pathways, is being targeted by the IL-17-mediated regulation of cognitive behavior.

In AD mouse models, splenomegaly is a common manifestation of amyloidosis that is often accompanied by inflammation (Marchese et al., 2014; Yang et al., 2015). Interestingly, the prolonged anti-IL-17 mAb infusion was also associated with a reduced splenomegaly in AD mice (Figure SSH). We therefore propose that prolonged neutralization of IL-17 in 3xTg-AD mice delays the onset of short-term memory deficits and may have a broader impact on the AD-related inflammatory profile in the periphery, beyond the CNS.

IL-17 neutralization prevents synaptic dysfunction independently of Aβ and tau pathology or BBB disruption

To determine whether anti-IL-17 could be beneficial in the prevention of cognitive deficits by affecting AD-related pathological hallmarks, we assessed Aβ and tau pathologies by immunohistochemistry and western blot (WB) analysis (Figures 5A–5C). Immunohistochemical studies showed that 5-month-old anti-IL-17- or IgG-treated 3xTgAD mice equally accumulate mild intraneuronal amyloid precursor protein (APP), although they do not yet display Aβ plaques (Figure 5A). Also, total APP levels and C-terminal fragments were similar between AD+IgG, AD+allL-17, and WT+IgG mice, as assessed by WB (Figure 5B). Furthermore, biochemical analysis revealed no major changes in total tau expression (N-ter and C-Ter), dephosphorylated Tau (Tau1), or phosphorylation at multiple Tau epitopes (S396, S199, S262, S404, and AT100 [Thr212 and Ser214]) of AD+IgG, AD+allL-17 when compared with WT+IgG mice (Figure 5C). As previously reported (Oddo et al., 2003b), these data further support that disease onset, characterized by mild cognitive impairments, occurs prior to the establishment of Aβ and tau pathologies. Furthermore, we did not find any sign of BBB disruption in AD mice at this age. Upon intraperitoneal injection of Evans blue, the dye was not detected in the parenchyma of the brains of WT or AD mice, indicating that the BBB is structurally and functionally intact (Figure SD).

We have previously described the involvement of IL-17 in hippocampal glutamatergic transmission and synaptic plasticity in physiological context (Ribeiro et al., 2019). Therefore, we next sought to address whether the same synaptic targets were deregulated in this context. To investigate basal synaptic transmission, we generated input/output (I/O) curves by recording excitatory postsynaptic potentials (fEPSPs) from the Schaffer/CA1 synapse at increasing stimulus intensities (0.8–3 mA). The I/O curve from AD+IgG mice attained a significant lower maximum value compared to WT+IgG mice (Figure 5E), as previously described (Oddo et al., 2003b), that was normalized by the anti-IL-17-chronic infusion. We further measured long-term potentiation (LTP) in the CA1 region, as a functional readout for synaptic transmission up to a certain level, from which it becomes deleterious.

Altogether, we concluded that exacerbated levels of IL-17 induce glutamatergic synaptic dysfunction and propose that such mechanism would trigger short-term cognitive impairments in AD mice at disease onset.

DISCUSSION

The impact of immune mediators on cognitive loss associated with AD onset remains elusive (Da Mesquita et al., 2018). In the present study, we show that AD-17-producing cells, mostly γδT cells, accumulate in the CNS at the onset of cognitive deficits and persist throughout disease progression. IL-17 neutralization was sufficient to prevent short-term memory deficits and hippocampal glutamatergic dysfunction in early stages of disease, in a mechanism that is independent of Aβ and Tau pathology or BBB disruption. In later stages of disease, prolonged anti-IL-17 infusion resulted in the delay of cognitive impairment, accompanied by a reduction in peripheral inflammation. Therefore, we propose that elevated levels of IL-17 at early stages of disease contribute to synaptic dysfunction and short-term memory deficits in the 3xTg-AD mouse model.

The role of IL-17 in early stages of Alzheimer’s pathology is controversial and poorly explored. If, on one hand, neutralization of IL-17 was shown to rescue Aβ-induced neuroinflammation and memory impairments (Cristiano et al., 2019), on the other side, it is reported that IL-17A overexpression in AD mouse brain is neuroprotective, decreasing amyloid angiopathy (Yang et al., 2015).
To tackle this question, we took advantage of the triple-transgenic mouse model of AD (3xTg-AD), a progressive model that allows individualizing the different stages of the disease, regarding both cognitive deficits and AD hallmarks. Importantly, it also translates the sexual dimorphism observed in humans, where women are more affected than men in both disease prevalence and symptom progression (reviewed in Fisher et al., 2018).

