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Abstract 

Background: The liver plays a major role in the metabolic activation of xenobiotics 
(drugs, chemicals such as pollutants, pesticides, food additives...). Among environmen-
tal contaminants of concern, heterocyclic aromatic amines (HAA) are xenobiotics clas-
sified by IARC as possible or probable carcinogens (2A or 2B). There exist little informa-
tion about the effect of these HAA in humans. While HAA is a family of more than thirty 
identified chemicals, the metabolic activation and possible DNA adduct formation 
have been fully characterized in human liver for only a few of them (MeIQx, PhIP, A αC).

Results: We have developed a modeling approach in order to predict all the possible 
metabolites of a xenobiotic and enzymatic profiles that are linked to the production 
of metabolites able to bind DNA. Our prediction of metabolites approach relies on the 
construction of an enriched and annotated map of metabolites from an input metabo-
lite.The pipeline assembles reaction prediction tools (SyGMa), sites of metabolism 
prediction tools (Way2Drug, SOMP and Fame 3), a tool to estimate the ability of a xeno-
botics to form DNA adducts (XenoSite Reactivity V1), and a filtering procedure based 
on Bayesian framework. This prediction pipeline was evaluated using caffeine and then 
applied to HAA. The method was applied to determine enzymes profiles associated 
with the maximization of metabolites derived from each HAA which are able to bind 
to DNA. The classification of HAA according to enzymatic profiles was consistent with 
their chemical structures.

Conclusions: Overall, a predictive toxicological model based on an in silico systems 
biology approach opens perspectives to estimate the genotoxicity of various chemical 
classes of environmental contaminants. Moreover, our approach based on enzymes 
profile determination opens the possibility of predicting various xenobiotics metabo-
lites susceptible to bind to DNA in both normal and physiopathological situations.

Keywords: Metabolism, Heterocyclic aromatic amines, Xenobiotics, DNA binding 
ability, Site of metabolism
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Background
Heterocyclic Aromatic Amines (HAA) and their metabolites The liver plays a major role 
in the metabolic activation of xenobiotics (drugs, pollutants, pesticides, food addi-
tives...). HAA are environmental contaminants formed during the cooking of meat or 
fish, in cigarette smoke or exhaust gas [1–3]. HAA are compounds of concern because 
previous studies have shown that they are mutagenic in bacteria, carcinogenic in ani-
mals and due to a lack of epidemiological studies they are classified as possible and prob-
able carcinogens by the International Agency for Research on Cancer [4].

Over 30 HAA have been identified so far. The pyrolytic HAA, such as A α C 
(2-amino-9H-pyrido[2,3-b]indole), are formed by a pyrolysis reaction of amino acids at 
temperature greater than 250C. Aminoimidazoarene HAA, such as MeIQx (2-amino-
3,8-dimethylimidazo[4,5-f]quinoxaline), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-
b]pyridine) and IQ (2-amino-3-methylimidazo[4,5-f]quinoline), are formed by Maillard 
reaction between hexose and amino acids at a temperature greater than 150C [5].

In human beings, as illustrated in Fig.  1, HAA are first biotransformed by phase I 
xenobiotic metabolism enzymes which consist of an oxidation mainly catalyzed by 
cytochromes P450 (CYPs). The oxidated metabolite is then conjugated by phase II xeno-
biotic metabolic enzymes such as UDP glucuronyl transferase (UGTs), glutathione S 
transferase (GSTs), N-acetyltransferase (NATs) and sulfotransferase (SULTs). Conjugate 
metabolites can either be excreted or cleaved to form an aryl nitrenium ion, which react 
to DNA and therefore can form DNA adducts [2, 4].

