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Abstract

Glucocorticoids  (GC) effects occur through binding to the GC receptor (GR) which,  once

translocated to the nucleus,  binds to GC response elements (GREs) to activate or repress

target  genes.  Among  GCs,  dexamethasone  (Dex)  is  widely  used  in  treatment  of  multiple

myeloma (MM),  mainly  in  combination  regimens.  However,  despite  a  definite  benefit,  all

patients relapse. Moreover, while GC efficacy can be largely attributed to lymphocyte-specific

apoptosis, its molecular basis remains elusive.

To determine the functional  role of GR binding in myeloma cells,  we generated bulk and

single cell multi-omic data and high-resolution contact maps of active enhancers and target

genes.   We show that  a minority  (6%) of  GR binding sites  are  associated with  enhancer

activity gains and increased interaction loops. We find that enhancers contribute to regulate

gene activity through combinatorial assembly of large stretches of enhancers and/or enhancer

cliques.  Furthermore,  one  enhancer,  proximal  to  GR-responsive  genes,  is  predominantly

associated with increased chromatin accessibility and higher H3K27ac occupancy. Finally, we

show that Dex exposure leads to co-accessibility changes between predominant enhancer and

other regulatory regions of the interaction network. Notably, these epigenomic changes are

associated with cell-to-cell  transcriptional  heterogeneity.  As consequences,  BIM critical  for

GR-induced  apoptosis  and  CXCR4 protective  from  chemotherapy-induced  apoptosis  are

rather upregulated in different cells. 

In summary, our work provides new insights into the molecular mechanisms involved in Dex

escape.

Keywords     :   multiple myeloma, enhancers cluster, chromatin co-accessibility, gene expression cell-

to-cell heterogeneity, drug escape
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Introduction

Dexamethasone  (Dex),  a  synthetic  glucocorticoid  known  for  its  anti-inflammatory  and

immunosuppressive  activities,  in  combination  with  immunomodulatory  drugs  (IMiDs)  and

proteasome inhibitors (PIs), is the standard induction treatment in transplant-eligible patients with

newly diagnosed multiple myeloma. Recently,  the use of a new class of drugs, the monoclonal

antibody  daratumumab,  in  combination  with  thalidomide  (IMiD),  bortezomib  (PI)  and  Dex,

improved depth of response and progression-free survival (Moreau 2019). Dex is also used in all

treatment options for patients with relapsed and /or refractory MM in combination with the second-

generation  IMiDs  lenalidomide  and  pomalidomide  and  PIs  carfilzomib  and  ixazomib  (Gariani

2018).  Despite  spectacular  therapeutic  improvement,  few  patients  are  cured,  therefore  it  is

necessary  to  better  understand  the  precise  mechanisms  of  action  of  each  agent  alone  or  in

combination. 

Dex exerts  its  biological  functions  by binding to  the  glucocorticoid receptor  (GR) encoded by

NR3C1. Upon Dex binding, the complex translocates to the nucleus, where it associates with DNA

at GR binding sites, acts as a transcription factor (TF) and regulates gene expression (Reddy 2009).

GR binding appears to be pre-programmed by the binding of lineage-specific TFs and chromatin

accessibility  prior  to  exposure (Biddie  2011;  John 2011).  At  these loci,  GR cobinds  with cell-

specific pioneer TFs including C/EBP in the liver (Grontved 2013), PU.1 in the macrophage lineage

(Oh  2017),  and  AP1  in  murine  hepatocytes  (Biddie  2011).  GR binds  predominantly  at  distal

enhancers  (Reddy  2009)  and  drives  transcription  by  interacting  with  gene  promoters  via

chromosomal loops. GR binds thousands of locations across the genome but only few enhancers

cooperate  with  each  other  to  activate  Dex-responsive  genes  (Vockley  2016;  Mcdowell  2018).
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However, how these enhancers combine to induce gene expression is still  poorly understood. A

previous study exploiting protein-directed chromatin interactions approach suggests that at  GR-

responsive genes, chromatin interaction loops between enhancers and promoters are pre-established

while in a subset of genomic loci, GR binding induces de novo interactions (Kuznetsova 2015). A

recent study showing high-resolution genome-wide maps of chromatin interactions in response to

Dex confirms and extends the model that GR binding acts predominantly through pre-determined

chromatin interactions and increases their frequency (D’Ippolito 2018). However, these studies did

not resolve the influence of increased chromatin accessibility on chromatin loops and enhancer

activity as shown by Staverva et  al  (2015) (Stavreva 2015),  as well  as its consequences at  the

functional level. 

Given that Dex is an essential drug in the treatment landscape of MM disease course, the analysis of

its  molecular  action  on  the  genome of  myeloma cells  and the  consequences  on  transcriptional

heterogeneity are needed in order to better understand treatment escape.

Results

GR binds to a pre-programmed landscape in malignant plasma cell.

To identify the genomic features associated with GR binding in malignant plasma cells, we firstly

defined  the  pre-existing  chromatin  landscape  at  GR binding  sites.  To  this  end,  we  performed

chromatin  immunoprecipitation  sequencing  (ChIP-seq)  for  GR,  ChIP-seq  histone  marks  for

H3K27ac,  assay  for  transposable-accessible  chromatin  sequencing  (ATAC-seq)  and  RNA

sequencing (RNA-seq)  in  the  Dex-sensitive  human myeloma cell  line  MM.1S exposed to  Dex

(0.1µM) or EtOH for 1 hour (Fig. 1a). We found that 46% (8,476/18,444) of the GR binding sites

were located in promoter distal regions based on their 5kb-distance to the transcription start site

(TSS) (Fig. 1b). We next defined the chromatin states for GR binding sites prior to treatment by
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performing chromatin hidden Markov modeling (chromHMM) (Fig.1b, Additional file 1:  Fig. S1a).

As  expected,  this  analysis  revealed  a  large  majority  (86%)  of  GR binding  sites  at  active  and

accessible  regulatory  regions  including  strong  enhancers  and  strong  promoters  marked  with

H3K4me1,  H3K4me3,  H3K27ac and open chromatin  as  exemplified  at  GILZ (TSS22D3)  locus

(Additional file 1:  Fig. S1b) and a small subset (3%) of GR binding sites at weak enhancers marked

with  histone  mark  H3K4me1,  not  marked  with  H3K27ac  and  mostly  DNAse  I  inaccessible.

Chromatin-state assignments were confirmed by our H3K27ac ChIP-seq and ATAC-seq analyses in

MM.1S (Fig.1c). Stretch-or super-enhancers (SEs) are clusters of enhancers spanning multiple kb of

DNA which exhibit high density of H3K27ac (Hnisz 2013; Whyte 2013). We observed GR binding

sites in 99% (808/815) of SEs identified in MM.1S (Loven 2013)  (Additional file 1:  Fig. S1c).

Overall,  these  results  confirmed  that  GR  binds  multiple  active  enhancers  individually  or

cooperating as SE.