IL-17 is a recent player in neurophysiology linked to cognitive behavior and anxiety in mice (Ribeiro et al., 2019; Alves de Lima et al., 2020) and described as a neuromodulator of sensory responses in worms (Chen et al., 2017). Here, we show that IL-17-producing cells accumulate in the meninges and in the brain at early stages of the disease, suggesting that AD-related immune alterations might initiate at the onset of cognitive symptoms. In pathology, IL-17 is largely described to mediate inflammation of the CNS (Shichita et al., 2009; Sutton et al., 2009; Gelderblom et al., 2012; Benakis et al., 2016) and was suggested to play a role in AD and PD pathology (Zenaro et al., 2015). More recently, IL-17+ CD4+ (Th17) cells were described to exacerbate neuroinflammation and neurodegeneration in rodent models of PD. In the same line, elevated production of IL-17 by CD4+...
T cells was also reported in the PD population (Sommer et al., 2011). Although scarce, there is increasing evidence of the involvement of Th17 cells in patients with AD (Saresella et al., 2011; Oberstein et al., 2018) as well as in rodent models (Zhang et al., 2013; Cristiano et al., 2019). On the other hand, in mice subjected to EAE, a multiple sclerosis model, IL-17-producing cells—such as γδ T cells, Th17 cells, and ILC3—infiltrate the meninges and the brain and, in concert action, amplify a detrimental immune response in CNS (Sutton et al., 2009; Hatfield and Brown, 2015; reviewed in Waisman et al., 2015). We unveil that γδ T cells, followed by CD3+CD4−γδ T cells, inferred to CD8+ T cell counterparts, suggesting a potential contribution of this cytokine in the accumulation of γδ T cells in AD mice. In aged mice, IL-17-producing γδ T cells were shown to dominate the γδ T cell pool on lymph node, mainly due to the selective increase of Vγδ17 T cells (Chen et al., 2019). Altogether, these data are consistent with increased circulation of Th17 cells (Saresella et al., 2011; Oberstein et al., 2018) and IL-17 levels in the serum of patients with AD (Chen et al., 2014; Hamdan et al., 2014). In addition, it has been recently reported that, upon aging and in AD models, there is an impairment in brain drainage due to the disruption of the lymphatic vessels, where immune cells reside (Da Mesquita et al., 2018; Ahn et al., 2019). This phenomenon can lead to a breakdown in the homeostasis and circulation of meningeal immune population and may underlie the elevated pool of IL-17+ cells observed in our study.

To clarify whether IL-17 could contribute to the initial phase of memory impairment, we neutralized IL-17 before the onset of cognitive deficits in 3.5-month-old to 5-month-old AD mice. Anti-IL-17 treatment was sufficient to prevent the short-term cognitive deficits, from 3.5-month-old to 5-month-old AD mice. Anti-IL-17 treatment was sufficient to prevent the short-term cognitive deficits observed in the onset of disease in AD models. However, the cognitive deficits in the MWM could not be prevented by the treatment. These go in line with the absence of...
role of IL-17 in MWM at steady state, suggesting that other AD-related mechanisms independent of IL-17 signaling might be in place. For instance, MWM was shown to be dependent on the presence of IL-4+ CD4 T cells (Derecki et al., 2010).

The role of IL-17 in AD has been so far described in the context of established Aβ pathology (Zhang et al., 2013; Cristiano et al., 2018). Here, we unveil an early role for IL-17 in AD that precedes the formation Aβ plaques, tau pathology, and BBB disruption, key features of AD. This further supports the involvement of IL-17 in initial stages of the disease. We also show that prolonged treatment with anti-IL-17 prevents the appearance of short-term cognitive deficits in later stages of disease (7 to 8 months old), suggesting that IL-17 is a triggering event in AD. We hypothesize that an accumulation of meningeal IL-17 may initiate the inflammatory cascade in the brain as well as leukocyte recruitment. Because the BBB is still intact at 5 to 6 months old, cerebral infiltration may occur through the choroid plexus (Bouzerar et al., 2013). IL-17 is a strong chemotactrant of neutrophils, which are described to accumulate at the onset of cognitive deficits in the same AD model promoting AD-related pathology (Zenaro et al., 2015). Consistently, we observed a positive correlation between the absolute numbers of γδ T cells and neutrophils in the meninges, pointing at a potential cross-talk between these two populations upon disease onset, as previously reported in the context of infection (Nakasone et al., 2007; Shibata et al., 2007; Hamada et al., 2008). Neutrophils may act as paracruetors of neuronal damage following initiation of neuroinflammation downstream of IL-17 elevations. It is plausible that neutralization of IL-17 might constrain the recruitment of these and other populations into the CNS. This was previously shown in the pathogenesis of cerebral ischemia upon γδ T cell infiltration (Shichita et al., 2009). Anti-IL-17 treatment after stroke blocked neutrophil invasion into the brain (Gelderblom et al., 2012). In addition, γδ T cells are reported to amplify Th17 responses (Sutton et al., 2009; Pikor et al., 2015). This could explain why the deleterious role of Th17 cells is only described when AD pathology is fully established.