In order to predict the genotoxicity of a metabolite, different tools infer the possibil-
ity of a compound binding to DNA (potential DNA adduct). One strategy is to search 
for specific chemical structures assumed to bind to DNA because a known compound, 
with a similar structure, has been shown to form DNA-adducts [6–8]. Another strategy 

Fig. 1 Representation of Heterocyclic Aromatic Amine Metabolism. This metabolism is divided into two 
steps: Phase I (in green) is known as “oxidation reaction” and catalyzed by cytochromes P450 (CYPs) and 
Phase II (in red) is known as a “conjugation reaction”, catalyzed by UDP-glucuronyltransferases (UGTs), 
N-actetyltransferases (NATs), Sulfotransferases (SULTs) or Glutathione S-transferase (GSTs)
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to determine if a compound can form DNA adducts is based on a Quantitative Struc-
ture-Toxicity Relationship (QSAR) score that models toxicity according to molecular 
descriptors of compounds [6, 7, 9]. More recent tools use deep learning to infer from the 
descriptors of each atom if it can bind to DNA [10, 11]. A site of reactivity (SOR) score 
is associated to each atom of a compound and represent the probability of binding to 
DNA.

The main cornerstone of using toxicity prediction tools on HAA is that compounds 
which may bind to DNA result from one or several metabolic transformations, which 
are unstable and cannot be experimentally characterized. As a consequence, the bioac-
tivation metabolism and DNA adduct formation are fully characterized for only three 
HAA i.e., A α C, MeIQx and PhIP in human liver [12–15]. This advocates for the use of 
in silico methods to predict HAA metabolites and potential DNA adducts derived from 
HAA bioactivation in order to drive research about the toxicity of the HAA family.

Prediction of metabolites To overcome the lack of information about metabolic bioac-
tivation of HAA and potential formation of DNA adducts, tools for prediction of metab-
olism have been developed. They allow for the identification of potential biomarkers of 
exposure in humans. Methods for the prediction of metabolites and reactions use bio-
chemical transformation rules describing chemical reactions and link an input chemical 
structure to an output chemical structure. For a given compound, the prediction tool 
searches for chemical structures matching with such input structures and when they are 
found, the rule is applied and the resulting chemical structures are predicted as metabo-
lites. Several tools implement such methods of prediction including MetaSite, METEOR, 
META, PROXIMAL, TIMES, UM-PPS BioTransformer or SyGMa [6, 16–22]. These pre-
dictions are often represented as a metabolism map containing the predicted metabo-
lites and the reactions that link them. The main drawback of this type of approach is that 
the use of a high number of transformation rules can lead to a great number of predic-
tions with a high number of unknown metabolites [23].

Prediction of sites of metabolism (SOM) Another method for predicting metabolite 
structures uses the prediction of sites of metabolism (SOM) that can reduce the high 
number of unknown predicted metabolites in a metabolism map. SOM-based tools pre-
dict the reaction of an atom by using a set of specific reactions. This set is generated by 
associating reactions catalysed by the same enzyme. It results in models that predict the 
probability for an atom to interact with specific enzymes or isoforms. These methods 
use molecular descriptors which describe different parameters of each atom of a com-
pound. Some tools such as QMBO, CypScore, SMARTCyp or MetaSite [16, 24–28] rely 
on the hydrogen abstraction reaction which is the energy necessary to remove an hydro-
gen linked to the atom. Other tools such as Way2Drug SOMP, FAst MEtabolizer (FAME) 
or XenoSite Metabolism 1.0 [10, 11, 29–31] use structure parameters such as the atom 
nature and the nearest neighbour atoms. In these tools, machine learning methods are 
used to determine a score based on atom molecular descriptors, which represents the 
probability of an atom to be a SOM. Others SOM predictors such as IDSite, IMPACTS 
or MLite [32–34] use docking methods and similarities between ligand structure and 
structure of the compound of interest.