We then  investigated  pre-existing  TFs  occupancy  at  GR binding  sites.  A de  novo  enrichment

analysis  showed glucocorticoid responsive elements  (GREs) in  strong enhancers  (1 and 2) and

revealed IRF4 motifs in strong enhancers 2 chromatin state (Fig.1d). IRF4 is the master regulator of

aberrant regulatory network in myeloma cells (Shaffer 2008). Furthermore, we observed a strong

overlap of GR binding sites, IRF4 occupancy and H3K27ac peaks (Fig. 1e). Interestingly, among

the  IRF4 binding  sites  shared  by Dex-activated  GR binding sites,  only  a  subset  of  sites  were

enriched for GRE (18%; 2,502/13,786) or half GRE (7%; 1,031/13,786). Enrichment analysis of

those sites indicated that GR binding sites with GRE or half GRE were associated with biological

processes  related  to  Dex  function  in  myeloma  cells,  notably  apoptotic  signaling  pathway

(Additional file 1:  Fig. S2). These results are in line with previous studies showing the importance

of GRE in Dex response (Vockley 2016). 

Next, a rapid immunoprecipitation mass spectrometry of endogenous protein method was conducted

to identify GR binding partners in MM.1S (RIME; Mohammed 2016; Additional file 2: Table S1;
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Fig. 1f). As anticipated, IRF4 was one of the top ranking partners along with TFs including IKZF1

and IKZF3 that are essential in multiple myeloma (Kronke 2014) and MEF2C that is important for

MYC SE activity and expression in primary effusion lymphoma (Wang 2020). Unlike IRF4, we did

not find cognate DNA-binding motifs close to the GR binding sites for IKZF1/3 and MEF2C; this

raises  the  possibility  that  these  TFs  might  exert  roles  in  trans  on  GR transcription  programs

analogous to the effects of the MegaTrans complex on the ER α-regulated functional enhancers (Liu

2014).  GR interacts  also  with the  catalytic  ATPase  BRG1 (SMARCA4) and several  associated

subunits, including BAF170 (SMARCC2), BAF155 (SMARCC1), BAF60B (SMARCD2) of the

SWI/SNF chromatin remodeling complex capable of moving and displacing nucleosome. 

Together, those results confirm the importance of pre-programmed chromatin landscape in guiding

most  of  GR binding  at  open  and  active  genomic  loci  and  lowly  GR-bound  at  latent  regions.

Furthermore, IRF4 contributes to predetermine GR binding. Finally, GR could act via a complex

similar to MegaTrans complex of ER, composed of several lineage-specific TFs, the remodeling

complex SWI/SNF and potential coactivators to regulate Dex-responsive genes. This complex could

be assembled in trans on GR-bound functional enhancers and could require the presence of GR

(Additional file 1 - Fig.S3). 

Since  there  are  many  more  regulatory  regions  that  bind  GR than  Dex-responsive  genes,  it  is

important to draw a functional map of GR-activated enhancers to better understand Dex action in

myeloma cells.

Landscape of enhancer cluster cooperation in malignant plasma cells responsive to Dex.

Given that enhancer activity modifications are associated with gene expression changes (Mcdowell

2018), we firstly characterized the GR-bound regions that showed significant increase of H3K27ac

upon Dex exposure  to  identify  functional  enhancers  of  target  genes  in  myeloma cells  (Fig.2a;

Additional file 3:  Table S2). This subset of regions which contained a small  percentage of GR
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binding sites  (5.3%, 864/16,228;  see Materials  and Methods)  occurred predominantly (85%) in

distal enhancers located more than 5kb away from closest TSS (Fig. 2b). 

Interestingly, the up-regulated enrichment of H3K27ac at GR-bound regions was associated with

increased  chromatin  accessibility  compared  to  GR-bound regions  without  H3K27ac  occupancy

changes (Fig. 2a). The functional significance of the active enhancers that gained H3K27ac was

evidenced by the fact that upregulated genes were nearer to them than other genes (Fig.2c) and that

they  were  closer  to  each  other  than  other  active  enhancers  (Fig.  2d).  Importantly,  the  ROSE

algorithm  (Whyte  2013)  distinguished  121  Dex-specific  SEs.  Nearest  gene  analysis  identified

known  GR-responsive  genes,  including  DDIT4,  CREB3L2,  FKBP5 and  GILZ (Fig.2e).  Thus

indicating that individual enhancers that gained H3K27ac after Dex exposure may cluster together

and reach the SE status. In addition, their linear proximity could promote their cooperativity for a

strong and rapid expression of their target genes. However, individual enhancers may also spatially

cooperate and loop to genes further away (Petrovic 2019; Mumbach 2017). Therefore, to evaluate

the  regulatory  elements  looping  patterns,  we  generated  high-resolution  contact  maps  of  active

enhancers and target genes by H3K27ac HiChIP in MM.1S cells (Fig. 3a). We identified 21,249 and

23,278 H3K27ac chromatin interactions across the genome in MM.1S EtOH and MM.1S Dex,

respectively. As anticipated, H3K27ac ChIP-seq signal was enriched at anchor regions (Additional

file  1:   Fig.  S4a).  Interestingly,   the  median  number  of  interactions  was higher  in  Dex-treated

MM.1S (3 vs 2) however the median interaction distance was similar (124 kb for MM.1S EtOH vs

127  kb  for  MM.1S  Dex)  (Additional  fille  1:  Fig.  S4b).  The  majority  of  H3K27ac-associated

interactions occurred between proximal-proximal (proximal<5kb from the closest TSS) interactions

or proximal-distal (distal>5kb from the closest TSS) interactions (Additional file 1: Fig. S4c). GR

binding was preferentially found at looping anchors (Additional file 1: Fig. S4d).

Comparison of H3K27ac interaction loops between MM.1S Dex and MM.1S EtOH revealed that

GR binding significantly increased chromatin interaction for 917 loops (4.3%) and significantly
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decreased interaction for 581 loops (2.7%). GR binding was significantly associated with Dex-

increased H3K27ac HiChIP loops (Additional file 1: Fig. S5). These loops were enriched in distal-

distal interactions and depleted in proximal-proximal interactions compared to stable or decreased

loops (Additional file 1: Fig. S6).  The CTCF has been shown to facilitate and stabilize distal-

proximal interactions loops (Ren 2017; Kubo 2021). In line with previous studies, our results of

CTCF ChIP-seq  showed  that  CTCF binding  was  unchanged  in  Dex-treated  cells  compared  to

EtOH-treated cells and that CTCF occupancy was lower in increased loop anchors compared to

stable interactions suggesting that chromatin interactions that are more dynamic in response to Dex

may be bound by other TFs (Additional file 1: Fig. S7) (D’ippolito 2018). 

Next, we focused on loops that significantly increased their frequency upon Dex treatment. Analysis

of  distal-proximal  loops  identified  the  essential  gene  for  Dex-induced  death  in  MM.1S  BIM

(BCL2L11), the chemokine receptor gene CXCR4 known to be associated with MM progression and

poor  prognosis  and  ubiquitously  Dex-responsive  genes  including  GILZ and  FKBP5 (Fig.3b).