IL-17 can act directly on interneurons (Chen et al., 2017) and cortical glutamatergic neurons (Alves de Lima et al., 2020), as well as indirectly on glial cells, amplifying neuronal responses through the promotion of brain-derived neurotrophic factor (BDNF) production in the steady state (Ribeiro et al., 2019). Of note, the characterization of BDNF in AD has been largely covered (Tapia-Arancibia et al., 2008), namely in the 3xTg-AD model where BDNF signaling pathway has been shown to be impaired (Corona et al., 2010). This highlights the complexity of BDNF regulation upon neurodegeneration, implying additional and different mechanisms than the one involved at steady state.

Mechanistically, synaptic dysfunction is described to underlie the cognitive deficits observed in 3xTg-AD mice (Oddo et al., 2003b). Here, we demonstrate that anti-IL-17 treatment prevented synaptic deficits observed in basal transmission and long-term potentiation at the onset of short-term cognitive deficits of AD mice. These data suggest that exacerbated levels of IL-17 are detrimental for synaptic signaling, mirroring the findings for other cytokines, such as IL-1α and tumor necrosis factor alpha (TNF-α), involved in both homeostatic synaptic plasticity and pathology (Avital et al., 2003; Stellwagen and Malenka, 2006; Ren et al., 2011; Prieto and Stellwagen, 2013; Prieto et al., 2015). Of note, exacerbated levels of IL-17 were shown to promote gliosis in several different settings (Sarma et al., 2008; Zimmermann et al., 2013; You et al., 2017). On the other hand, we have recently shown that IL-17 promotes synaptic plasticity and short-term memory in the physiological context, by modulating AMPA/NMDA ratio of glutamatergic synapses (Ribeiro et al., 2019). Adding to these findings, this study suggests that IL-17 can mediate opposite effects, seemingly depending on its concentration in the microenvironment, and implies a dual role for IL-17, supporting the idea that IL-17 action follows a bell-shaped curve with a threshold above which IL-17 promotes a deleterious neuroinflammation. Thus, a relevant open question remains as “how much of IL-17 is too much?”. In an attempt to address this issue, we have titrated the supplementation of IL-17 in hippocampal slices of WT mice, using electrophysiology as a readout, and observed that a preincubation of 30 ng/mL of IL-17 was sufficient to significantly impair LTP, as opposed to a dose 10 ng/mL that had no effect. Of note, this concentration range is in accordance with our previous observation that 10 ng/mL was able to partially rescue LTP in IL-17 knockout (KO) mice (Ribeiro et al., 2019). Consistently, for proof of concept, we could phenocopy the mild cognitive impairment observed in AD mice by injecting a high dose of IL-17 (300 ng/mL) in the brain ventricle of WT mice.

In conclusion, we have described a pathogenic role of IL-17 in promoting synaptic dysfunction and cognitive function underlying the onset of AD. Given the pro-cognitive role of IL-17 in healthy meninges (Ribeiro et al., 2019), our data suggest that IL-17 levels are finely tuned to foster cognition in the steady state, but their pathophysiological dysregulation promotes neurodegeneration. These findings shed light in the early events driving AD pathogenesis, opening perspectives for early biomarkers of disease and combinatorial treatments where the core pathologies (Aβ plaques and tau pathology) and underlying inflammation are collectively targeted to halt the disease.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Ethics statement
 - Mice
- **METHOD DETAILS**
 - Behavioral Tests
 - OF
 - EPM
 - Y-Maze
 - MW
 - Surgical procedures
 - Flow cytometry
Immunohistochemistry
Evans Blue Quantification
ELISA Measurements
Western Blots
Electrophysiological fEPSPs recordings
QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2021.109574.

ACKNOWLEDGMENTS

We thank the assistance of the staff of the Flow Cytometry and Rodent facilities of iMM Lisboa. We also thank Alexandre de Mendonça, Margarida Correia Neves, and Nuno Morais for helpful discussions and technical support. This work was funded by the Fundação para a Ciência e Tecnologia (IF/00013/2014, LISBOA-01-0145-FEDER-028241, and PTDC/IMM/IMU/1988/2020) to J.C.R., Santa Casa da Misericórdia (MB-7-2018) and Fundação para a Ciência e Tecnologia (PTBD/JIM/4778/2014 and IF/00105/2012) to L.V.L., and PD/BD/114103/2015 to H.C.B. The ORCIDs for this article are as follows: 0000-0001-9367-3005 (L.V.L.) and 0000-0002-7852-343X (J.C.R.).

AUTHOR CONTRIBUTIONS

H.C.B. designed and performed the experiments and analyzed the data, except when otherwise stated, and wrote the manuscript. M.R., J.E.C., S.C.-P., J. Darrigues, J. Dunot, H.M., and A.A.d.A. assisted in some experiments of flow cytometry, electrophysiology, ICV injection, and behavioral tests. R.G. assisted in RNA extraction and RT-PCR experiments, and S.C.-P. assisted in experiments of immune-cell isolation. Histology and western blot experiments were performed by H.C.B. at the University of Lille, INSERM – Lille France, in a PhD exchange period with assistance and collaboration of D.B., E.F., V.G.-M., and K.G. P.A.P and B.S.-S. assisted in the experimental design and provided key research tools; L.V.L. and J.C.R. coordinated the study, performed some experiments, supervised the research, and wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interest.

Received: August 27, 2020
Revised: June 9, 2021
Accepted: July 30, 2021
Published: August 24, 2021

REFERENCES

Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472.

In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436.

Tissue-resident memory T cells populate the human brain. Nat. Commun. 9, 4593.

Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341.