Notably,  Dex-increased  loops  displayed a  strong sequence  overlapping (~40%) with  H3K27ac-

increased enhancers and low overlapping (8%) with the stable enhancers while this was the reverse,

albeit to a lesser extent, for Dex-decreased loops (Fig. 3c). As described above, individual active

enhancers collaborate to form linear clusters or SEs. We showed that 420 SEs overlapped with

increased loop anchors. Among those, distal-proximal anchors were linked to 41 Dex-responsive

genes including BIM, GILZ and FKBP5 (Fig. 3d, Additional file 4: Table S3). We also showed that

Dex-increased interaction loops involved individual enhancers as well as SEs that coalesced to form

a  spatial  network  of  interactions  with  a  single  target  promoter,  termed  enhancer  cliques  by

Mumbach et al (Mumbach 2017) (Fig. 3e). Notably, we observed two types of responsive genes,

those within highly connected cliques such as  BIM or  FKBP5 and those that spatially interacted

with a lower connectivity such as GILZ or CXCR4. 
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We next investigated how these enhancers cooperate. We observed that among the enhancers of the

same gene interaction network there was always one which had a higher GR peak than the others

and that this peak was most often associated with a significant enrichment of GRE (indicated by a

star  in  the  representative  examples  of  Fig.3e),  thus  suggesting  a  functional  hierarchy  among

enhancers  in  which a  GR-predominant  enhancer  (predominant  enhancer)  collaborates  with GR-

supportive enhancers (supportive enhancers) as evidenced for estrogen  α binding sites (Carleton

2017). To test this, we firstly determined the predominant enhancer for each interaction network

(loop  anchors)  of  the  Dex-responsive  genes  (Additional  file  5:  Table  S4;  see  Materials  and

Methods).  Predominant  enhancers  were  characterized  by  a  higher  degree  of  interactions  and a

greater proximity to the Dex-responsive gene TSS compared to the supportive enhancers (Fig. 3f).

In addition, not tracing interactions connected to the predominant enhancer dramatically lowers the

clique connectivity (Fig. 3g, Additional file 1: Fig. S8). 

In summary, the results suggest that GR binding induces enhancer cooperativity to form enhancer

cliques  as  well  as  linear  clusters  to  drive  transcription.  Moreover,  it  appears  that  a  functional

enhancer hierarchy with one predominant enhancer may exist in these high-order structures.  

Dex increases chromatin co-accessibility of distal and proximal regulatory regions.

Since  we  identified  a  subset  of  functionnal  enhancers  that  gained  both  H3K27ac  marks  and

chromatin accessibility upon Dex exposure (Fig.2a),  we investigated the role of GR binding in

chromatin  remodeling  and its  potential  impact  on  spatial  enhancer  activity.  ATAC-seq analysis

revealed a strong correlation between increased H3K27ac chromatin loops and gain of chromatin

accessibility (p<0.0001; Fig. 4a, Additional file 6: Table S5). Notably, these regulatory regions with

increased  chromatin  accessibility  overlapped  both  SEs  and  individual  enhancers  (Fig.4b)  and

showed a higher GR binding than regions with stable ATAC abundance (Fig.4c). Furthermore, de

novo motif analysis revealed that GRE was enriched in Dex-increased ATAC-seq peaks (Fig.4d)
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while  IRF4 binding motif  (ISRE) was found in stable  ATAC (Fig.4e).  Altogether,  these results

demonstrate that Dex treatment leads to chromatin accessibility gain at the increased H3K27ac loop

anchors and raise the possibility of a higher level Dex-responsive genes regulation depending on co-

accessibility of regulatory regions involved in enhancer cliques.

To test this, we performed simultaneous profiling of open chromatin and gene expression from the

same cell (scMultiome) across 5,000 nuclei extracted from MM.1S exposed to Dex or EtOH for 1

hour and 4 hours. After normalization, all data were subjected to Uniform Manifold Approximation

and Projection for Dimensional Reduction (UMAP) (Becht 2019). Cell clusters were computed and

color-coded according to treatment. We found that Dex altered chromatin accessibility in agreement

with bulk ATAC analysis and that prolonged Dex exposure to 4 hours did not modify accessibility

landscape  (Fig.5a  left).   We  then  focused  on  the  GR  predominant  and  supportive  enhancers

(Additional file 4: Table S3). We observed a significant increase of chromatin accessibility in these

regulatory regions, however the gain was more pronounced in the predominant enhancers compared

to supportive enhancers (Fig. 5a middle, right). In the same way, after Dex exposure, the number of

cells with accessible predominant or supportive enhancers was significantly increased although the

mean difference was more pronounced for the predominant enhancers (Fig.5b). Then, we applied

Cicero  (v1.3.4.11)  (Pliner  2018)  to  calculate  the  co-accessibility  scores  for  each  predominant

enhancer. As anticipated, co-accessibility changes between predominant enhancers and supportive

enhancers or promoters were higher after Dex exposure (p=0.02, Fig. 5c). Next, we focused on

gene-specific networks that gained co-accessibility (21/62) after Dex exposure,  among them we

found the universally Dex-induced genes FKBP5 and GILZ and myeloma-specific inducible genes

BIM and  CXCR4.  In  the  FKBP5 gene  locus,  GR binding  led  to  a  significant  increase  of  co-

accessibility within individual elements of each SE and between SEs (Fig.5d, dashed boxes) in

agreement with bulk H3K27ac HiChIP signals (Fig.3e). Notably, the predominant enhancer opens

significatively as well as 3 other regions (Fig.5e). The network graph of the predominant enhancer,
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supportive enhancers  and promoter  of  FKBP5 showed the increased complexity of  interactions

between the predominent enhancer and the other regulatory regions as well as the central position of

the predominant enhancer after Dex exposure (Fig.5f). As for FKBP5 gene locus, GR binding at the

GILZ locus led to a significant increase of co-accessibility within individual elements of the SE, and

also  between  predominant  enhancer,  supportive  enhancer  and  the  promoter  (Additional  file  1:

Fig.S9 a and b). Notably, the predominant enhancer opens significantly as well as another region

(Additional  file  1:  Fig.S9c).  Regarding  BIM and  CXCR4,  Dex  exposure  provoked  the  co-

accessibility  increase  between  the  predominant  enhancer  and  the  promoter  (Additional  file  1:

Fig.S10 a and b; S11 a and b).  However,  at  BIM locus,  only the predominant  enhancer  opens

significantly while at  CXCR4 locus, both predominant enhancer and promoter open significantly

(Additional file 1: fig S10c, S11c).

Together, these data showed that the GR binding increases the chances of having a co-accessibility

between the predominant enhancers and the other regulatory regions.

Cell-to-cell transcriptional heterogeneity within myeloma cells after Dex treatment.