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brilliant Violet 510 anti-mouse CD45 (Clone 30-F11)</td>
<td>Biolegend</td>
<td>Cat# 103138, RRID AB_2563061</td>
</tr>
<tr>
<td>FITC anti-mouse CD45 (Clone 30-F11)</td>
<td>Biolegend</td>
<td>Cat# 103107, RRID AB_312972</td>
</tr>
<tr>
<td>Brilliant Violet 711 anti-mouse CD3 (Clone 145-2C11)</td>
<td>Biolegend</td>
<td>Cat# 100349, RRID AB_2565841</td>
</tr>
<tr>
<td>APC anti-mouse TCRd (Clone GL3)</td>
<td>Invitrogen</td>
<td>Cat# 17-5711-82, RRID AB_842756</td>
</tr>
<tr>
<td>eFluor450 anti-mouse TCRd (Clone GL3)</td>
<td>Invitrogen</td>
<td>Cat# 48-5711-82, RRID AB_2574071</td>
</tr>
<tr>
<td>Brilliant Violet 605 anti-mouse CD4 (Clone GK1.5)</td>
<td>Biolegend</td>
<td>Cat# 100451, RRID AB_2564591</td>
</tr>
<tr>
<td>PerCP/Cyanine5.5 anti-mouse CD8a (Clone 53-6.7)</td>
<td>Biolegend</td>
<td>Cat# 100734, RRID AB_2075238</td>
</tr>
<tr>
<td>PE/Cyanine7 anti-mouse NK1.1 (Clone S17016D)</td>
<td>Biolegend</td>
<td>Cat# 156514, RRID AB_2888852</td>
</tr>
<tr>
<td>Brilliant Violet 421 anti-mouse CCR6 (Clone 29-2L17)</td>
<td>Biolegend</td>
<td>Cat# 129818, RRID AB_11219003</td>
</tr>
<tr>
<td>PE/Cyanine7 anti-mouse F4/80 (Clone BM8)</td>
<td>Biolegend</td>
<td>Cat# 12311, RRID AB_893478</td>
</tr>
<tr>
<td>Brilliant Violet 605 anti-mouse CD44 (Clone IM7)</td>
<td>Biolegend</td>
<td>Cat# 103047, RRID AB_2562451</td>
</tr>
<tr>
<td>PE anti-mouse CD69 (Clone H1.2F3)</td>
<td>Biolegend</td>
<td>Cat# 104508, RRID AB_313111</td>
</tr>
<tr>
<td>Brilliant Violet 711 anti-mouse CD11b (Clone M1/70)</td>
<td>Biolegend</td>
<td>Cat# 101242, RRID AB_2563310</td>
</tr>
<tr>
<td>FITC anti-mouse CD62L (Clone MEL-14)</td>
<td>Biolegend</td>
<td>Cat# 104406, RRID AB_313093</td>
</tr>
<tr>
<td>PE/Cyanine7 anti-mouse TCRVg4 (Clone UC3-10A6),</td>
<td>Biolegend</td>
<td>Cat# 137707, RRID AB_10899574</td>
</tr>
<tr>
<td>APC anti-mouse TCRVg1 (Clone 2.11),</td>
<td>Biolegend</td>
<td>Cat# 141107, RRID AB_10897806</td>
</tr>
<tr>
<td>Brilliant Violet 711 anti-mouse Ly6G (Clone 1A8)</td>
<td>Biolegend</td>
<td>Cat# 127643, RRID AB_2565971</td>
</tr>
<tr>
<td>PerCP/Cyanine5.5 anti-mouse Ly6C (Clone HK1.4)</td>
<td>Biolegend</td>
<td>Cat# 128012, RRID AB_1659241</td>
</tr>
<tr>
<td>APC anti-mouse IL-1R (Clone JAMA-147)</td>
<td>Biolegend</td>
<td>Cat# 115309, RRID AB_2264757</td>
</tr>
<tr>
<td>PE anti-mouse/human Ki-67 (Clone 11F6),</td>
<td>Biolegend</td>
<td>Cat# 151210, RRID AB_2716008</td>
</tr>
<tr>
<td>FITC anti-mouse IL-17A (Clone TC11-18H10.1)</td>
<td>Biolegend</td>
<td>Cat# 509098, RRID AB_536010</td>
</tr>
<tr>
<td>PE anti-mouse IFN-g (Clone XMG1.2),</td>
<td>Biolegend</td>
<td>Cat# 505808, RRID AB_315402</td>
</tr>
<tr>
<td>Brilliant Violet 421 anti-mouse TNF-a (Clone MP6-XT22)</td>
<td>Biolegend</td>
<td>Cat# 506328, RRID AB_2562902</td>
</tr>
<tr>
<td>APC anti-mouse ROGrt (Clone AFKJS-9)</td>
<td>Invitrogen</td>
<td>Cat# 17-6988-82, RRID AB_10609207</td>
</tr>
<tr>
<td>PE/Cyanine7 anti-mouse Tbet (Clone 4B10),</td>
<td>Invitrogen</td>
<td>Cat# 25-5825-82, RRID AB_11042699</td>
</tr>
<tr>
<td>inVivoMAb anti-mouse IL-17A (Clone 17F3)</td>
<td>BioXCell</td>
<td>Cat# BE0173, RRID AB_10595012</td>
</tr>
<tr>
<td>inVivoMAb mouse IgG1 isotype control (MOPC-21)</td>
<td>BioXCell</td>
<td>Cat# BE0083, RRID AB_1107784</td>
</tr>
<tr>
<td>anti-Aβ (6E10)</td>
<td>Covance</td>
<td>Cat# SIG-39340, RRID AB_2564652</td>
</tr>
<tr>
<td>anti-APP (C17)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>anti- C-terminal fragments (CTF)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>anti-Tau N-Ter (M19G)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>anti-Tau C-ter</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>anti-tau phosphorylation at S199</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>anti-phospho-Tau (Ser202, Thr205) (AT8)</td>
<td>Millipore</td>
<td>Cat# MN1020, RRID AB_223647</td>
</tr>
<tr>
<td>anti-phospho-Tau (Ser396) Polyclonal Antibody</td>
<td>ThermoFisher Scientific</td>
<td>Cat# 44-752G, RRID AB_2533745</td>
</tr>
<tr>
<td>anti-phospho-Tau (Ser262) Polyclonal Antibody</td>
<td>ThermoFisher Scientific</td>
<td>Cat# 44-750G, RRID AB_2533743</td>
</tr>
<tr>
<td>anti-phospho-Tau (Ser404) Polyclonal Antibody</td>
<td>ThermoFisher Scientific</td>
<td>Cat# 44-758G, RRID AB_2533746</td>
</tr>
<tr>
<td>anti-phospho-Tau (Thr212, Ser214) (AT100)</td>
<td>ThermoFisher Scientific</td>
<td>Cat# MN1060, RRID AB_223652</td>
</tr>
<tr>
<td>anti-Tau-1 (PC1C6)</td>
<td>Millipore</td>
<td>Cat# MAB3420, RRID AB_94855</td>
</tr>
<tr>
<td>Peroxidase labeled goat anti-rabbit</td>
<td>Vector Laboratories</td>
<td>PI-1000</td>
</tr>
<tr>
<td>Peroxidase labeled horse anti-mouse</td>
<td>Vector Laboratories</td>
<td>PI-2000</td>
</tr>
<tr>
<td>Iba1 polyclonal Antibody</td>
<td>Wako</td>
<td>019-197441</td>
</tr>
<tr>
<td>GFAP polyclonal Antibody</td>
<td>Dako</td>
<td>Z0334</td>
</tr>
</tbody>
</table>

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Julie C. Ribot (jribot@medicina.ulisboa.pt).