Since we showed that  the predominant  enhancer  cooperates  with supportive  enhancers  and the

promoter of the Dex-responsive genes and that Dex exposure increases co-accessibility of these

regulatory elements, we next evaluated the consequences of Dex-induced gene regulatory network

cooperativity  on transcriptional  heterogeneity.  To do this,  we performed scRNA-seq analysis  in

MM.1S cells collected at 4 and 24 hours in presence of Dex (0.1µM) or EtOH. We focused our

analysis on the genes most strongly induced by Dex. Analysis of logFC distribution permitted to

isolate 51 highly induced genes, termed single cell Dex-activated genes (scDAGs) (Additional file

1;  Fig.  S12a).   All  scDAGs except  2  genes  were  already in  the  three  datasets  (GR ChIP-seq,

H3K27ac HiChIP and bulk RNAseq,  Additional file 4: Table S3). In order to measure the level of
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cell-to-cell  transcriptional  variability,  we  calculated  scDAGs  expression  information  entropy

(Pastore 2019; Landau 2014) and found that among cells exposed to Dex, the median expression

increased, leading to an increased fraction of positive cells (fpc), toward 1; hence we observed a

decrease in entropy, i.e. less heterogeneity among the cells. However, gene expression among the

cells remained heterogeneous, with a high inter-quartile range (IQR) (Fig. 6a). To further examine

the  transcriptional  variability  that  remained  after  Dex  exposure,  we  analyzed  the  relationships

between scDAGs. Although not very strong, we observed a higher two-by-two correlations between

scDAGs than between random genes (Additional file 1: Fig. S12b-d). Interestingly, scDAGs were

clustered in two main groups, a large cluster (cluster 1; 45/51 genes) including the pro-apoptotic

gene  BIM and ubiquitous GR-responsive genes such as  GILZ,  FKBP5 and  DDIT4 and a second

cluster encompassing 6 genes including  CXCR4 (Fig. 6b). These results suggest that within Dex-

treated cells, two subpopulations coexist. A cell population that predominantly expresses a large

majority  of  scDAGs  (referred  as  highly  Dex-responsive  cells)  and  another  population  of  cells

expressing a reduced number of scDAGs. 

To test this, we firstly employed the method recently described by Hoffmann et al. (Hoffman 2020),

to estimate the number of scDAGs expressed in each cell after 4 and 24 hours of Dex or EtOH

exposure (Fig. 6c, Additional file 1: Fig. S13). We found that an EtOH-treated cell had a median

background ratio of responsive genes (RRG) of 12% (6 /51 scDAGs) and a Dex-treated cell had a

median RRG of 51% (26/51 scDAGs) similar to that of 24h Dex exposure (55%; 21/38 DAGs).

Then, we visualized the scDAGs transcriptional variability by performing dimensional reduction

using UMAP. As anticipated,  UMAP reduction  separated  perfectly  cells  according to  treatment

conditions (Fig. 6d). Finally, we colored map the RRG on the UMAP plot (Fig. 6e). Interestingly,

although there was an important cell-to-cell heterogeneity, highly Dex-responsive cells tended to

cluster together while poorly responsive cells were scattered around. Merged UMAP plots colored

according to gene expression of uncorrelated genes BIM and CXCR4 (R2 = - 0.02) clearly showed
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that in most of cells expression of  BIM and  CXCR4 was mutually exclusive (Fig. 6f). The same

applies to CXCR4 and GILZ and CXCR4 and FKBP5  (Additional file 1: Fig. S14).

Altogether, scRNA-seq analysis revealed that on the average MM.1S cells expressed only half of

the overall Dex-responsive genes. In addition, in the vast majority of poorly responsive cells (i.e.

RRG<50%), BIM, the most important GC-induced death gene in MM, was not expressed. 

Discussion

Although  the  efficacy  of  Dex  in  MM can  largely  be  attributed  to  GR-induced  apoptosis,  the

genomic responses to Dex treatment in malignant plasma cell genome remain unknown. Given that

Dex is used at all stages of treatment, it was crucial to investigate its molecular mode of action by

using new genomic tools in order to better understand treatment escape and provide new insights

into combination therapy options. 

In this study, we confirmed that the plasma cell-specific epigenomic landscape was primed by the

lineage-specific pioneer factor IRF4 and that GR binds pervasively to a largely preprogrammed

landscape of active enhancers. However, despite a strong association of H3K27ac with GR binding

within enhancers engaged in long-range interactions to form lineage-specific networks, the changes

in enhancer activity upon Dex exposure are limited to a small number of distal elements. These
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elements contribute to the regulation of GR-responsive genes in a combinatorial manner. Indeed,

our study showed that GR binding modifies H3K27ac across large stretches of enhancers termed

SEs. These dynamic SEs are associated with Dex target gene promoters by chromatin interactions

and ensure strong gene expression.  Moreover,  our  high-resolution regulatory connectivity  maps

revealed that GR binding promotes also an increase in the frequency of regulatory DNA loops

linking multiple  distal  enhancers  to  their  target  genes  previously reported  as  enhancers  cliques

(Mumbach 2017). This mode of action is similar to that already described for other TFs (Wang

2014;  Petrovic  2019).  Overall,  our  results  demonstrate  that  specific  combinations  of  enhancers

collaborate to produce a proper and selective Dex response. Among these enhancers, we showed the

importance of GRE motif and distance to TSS for GR binding in agreement with previous studies

(Vockley 2016; Mcdowell 2018). Together, these data suggest the existence of a hierarchy within

enhancer  clusters with a predominant site  and supportive sites which collaborate following GR

binding as it has been previously reported in other lineages (Shin 2016; Carleton 2017; Saravanan

2020;  Huang  2021).  Recent  work  in  acute  lymphoblastic  leukemia  has  shown  that  a  specific

enhancer is necessary to mediate interaction with the promoter resulting in  BIM activation (Jing

2018). In the present study, we also showed that this enhancer is involved in most of dynamic up-

interactions in Dex response. We can assume that this enhancer is the regulatory element which

collaborates in a super-additive fashion with other enhancers to achieve full expression of  BIM.

Targeted  genome engineering  could  be  used  to  directly  test  this  hypothesis  and determine  the

functional  contribution  of  the  other  enhancers  (Thomas  2021).  We  can  speculate  that  these

enhancers may work together to increase the local protein concentration and form phase-separated

transcriptional  condensate  to  rapidly  activate  gene  expression  as  previously  observed for  other

nuclear receptors (Boija 2018; Nair 2019; Saravanan 2020).

As we found that chromatin accessibility correlates with the frequency of enhancer interactions with

each other or nearby gene targets, we integrated scATAC-seq and scRNA-seq with HiChIP and
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ChIP-seq datasets in order to study the influence of chromatin accessibility to the enhancer activity.

Our results  showed that  Dex treatment  leads to  an increase of  the number of  open regions,  in

particular  for  predominant  enhancers  leading  to  a  significant  increase  in  the  co-accessibility

between this enhancer and other regulatory regions. Altogether, these results suggest that after Dex

treatment a cell is more likely to have the optimum connections for the correct expression of a

target gene and that the predominant enhancer acts as a regulatory hub between promoters and other

supportive enhancers as previously described for androgen receptor (Huang 2021).

Even if additional studies are needed to analyze chromatin heterogeneity among individual cells by

combining  single  cell  conformational  studies  (ChIA-Drop;  Zheng  2019)  with  single  cell

epigenomics  (CUT&Run  and  CUT&Tag  protocols;  Hainer  2019;  Kaya  2019),  our  study

demonstrates the importance of taking into account all enhancers involved in spatial gene regulation

in order to better understand the mode of action of TFs.

Finally, we showed that variability in chromatin accessibility was associated with a heterogeneous

response to Dex in myeloma cells as it has been reported before for breast cancer (Hoffman 2020).

Indeed, we found a cell-to-cell variability regarding the expression of Dex-responsive genes, firstly

on the average each cell expressed approximately half of the Dex-induced transcriptional network

and secondly a subset of cells did not express BIM, a major mediator of Dex-induced apoptosis in

myeloma cell lines (Kervoelen 2015). Our results highlight the complex interplay between cell-to-

cell modulation of chromatin accessibility and distal-proximal and distal-distal interaction looping

increase upon GR binding that could lead to a mutually exclusive expression of BIM and CXCR4

and provide new insights into the mechanisms of drug escape while considering that GR levels can

be a limiting event in Dex treatment (Kervoelen 2015; Heuck 2012) (Additional file 1: Fig. S15).

Interestingly, our results showed that IKZF1 and IKZF3 are among the few GR-cobond partners,

suggesting that these lineage specific TFs could play a role in Dex response as previously described

for the MegaTrans complex in the functionally active estrogen-regulated enhancers (Liu 2014). A
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recent study showed that these TFs are degraded by IMIds (Sievers 2018). Since both drugs are

combined to treat MM patients, we cannot exclude an antagonistic role of these molecules, further

studies to identify the GR-IKZF1/3 target genes if any are warranted. 

Given the potential role of  CXCR4 in tumor growth and dissemination (Alsayed 2007; Roccaro

2015), its increased expression upon Dex exposure in a subset of MM.1S cells that do not express

the proapoptotic gene  BIM raises the provocative possibility that minor populations of myeloma

cells could proliferate in response to Dex. In this context, the three-drug combination of a human

monoclonal anti-CXCR4 antibody with lenalidomide and Dex or bortezomib and Dex phase Ib/II

study demonstrating a high response rate is of particular interest (Ghobrial2019phase). 

Materials and Methods

Molecular Biology.

Cell line culture. MM.1S is a multiple myeloma glucocorticoid sensitive cell line (ATCC® CRL-

2974TM). Cells were cultured in RPMI-1640 supplemented with 10% fetal bovine serum, and 2 mM

L-glutamine.  Cell  line  is  tested  negative  for  mycoplasma  according  to  the  manufacturer’s

instructions (PCR Mycoplasma-Test Kit I, ITW Reagent, A9753). Cells were initially cultured for

24 hour in reduced-serum, hormone stripped media (RPMI 1640 Medium, no glutamine, no phenol

red, ThermoFisher Scientific, 32404014) with 10% Charcoal/Dextran treated FBS (Charcoal STRP
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FBS One Shot, ThermoFisher Scientific, A3382101) and 2 mM L-glutamine to a concentration of 1

million cells per mL. Subsequently, Dexamethasone (Dex) (Sigma D4902) was added to the media

at 0.1µM for all treatments timepoints and EtOH was used as vehicle control.

ChIP-seq Procedure. MM.1S cells were exposed to Dex or EtOH for 1 hour and crosslinked with

freshly made 1% formaldehyde (ThermoFisher Scientific, 28908) for 15 minutes and quenched with

125 mM Glycine (Sigma-Aldrich, 50046) for 10 minutes. Cells were pelleted and washed in PBS,

then pelleted again and stored at -80°C.

ChIP-seq  CTCF  was  performed  as  previously  described  (Jin  2018)  with  the  following

modifications. Formaldehyde-fixed cells were lysed and chromatin sheared by sonication using a

Bioruptor  Pico  (Diagenode).  IP was  carried  out  using  the  3µg  of  polyclonal  CTCF  antibody

(Diagenode,  C15410210).  DNA  from  protein-associated  complexes  and  corresponding  input

samples were washed, eluted and reversed crosslinking by incubation with RNase A (ThermoFisher

Scientific, AM2270) and protein digested with Proteinase K (ThermoFisher Scientific, 25530049).

Samples  were  purified  with  DNA  Clean  and  Concentrator  columns  (Ozyme,  ZD4013)  and

measured  using  the  Qubit  dsDNA HS  Kit  (ThermoFisher  Scientific,  Q32851).  Libraries  were

prepared using NEBNext Ultra II DNA Library Prep according to the manufacturer’s instructions

((New England Biolabs, E7103S). Libraries were sequenced using Miseq platform (Kit 150cycles

V3-PE) with 20 million reads per sample.

ChIP-seq GR (H-300) (Santa Cruz Biotechnology, sc-8992) and H3K27ac (Active Motif ,  AM-

39133) were performed by Active Motif  Epigenetic Services. Sequencing depth was 40 million

reads for CHIP-seq GR Dex, 38 million reads for CHIP-seq GR EtOH, 28 million reads for CHIP-

seq H3K27ac Dex and 27 million reads for CHIP-seq H3K27ac EtOH.
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RNA-seq Procedure. MM.1S cells were exposed to Dex or EtOH for 4 hours. Total RNA from

MM.1S cells was isolated using direct-zol RNA MicroPrep kits (Ozyme, ZR2060) with on-column

DNase treatment according to  manufacturer’s instructions.  Prior to RNA-seq, RNA quality was

confirmed on the Agilent Bioanalyzer 2100 using the RNA 6000 Nano Kit (Agilent, 5067-1511).

Total  RNA-seq  libraries  were  generated  using  NEBNext  Poly(A)  mRNA Magnetic  Isolation

Module (New England Biolabs,  E7490S) and NEBNext Ultra II  Directional RNA Library Prep

(New England Biolabs, E7765S). Libraries were sequenced using the Illumina HiSeq 2500 (Hiseq

Rapid SBS kit v2 2*75 cycles).

Fast-ATAC Procedure. The Fast-ATAC protocol was performed as previously described (Corces

2016) using 0.1 million cells. MM.1S cells were exposed to Dex or EtOH for 1 hour, washed in

PBS 1X and centrifuged. The pellet was resuspended in the transposase reaction mix (25µl of 2x

TD buffer,  5µl  of  TDE1,  0.5µl  of  1% digitonin,  19.5µl  of  nuclease-free water)  (FC-121-1030,

Illumina; G9441, Promega). Transposition reactions were incubated at 37°C for 30 minutes in an

Eppendorf ThermoMixer with agitation at 1000 RPM. Transposed DNA was purified using the kit

“DNA Clean and Concentrator”-5 (ZD4013, Ozyme).  Transposed fragments were amplified and

purified  as  described  previously  (Buenrostro  2015)  with  Nextera  Index  Kit  (FC-121-1011,

Illumina). qPCR was performed to determine the optimal number of cycles to amplify the library to

reduce artifacts associated with saturation PCR of complex libraries. PCR was then performed for

the optimum number of cycles using the following PCR conditions: 72°C for 5 min; 98°C for 30 s;

and thermocycling at 98°C for 10 s, 63°C for 30 s and 72°C for 1 minute. Libraries were amplified

for a total of 11 cycles. Library amplification was followed by solid phase reversible immobilization

methodology  (SPRI)  size  selection  to  exclude  fragments  larger  than  1,200  bp.  Libraries  were

sequenced using Illumina HiSeq 2500 (Rapid Run HiSeq paired-end 2*75cycles).
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HiChIP Procedure. MM.1S cells  were exposed to  Dex or  EtOH for  1  hour,  were pelleted and

resuspended in freshly made 1% formaldehyde (ThermoFisher Scientific, 28908) at a volume of 1

mL of formaldehyde for every one million cells. Cells were incubated at room temperature for 10

minutes with rotation. Glycine (Sigma-Aldrich, 50046) was then added to a final concentration of

125 mM to quench the formaldehyde. Cells were incubated at room temperature for 5 minutes with

rotation. Cells were pelleted and washed in PBS, then pelleted again and stored at -80°C.