Materials availability
There are restrictions to the availability of home-made antibodies due to our need to maintain the stock. We are glad to share reagents with compensation by requestor for its processing and shipping.

Data and code availability
- All data reported in this paper will be shared by the lead contact upon request.
- This study did not generate any code.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
All handling, surgical, and post-operative care procedures were approved by Instituto de Medicina Molecular Internal Committee (ORBEA) and the Portuguese Animal Ethics Committee (DGAV), in accordance with the European Community guidelines (Directive 2010/63/EU) and the Portuguese law on animal care (DL 113/2013). All efforts were made to minimize the number of animals used in the study.

Mice
C7BL/6-129SvJ mice bearing three mutations (3xTg-AD) associated with familial AD (amyloid precursor protein [APPswe], presenilin-1 [PSEN1] and microtubule-associated protein tau [MAPT]) were purchased from the Mutant Mouse Research and Resource Center at The Jackson Laboratory. Mice were bred and housed at the Instituto de Medicina Molecular animal facility under conventional conditions. Male and female animals were tested at an early stage (2-3 months old (mo), i.e., when no cognitive deficits are observed),
at the onset of disease (5-6 mo, when the cognitive deficits initiate), and at later stages (8-9 mo, when pathology and memory deficits are well established) (Oddo et al., 2003a; Billings et al., 2005, 2007; Giménez-Llort et al., 2007). WT mice from the C7BL/6-129SvJ background were used as controls.

METHOD DETAILS

Behavioral Tests
Cognitive performance, as well as locomotion and anxious behavior were evaluated according to Ribeiro et al. (2019). Mice were handled for 5 days before behavioral tests, which were performed in the following sequence: open-field (OF), elevated plus maze (EPM), Y-Maze and Morris water maze (MWM). Mazes were cleaned with a 30% ethanol solution between each trial. Animals were randomized for the behavioral testing. All behavioral tests were performed during the light phase between 8 a.m. and 6 p.m, under dim light, in a sound attenuated room. Mice movements were recorded and analyzed using the video-tracking software – SMART®.

OF
The mice were placed in the center of a square apparatus, surrounded by vertical walls (66 cm × 66 cm × 66 cm) – open-field arena. They freely explored the maze for 5 min. The total distance traveled was determined. At the end of the 5 min test, mice were removed from the open-field arena and placed into its home cage.

EPM
The maze is shaped like a plus sign and consists of two “open” (no walls, 5 cm × 29 cm) and two “closed” 122 (5 cm × 29 cm × 15 cm) arms, arranged perpendicularly, and elevated 50 cm above the floor. Each animal was placed on the center of the equipment, facing an open arm, and given 5 minutes to explore the maze. The total number of transitions between the open arms and the total arms were used as anxiety and locomotor parameters as previously done in our Institute (Coelho et al., 2014).

Y-Maze
The Y-maze is a two-trial recognition test. Mice are placed in a Y-shaped maze with 3 arms (each with 35 cm length x 10 cm width x 20 cm height), angled at 120°; on the first trial (learning trial), the animal explored the maze for 10 min with only two arms opened (start and other arm); after returning to his home cage for 1 h, the same animal was re-exposed to the maze for 5 min (test trial) with the novel arm available. The time spent exploring each arm was quantified. Discrimination ratio is calculated dividing time in the N or O arm, by the sum of the time in both arms (N+O).

MWM
MWM was performed as described (Ribeiro et al., 2019) during five consecutive days and consisted of a four day acquisition phase and a one day probe test. During the acquisition phase each mouse was given four swimming trials per day (30-min intertrial interval). A trial consisted of allowing the mouse to explore and reach for the hidden platform. If the animal reached the platform before 60 s, it was allowed to remain there for 10 s; if the animal failed to find the target before 60 s, it was manually guided to the platform, where it was allowed to remain for 20 s. On the probe test, the platform was removed and animals were allowed to swim freely for 60 s while recording the percentage of time spent on each quadrant.