The  HiChIP  protocol  was  performed  as  previously  described  (Mumbach  2016)  using  7.5µg

antibody to H3K27ac (Diagenode, C15410196) with the following modifications. Samples were

sheared  using  Bioruptor  Pico  (Diagenode),  the  amount  of  Tn5  (Illumina,  15027865)  used  and

number of  PCR cycles performed were based on the post-ChIP Qubit  amounts.  Libraries were

sequenced on NovaSeq 6000 (NovaSeq 6000 S1 Reagent Kit 2*100 cycles).

Single Cell RNA-seq Procedure. For scRNA-seq, MM.1S cells were exposed to Dex or EtOH for 4

hours and 24 hours. Single cell RNA-seq profiling was performed with the ChromiumTM Single

Cell Controller. A total of 6,000 cells were loaded per lane and processed for complementary DNA

synthesis and library preparation, per the manufacturer’s protocol using 3’ v3.1 chemistry (10X

Genomics – 1000121). Libraries were sequenced on NovaSeq 6000 (NovaSeq 6000 S1 Reagent Kit

2*100 cycles) to a mean depth of 45,000 reads/cell using the read lengths 26bp Read1, 8bp i7

Index, 98bp Read2.

Single Cell Multiome ATAC + Gene Expression Procedure. For scMultiome, MM.1S cells were

exposed  to  Dex  or  EtOH  for  1  hour  and  4  hours.  Single‐cell  3’ gene  expression  and  open

chromatin  libraries  were  simultaneously  generated  using  Chromium  Next  GEM  Single  Cell

Multiome ATAC + Gene Expression Kit from 10x Genomics, following the protocol provided by

the manufacturer. A total of 5,000 nuclei were loaded per lane on the ChromiumTM Single Cell
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Controller.  Libraries  were  sequenced  on  NovaSeq  6000  (NovaSeq  6000  SP Reagent  Kit  2*50

cycles)  to  a  minimum depth  of  24,000  reads/nucleus  for  Gene  Expression  library  and  42,000

reads/nucleus for ATAC library.

Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME). RIME GR (H-300)

(Santa Cruz Biotechnology, sc-8992) was performed by Active Motif Epigenetic Services. MM.1S

cells  were  exposed  to  Dex  or  EtOH  for  1  hour  and  fixed  according  to  the  manufacturer’s

instructions (RIME Cell Fixation protocol, Active Motif). Analysis were performed by Active motif

and resuslts are given as supplementary table (see Additional file 2: Table S1).

Computational analysis.

Chromatin  state  annotation. To  obtain  functional  annotation  of  MM.1S  cell  line,  we  used

ChromHMM  (v1.11)  (Ernst  2010 ;  Ernst  2012).  Five  histone  marks  available  from ENCODE

consortium (Consortium 2012) (H3K4me1, H3K4me3, H3K27ac, H3K36me3 and H3K27me3) in

three different cell lines (MM.1S, U266 and GM12878) were analyzed  using hidden Markov model

to identify 10 different chromatin states. Default parameters of chromHMM were used. Bam files

were binarized into 200bp genomic windows and the presence or absence of each histone mark was

evaluated. Then we employed biological analysis to annotate those chromatin states giving them

biological meanings.

Treatment  of  ChIP-seq  data. ChIP-seq  sequencing  quality  was  assessed  with  fastqc  (v0.11.8)

(Andrews 2010). ChIP-seq read adaptors were firstly trimmed using trimmomatic (v0.39) (Bolger

2014) and then reads were mapped using bowtie2 (v2.1.0) (Langmead 2009) to the Human genome

UCSC  hg19  (GRCh37)  (Kent  2002).  Only  one  mismatch  was  allowed.  After  alignment  step,

unmapped reads, low quality mapped reads (mapQ<30) and reads mapped to ENCODE blacklist
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regions (Amemiya 2019) were removed with samtools (v1.3.1) (Li 2009) for analysis.  We also

removed reads that were like to be optical and/or PCR duplicates using picard MarkDuplicates

(v2.23.5) from GATK (Mckenna 2010). 

ChIP-seq enriched regions defined as peaks were called using macs2 (v2.1.1) (Zhang 2008) versus

input (sequencing without immunoprecipitation). We only retained peaks higher than specified p-

value threshold (pval<1e-07).

Treatment of ATAC-seq data. All ATAC-seq data were processed based on Kundaje lab proposed

pipelines  (Koh  2016;  Liu  2019)  available  on  github.  Quality  of  sequencing  assessment,  read

adaptors trimming, read mapping to Human genome hg19 and filtration were performed the same

way as ChIP-seq reads. Before peak calling steps, and due to the Tn5 insertion, mapped reads were

shifted with respectively 5bp and 4bp for strand + and strand - with samtools. Finally, enriched

regions defined as ATAC-seq peaks were called using macs2 only significant peaks were retained

(FDR<0.05).

RNA-seq differential analysis. Each RNA-seq sample was mapped using Tophat2 (Trapnell 2009)

versus hg19 reference genome. We then employed proposed protocol (Trapnell 2012) to perform

differential expression analysis with cufflinks. Only genes with a LogFC greater than or equal to 0.6

and an FDR<0.05 were kept for analysis.

HiChIP data treatment and differential analysis. We employed HiC-pro (Servant 2015) to process

HiChIP data from raw-data to normalized contact maps. All reads were mapped to hg19 genome

using bowtie2 (global  parameters: --very-sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end --

reorder;  local  parameters:  --very-sensitive  -L 20 --score-min  L,-0.6,-0.2 --end-to-end --reorder).

Contact  maps  were  generated  at  different  resolution  (1kb,  2kb,  15kb,  20kb  and  40kb)  and
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normalized  by the iterative correction  and eigenvector  decomposition (ICED) method.  HiC-pro

output directory was then used as input to Hichipper (Aryee) with MboI restriction site position for

loop calling.

Differential analysis of chromatin loops was performed with function exactTest of package edgeR

(Robinson  2010),  with  default  parameters  except  for  dispersion,  which  was  set  to  "trended".

Interaction with FDR below 5% and absolute logFC above 0.60 were considered significant.

Global treatment of genomic data. Genomic data were proceeded using different genomic tools such

as Bedtools (v2.28.0) (Quinlan 2010) for manipulating genomic files, the homer suite for annotation

and motif discovery (v4.4) (Heinz 2010). Data were also treated using own Python scripts (v2.7).

Motif search. De novo motif discovery was performed using the MEME suite (v4.11.2) (Bailey

2015) for GR peaks centralized on peak submit and extend with 250bp in both directions. Motif

from 6bp to 16bp were searched with a maximum of 5 motifs were asked. To identify sequences

where a specific motif is found, we employed FIMO tool from MEME. Finally, to identify centrally

enriched motif, we used centriMo from MEME.

Signal tracks generation. We employed the bamCoverage tool from the Deeptools (v2.0) (Ramirez

2014) suite to generate bigWig files. Signal tracks files were normalized using RPGC method (Read

Per Genomic Content) also known as the 1X normalization included in bamCovergae options. 

Once those files were generated, we used the bigwigCompare tool to create a differential tracks

between H3K27ac with or without Dex. 

All ChIP-seq and ATAC-seq files were generated with this method. Visualization of signal tracks

were obtained using the Integrative Genome Viewer IGV (Robinson 2011).
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Genome  ontology  analysis. Genome  ontology  analysis  was  performed  using  GREAT (v3.0.0)

(McLean 2010) with default  parameters (Gene regulatory domain:  prox. 5kb upstream and 1kb

downstream;  dist.  up  to  1000kb).  Enrichment  statistics  were  computed  using  binomial  and

hypergeometric  gene-based  test.  Pathways  were  selected  as  significantly  enriched  if  the  false

discovery rate (FDR q-value) was lower than 0.01.

Differential analysis of ChIP-seq H3K27ac peaks. In order to find H3K27ac ChIP-seq responding to

GR binding, we first selected all H3K27ac peaks found within GR peaks (n=16,228). On those

sites, we then estimated the normalized count (RPGC: Read Per Genomic Content) of H3K27ac

ChIP-seq  in both conditions. Log2-Fold changes were then calculated for each site and we consider

as H3K27ac Dex-increased all sites with a log2FC higher than 0.1. The H3K27ac Dex-increased

peaks are given as supplementary table (see additional file 3 - Table S2).

Identification of the GR-predominant enhancer among each regulatory network of Dex-responsive

genes. We first  collected  all  the  H3K27ac  Dex-increased  distal-proximal  loops  linked  with  an

H3K27ac Dex-increased ChIP-seq peaks. Overlapping with proximal anchors of Dex-induced genes

highlights  a  subset  of  55  Dex-responsive  genes.  To  find  the  predominant  enhancer  in  each

regulatory  network  of  those  55  Dex-responsive  genes,  we  proceeded  in  three  steps.  First,  we

selected  the  anchor  loop  closest  to  the  TSS  of  each  up-regulated  gene  linked  with  increased

chromatin loops. Then, for each gene, we collected all anchors linked to a loop to this specific TSS

anchor.  Finally,  for  each  gene,  we selected  among the  regulatory  network the  anchor  with  the

highest GR ChIP-seq signal referred as the predominant enhancer while the other ChIP-seq peaks

found  within  regulatory  network  were  considered  as  the  supportive  enhancers.  All  55  Dex-

responsives genes GR predominant enhancer are given as supplementary table (see additional file 5

- Table S4).
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Differential analysis of ATAC-seq peaks found within chromatin loop anchors. We collected all

ATAC-seq peaks found within chromatin loops anchors and, for each peak, we estimated the RPGC

count of ATAC-seq in EtOH and Dex conditions. Log2FC were then estimated and all ATAC-seq

peaks with a LogFC greater than or equal to 0.6 were considered as ATAC up. The ATAC Dex-

increased peaks obtained are given as supplementary table (see additional file 6 - Table S5).

Global  treatment  of  single  cell  data. Preprocessing  steps  for  single  cell  data  were  done using

CellRanger  Software  suite,  respectively  cellranger  (v5.0.0)  (Zheng  2017)  and  cellranger-arc

(v1.0.1)  for  scRNA-seq  and  scMultiome-seq  (Satpathy  2019).  For  both  type  of  data  the  hg38

genome  assembly  provided  by  10xGenomics  was  used  for  alignment.  Further  analyses  were

performed on R (v3.6). For scRNAseq, Count matrices were loaded into R using the Seurat package

(v3.9.9)  (Satija  2015).  For  each  cell  we  calculated  the  percentage  of  mitochondrial  reads

(percent.mt)  and  the  percentage  of  nuclear  retained  lncRNA (percent.nc).  We  also  used  the

CellCycleScoring  function  from  Seurat  to  assign  a  cell  cycle  state  to  each  cell  (Phase),  the

assignement  of  the  cell  cycle  state  is  based  on  the  S.score  and  G2M.score  calculated  by  this

function.  Cells  were  then  filtered  on  the  following  criteria:  5<percent.mt<25,  percent.nc<10,  a

minimum of  2,000  reads  and  1,500  different  genes  expressed.  Normalization  and  dimensional

reduction were performed using the Seurat NormalizeData function with standard parameters. The

function  FindVariableFeatures  was  then  used  to  select  the  3,000  most  variable  features,  those

features have been scaled with Seurat ScaleData function, because cell cycle was a major part of the

variability, we added S.score and G2M.score to the vars.to.regress argument of the function. We

reduced  dimension  using  RunPCA from  Seurat,  only  the  first  30  dimensions  were  used  for

downstream analyses. We also calculated a 2D embedding of our cells with RunUMAP, neighbor

search and clustering were performed using FindNeighbors and FindClusters functions, with default
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parameters. For scMultiome-seq, RNA and ATAC matrices were loaded into R using Seurat and

Signac (v1.1.0) (Stuart 2020) packages. For each cell we calculated the percent.mt, percent.nc and

the Phase. For the ATAC data we also calculated transcription starting site (TSS) score and the ratio

of reads overlapping with the blacklisted regions of the genome contained in the blacklist hg38

unified provided by the Signac package. Cells detected by cellranger were filtered on both RNA and

ATAC data. For RNA data,  we kept cells between 3,800 and 150,000 reads and more than 2,000

different genes expressed. We also kept cells with a percent.mt between 5 and 30 and a percent.nc

lower than 8. For ATAC data, we kept cells with a number of reads between 10,000 and 500,000

and a number of different features between 5,000 and 60,000. We also filtered cells with a TSS

enrichment between 3.5 and 15, a nucleosome signal lower than 1,5 and more than 50% percent

reads in peaks.

For normalization and dimensionality reduction we used the RunTFIDF and RunSVD functions

from the Signac packages.  RunSVD was run on the features selected by FindTopFeatures with

min.cutoff set to q80. UMAP embedding, neighbor search and clustering were performed the same

way as for the RNA data alone.

Differential expression and accessibility were tested using the findMarkers function provided by

Seurat, with test.use argument respectively set to “MAST” and “LR”. 

Assesment of scATA-seq peaks co-accessibility. Co-accessibility scores between scATACseq peaks

were calculated using Cicero (v1.3.4.11) (Pliner 2018) with default  parameters.  Co-accessibility

tables were built on each treatment condition separately. From those tables of co-accessibility scores

we built two networks for each of the 55 Dex-responsive genes GR-predominant enhancers on one

hand and GR-supportive enhancer in other hand. Nodes of those networks were defined as all peaks

overlapping  with  the  selected  regions  .  Edges  were  built  using  the  co-accessibility  tables,

considering only connections with a score higher than 0.1.
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Single cell Dex-activated Genes (scDAGs). We studied the distribution of logFC above 0 and found

out it was bimodal with a small part of positive logFC being far from the main part. We then used

gaussian mixture model to identify the small sub-population of high logFC genes, i.e. scDAGS.