Surgical procedures
The ALZET Brain Infusion Kit is used for the prolonged administration of the antibody against IL-17 (1.36 mg/animal, during 6 weeks at a constant rate of 0.15 μl/hr), or mouse IgG1 as control. This dose has been determined based on previous studies (Ribeiro et al., 2019; Brosseron et al., 2014). Mice were anesthetized under 1.5% isoflurane in 100% oxygen in a transparent acrylic chamber. After induction, mice were moved to a stereotaxic frame, maintaining isoflurane anesthesia. A small incision was made in the skin between the scapulae, and a pocket was formed by spreading the connective tissues apart, for the subcutaneous placement of the mini-osmotic pump. The cannula was inserted in the right ventricle, in the following stereotaxic coordinates: 0.5 mm anterior-posterior, 1 mm medial-lateral and 2.5 mm dorsal-ventral to Bregma. The skin incision was closed with sutures. Behavior tests were performed 6 weeks after implanting the cannulas, when treatment is concluded and the mice fully recovered from surgery. For the prolonged treatment, the mini-osmotic pump was removed after the initial 6 weeks of treatment, and replaced with a new pump, filled with either aIL-17 or mouse IgG1, to prolong the treatment for another 6 weeks. Behavior was tested immediately after the conclusion of this extended treatment period. Alternatively, C57BL/6 WT mice were administered with IL-17 (0.1 mg/ml, total volume of 3 ul) or control saline solution (PBS, total volume of 3 ul) as previously described (Ribeiro et al., 2019). Briefly, mice were anesthetized under 1.5% isoflurane in 100% oxygen. A single intracerebroventricular injection was performed into the right ventricle of the brain using the stereotaxic coordinates of 0.6 mm posterior, 1.2 mm lateral, and 2.2 mm ventral to bregma. A 10 μL Hamilton syringe was used for intracerebroventricular injection. Behavioral assessment was performed 24 hours after surgery in the Y-maze.
Flow cytometry
Flow cytometry was performed according to Ribeiro et al. (2019). Mice were sacrificed with CO₂ and immediately transcardiackly perfused with ice-cold PBS. Meninges were collected and processed as previously described (Derecki et al., 2010). Brains were cut into 2 mm² pieces and incubated for 30 minutes at 37°C with stirring in RPMI 5% fetal bovine serum (FBS) medium supplemented with collagenase D (1.5 mg/ml, Roche) and DNase I (100 μg/ml, Roche). Supernatants were collected and live cells were isolated on a gradient of Percoll 70% - 30% (GE Healthcare). Spleens and cLNs were homogenized and washed in RPMI medium 10% FBS. Meninges and cLNs were pooled from up to 3 mice, brains and spleens were analyzed individually.

FACS stainings were performed as previously described (Ribeiro et al., 2019) using indicated monoclonal antibodies (mAbs). Dead cells were excluded using LiveDead Fixable Viability Dye (Invitrogen). Samples were acquired using FACSFortessa (BD Biosciences). Data were analyzed using FlowJo software (Tree Star).

Immunohistochemistry
For immunohistochemical studies, females were deeply anaesthetized with pentobarbital sodium (50 mg/kg, intraperitoneally), then transcardiackly perfused with cold NaCl (0.9%) and with 4% paraformaldehyde in PBS (pH 7.4). Brains were removed, post-fixed for 24 h in 4% paraformaldehyde and cryoprotected in 30% sucrose before being frozen at −80°C. Coronal brains sections (35 μm) were obtained using a Leica cryostat. Free-floating sections were chosen according to the stereological rules, with the first section taken at random and every 12 sections afterward, and were stored in PBS-azide (0.2%) at 4°C.
For Aβ immunohistochemistry (IHC), sections were pretreated with 80% formic acid for 3 min and were permeabilized with 0.2% Triton X-100/sodium phosphate buffer. Sections were then blocked with 10% “Mouse On Mouse” Kit serum (Vector Laboratories) for 1 h before incubation with mouse biotinylated anti-Aβ antibody (6E10) at 4°C overnight. After washing in PBS, the sections were incubated with the ABC kit (Vector Laboratories) for 2 h and developed using DAB (Sigma). Images were acquired using Leica ICC50 HD microscope. Quantification of the 6E10 staining intensity was performed using Mercator software (Explora Nova, Mountain View, CA, USA). The number of plaques, the average plaque size and the plaque burden, expressed as percentage of analyzed area, were calculated in the cortex and hippocampus of the 3xTg-AD mice.

Evans Blue Quantification
3xTg-AD and C7BL/6-129SvJ WT mice, previously treated with either aIL-17 or IgG1, were injected i.v. with 1% Evans Blue dye (Sigma), and perfused with PBS 45-60 min after injection. The brain was then removed, weighted, and incubated at 37°C for 48 h in N,N-dimethyl formamide. A standard curve is prepared by serially diluting the Evans Blue dye from 50 to 2,5 mg/ml. The content of dye was determined by spectrophotometer at 620 nm, subtracting absorbance at 740 nm. Evans Blue concentration was normalized to brain weight.