Ratio of responding genes. For each gene, we computed the 80e percentile of expressed values in

untreated cells; we then calculated, for each cell,  the Ratio of Responding Genes (RRG) as the

percentage of scDAGs with expression value above the gene threshold for untreated cells, 4 hours

Dex treated cells and 24 hours Dex treated cells.
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Figure1 : Pre-programmed chromatin landscape guides GR binding in malignant plasma cells. (a)

Scheme of sequencing data used to define chromatin landscape of MM.1S. (b) Genomic annotation

of the 18,844 Dex-specific GR binding sites according to TSS from reference genome hg19 (left)

and according to MM.1S functional chromatin states (right), see chromHMM annotations in Figure

S1a. (c) Heatmaps of GR binding, H3K27ac marks and ATAC-seq signal in a 4kb-region centered

on GR binding site. GR binding sites are divided according to chromatin states defined as pre-active

regulatory regions (Strong promoters, Strong enhancers 1 and Strong enhancers 2) and pre-inactive

regulatory regions (Weak promoters, Weak enhancers and Heterochromatin) and ordered on the y-

axis based on the mean normalized GR value.  (d) De novo MEME top motif enriched in MM.1S

chromHMM functional states.  (e) Overlap of ChIP-seq peaks for GR (MM.1S Dex 1 hour), IRF4

(MM.1S EtOH, loven 2013) and H3K27ac (MM.1S EtOH).  (f) Radar chart showing GR binding

partners using rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) method

in MM.1S (Dex 1 hour); Arbitrary Units.
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Figure 2 : Characterization of functionnal enhancers in MM.1S upon Dex exposure. (a) Heatmaps

of GR binding in MM.1S exposed to Dex (1 hour), H3K27ac marks MM.1S (EtOH and Dex, 1

hour)  and ATAC-seq signal  MM.1S (EtOH and Dex,  1  hour)  in  a  4kb-region centered  on GR

binding site. Left panel are regions with increased H3K27ac signal after Dex exposure compared to

EtOH, right  panel  are  regions  with stable  H3K27ac signal.  (b) Cumulative  distribution  plot  of

relative  distance  from  H3K27ac  Dex-increased  enhancers  to  TSS  (log10(bp)).  (c) Cumulative

distribution plot of relative distance from H3K27ac Dex-increased enhancers for Dex up-regulated

genes (red) and Dex stable genes (grey) (log10(bp)).  (d) Cumulative distribution plot of relative

distance between H3K27ac Dex-increased enhancers (red) and between H3K27ac Dex-increased

enhancers  and  H3K27ac  Dex-stable  enhancers  (grey)  (log10(bp)).  (e) SEs  determination  using

H3K27ac ChIP-seq peak signals of MM.1S exposed to Dex 1 hour. Associated Dex-responsive

genes are indicated by an arrow. Dex-specific Super-Enhancers are colored in green.
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Figure  3 :  GR  binding  induces  enhancer  cooperativity.  (a) Scheme  depicting  H3K27ac  loop

interactions  between  regulatory  regions  through  linear  genome.  (b) Volcano  plot  of  HiChIP

H3K27ac differentially induced (FDR<0.05) loops between EtOH and Dex MM.1S cells, increased

(log2FC>0.6) loops in red and decreased (log2FC<-0.6) loops in blue. (c) Overlapping of enhancers

with  anchors  linked to  Dex-increased  loops (left)  or  Dex-decreased  loops (right).  (d) Diagram

illustrating  the  overlap  of  Dex  super-enhancers  with  Dex-increased  loop  anchors  and  anchors

controlling up-regulated genes. (e) Snapshots for BIM,  FKBP5,  GILZ and CXCR4 loci illustrating

example of GR binding to its consensus motif GRE that increases the H3K27ac ChIP-seq signal as

much as the pre-existent H3K27ac chromatin interactions, predominant enhancer is indicated by a

black star; interactions loops are colored according to their respective log Fold Change (LogFC)

from deep blue (LogFC=-10) to deep red (LogFC=10), LogFC around zero being greyed out.  (f)

Box plot illustrating the ratio of Dex-increased chromatin loops for the anchor containing a GR-

predominant enhancer (green) or the anchors containing GR-supportive enhancers (yellow; left) and

the  distance  from  closest  Dex-induced  TSS  of  GR-predominant  enhancer  and  GR-supportive

enhancers (right). *** p<0.001. (g) Circos plots depicting interactions network of BIM gene, (top)

complete  regulatory  network,  (bottom)  network  without  the  interactions  linked  to  predominant

enhancer (green).

44

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459068doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459068
http://creativecommons.org/licenses/by-nc-nd/4.0/


45

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459068doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459068
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 : Effect of GR binding on chromatin accessibility in anchors of Dex-increased H3K27ac

HiChIP loops.  (a)  Volcano plot showing the differential H3K27ac chromatin interactions within

Dex-increased ATAC-seq peaks (top) or without (bottom, mirrored). (b) Venn diagram of overlap of

Dex-increased ATAC-seq peaks located within anchors of increased H3K27ac interactions with SEs

and individual enhancers.  (c) Heatmaps illustrating ATAC-seq signal (EtOH and Dex conditions)

and GR ChIP-seq signal in ATAC-seq Dex-increased or Dex-stable peaks located within anchors of

Dex-increased H3K27ac HiChIP loop. (d-e) De novo motif discovery on Dex-increased ATAC-seq

peaks (d) or Dex-stable ATAc-seq peaks (e).
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Figure 5 :  Dex increases chromatin co-accessibility of distal and proximal regulatory regions.  (a)

Uniform Manifold Approximation and Projection (UMAP) of scATAC-seq profiles in MM.1S cells,

colored by sample of origin (left),  GR-predominant  enhancers  activity  score (middle)  and GR-

supportive enhancers activity scores (right). (b) Boxplots illustrating percentages of cells with open

GR-predominant enhancer vs. the same number of randomly selected regions (left) and open GR-

supportive enhancer vs. the same number of randomly selected regions (right). (c) Barplot showing

distribution of number of co-accessibilities shared between the 2 conditions or Dex-Sensitive.  (d)

Snapshot of  FKBP5 locus revealing aggregated chromatin accessibility for EtOH (blue) and Dex

(green) conditions, refseq annotation of FKBP5, localization of the ATAC peaks overlapping with

GR-regulatory  regions  (green:  GR-predominant  enhancer;  red:  FKBP5 promoter;  yellow:  GR-

supportive  enhancers),  co-accessibility  links  between  the  selected  peaks  in  EtOH  and  Dex

conditions. FKBP5 scRNA-seq expression level violin plots (top-right). (e)  Violin plots illustrating

accessibility  of  each  peak  across  the  treatment  conditions,  statistically  significant  differential

accessibility  is  shown  (*  adjusted  pval<0.05,  ***  adjusted  pval<0.001).  (f) Network  graph

representing GR-regulatory regions of FKBP5, edges width reflects co-accessibility score, node size

depends on the number of connections to other nodes. Same colors as in Fig. 5d were used.
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Figure  6 :  Cell-to-cell  transcriptional  heterogeneity  after  Dex  exposure.  (a) Shuriken  plot

illustrating median, IQR, fpc and entropy for control and Dex-treated cells; for each parameter,

maximum value is used as reference. (b) Heatmap of two-by-two correlations among the 51 DAGs.

(c) Ratio of Responding Genes after 4 hours (top) and 24 hours (bottom) of treatment. (d) UMAP

plot of MM.1S cells from scRNA-seq colored by condition. (e) UMAP plot colored by the ratio of

responding genes  for  4  hours  of  exposure.  (f) UMAP plots  colored  for  BIM expression  (red),

CXCR4 (green) expression and merged.
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