ELISA Measurements
Brain levels of human Aβ1-40 and Aβ1-42 were measured using ELISA kits (Invitrogen, Carlsbad, CA, USA; IBL-International, Hamburg, Germany) following manufacturer’s instructions. Briefly, for hippocampal and cortical samples, 20 μg of protein were diluted in Guanidine/Tris buffer (Guanidine HCl 5 M and Tris 50 mM pH 8), sonicated and incubated for 1 h at 4°C under agitation. Samples were then diluted in a BSAT-DPBS solution (KCl, KH₂PO₄, NaCl, Na₂HPO₄, BSA 5%, Tween-20 0.03% pH 7.4). The homogenates were centrifuged at 12,000 g for 15 min at 4°C. Supernatants were collected for the analysis of Aβ₁₋₄₀ and Aβ₁₋₄₂ by colorimetric immunoassays. Absorbance was measured in a TECAN Infinite 200 plate reader. The amounts of Aβ were expressed as pg/mg of total protein.

Western Blots
For all biochemical experiments, tissue was homogenized in 200 μL Tris buffer (pH 7.4) containing 10% sucrose and protease inhibitors (Complete; Roche Diagnostics GmbH), sonicated, and kept at −80°C until use. Protein amounts were evaluated using the BCA assay (Pierce), subsequently diluted with LDS 2X supplemented with reducing agents (Invitrogen) and then separated on 4%–12% NuPage Novex gels (Invitrogen). Proteins were transferred to nitrocellulose membranes, saturated (5% non-fat dry milk or 5% BSA) in TNT (Tris 15 mM pH 8, NaCl 140 mM, 0.05% Tween) and incubated with primary (APP and C-terminal fragments (CTF), home-made, 1:5000), tau (tau-1 Millipore #MAB3420, 1:10000, N-Ter, C-ter, home-made, 1:10000) and tau phosphorylation at S396 (Invitrogen #44-752G, 1:10000), S199 (home-made, 1:2000), S262 (Invitrogen #44-750G, 1:1000), S404 (Invitrogen #44-758G, 1:10000) and S212/T214 (AT100, Invitrogen #MN1060, 1:1000) overnight. Supernatants were collected for the analysis of Aβ₁₋₄₀ and Aβ₁₋₄₂ by colorimetric immunoassays. Immunoreactivity was visualized using chemiluminescence kits (ECL™, Amersham Bioscience) and a LAS3000 imaging system (Fujifilm). Results were normalized to GAPDH (Sigma-Aldrich) and quantifications were performed using ImageJ software (Scion Software).

Electrophysiological fEPSPs recordings
Electrophysiological fEPSP recordings were performed according to Ribeiro et al. (2019), as described in the previous section. Briefly, 3xTg-AD females and WT controls were sacrificed by cervical dislocation, the brain was rapidly removed and the hippocampi
dissected free in ice-cold Krebs solution (124 mM NaCl; 3 mM KCl; 1.25mM NaH2PO4; 26 mM NaHCO3; 1 mM MgSO4; 2 mM CaCl2 and 10 mM D-glucose), previously gassed with 95% O2 and 5% CO2, pH 7.4. 400 μM transverse hippocampal slices were obtained with a McIlwain tissue chopper and field excitatory postsynaptic potentials (fEPSPs) were recorded in stratum radiatum of the CA1 area as previously described (Ribeiro et al., 2019). After obtaining a stable 10 minutes baseline, Input/Output (I/O) curves and long-term potentiation (LTP), 10c trains with 4 pulses at 100 Hz separated by 200 ms, induced at 0.5mV/ms) were recorded. Recordings were performed at 32°C, 3 mL/min. For the titration experiments, hippocampal slices were pre-incubated with IL17 (10ng/mL or 30ng/mL; Ebioscience) for 1 hour before LTP induction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using GraphPad Prism 8.0 (GraphPad, San Diego, CA). The values presented are mean ± SEM of n independent experiments. To test the significance of the differences between 2 conditions, a Student’s t test, Mann-whitney and F-Test were used. In statistical tests between 3 or more conditions, a one-way ANOVA or Kurskal-Wallis Test followed by a Bonferroni’s or Dunnnett’s multiple comparison post hoc test as specified in the figure legends. P-values of < 0.05 were considered to be statistically significant. Sample sizes and p values can be found in figure legends.