The literature highlights two strategies for using SOM prediction to predict meta-
bolic maps. A first strategy classifies and evaluates the confidence of different predicted 
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pathways by interpreting SOM as the probability of a reaction occurring in the map. 
Ranking pathways with these probabilities allows for the analysis of the predicted metab-
olites and reactions. To the state of our knowledge, this recent method was only applied 
to the metabolism of Terbinafine (TBF), allowing for the detection of a new pathway 
which can explain the formation of TBF-A from TBF [35]. Another strategy, detailed 
in [36] uses SOM predictions to filter metabolic maps by removing predicted reactions 
which are not supported by an accurate SOM prediction. In this study, the SOM-filter 
threshold is determined by using a training set of analog chemicals to the chemicals of 
interest. The method was applied to predict the metabolism of HAA using SOM predic-
tors of CYPs and UGTs enzymes. Metabolites predictions and DNA reactivity prediction 
were then used to predict potential DNA adducts derived from each HAA. The poten-
tial of each HAA to form DNA adducts was finally characterized by the ratio between 
the number of metabolites predicted to bind to DNA and the number of total predicted 
metabolites. The main limitation of this approach is that the filtration of the metabolic 
maps relied on SOM scores associated with the reaction producing the putative DNA 
binding metabolites, getting rid of both the predecessor reactions which are required to 
produce intermediary metabolites and the possible multiple pathways that produce the 
same metabolite, as evidenced in [35].

Contribution To advance the ability to predict the formation of DNA adducts by HAA, 
we have introduced a new method which combines the concept of a filtered metabolic 
map introduced in [36] and the concept of ranked pathways introduced in [35]. Instead 
of filtering metabolic maps according to individual reaction SOM scores, we have cre-
ated a production probability score which describes the probability of a metabolite to be 
produced according to one or several chains of reactions weighted by SOM scores.

Our method consists of a three steps pipeline: the first step is the prediction of metab-
olites of the compound of interest, the second step is the annotation of the resulted met-
abolic map using SOM scores and the third step is the computation of the production 
probability score for each metabolite using Bayesian networks in order to rank and filter 
metabolite maps.

We used caffeine to validate our modeling approach based on SOM predictions of 
phase I and phase II xenobiotic metabolism enzymes. Indeed, caffeine metabolism is 
well described and shares enzymes with HAA metabolism such as phase I enzyme espe-
cially CYP1A2, the main enzyme of caffeine metabolism, but also CYP3A4, CYP2E1, 
CYP2D6 and phase II enzymes including NATs. In addition, some caffeine metabolites 
can be produced through distinct pathways similarly to HAA predicted metabolites. 
After validation of the method using caffeine, the method was applied to HAA to predict 
enzymes involved in the formation of metabolites capable of binding to DNA.

Results
Definition and construction of enriched metabolic maps

Map of metabolism We define the concept of enriched maps of metabolism to be 
oriented graphs where nodes represent chemical compounds and edges represent 
reactions that model the transformation of the input compound into the output com-
pound. In these maps, different information is added to label reactions and nodes in 
order to enable the exploration of predicted metabolism results. As detailed below, in 
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enriched metabolic maps, nodes are labeled by SMILES formula, DNA reactivity label 
and production probability score and edges are labeled by rule name, atom number, 
rank label, enzyme name and enzyme family. Consequently, two edges with the same 
enzyme family but which are different enzymes are associated with different edges. 
An example is shown in Fig. 2.

More precisely, nodes of enriched maps of metabolism represent chemical com-
pounds. They are associated with a SMILES formula, which is interpreted in a 2D 
structure allowing for the labeling of atoms with numbers according to the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) standard conventions [37]. 

Fig. 2 Labels of a map of metabolism. a Metabolites are depicted by their 2D structure in black squares. 
Arrows between metabolites represent reactions, which consume a metabolite in order to produce another 
one. Left side: labels are shown in dashed squares (green for metabolites and blue for reactions). b Examples 
of values of labels for a part of the above network. Each (a) and (b) are shown in plain page in Additional file 1
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Another label of the node is its DNA reactivity label, which is provided by site of 
reactivity (SOR) predictors.

Edges are first labeled by a unique identifier and by a rule name that refers to a 
SMIRKS rule which encodes the transformation [38]. Each reaction is also associated 
with an atom number of reaction, the label of the atom in 2D structure of the input com-
pound which is transformed by the reaction to form the output compound. Finally, each 
edge is labeled with an enzyme name, which catalyzes the reaction. The production prob-
ability score of the edge is determined by using site of metabolism (SOM) predictors (see 
methods for details) and the atom number of reaction.

A specific node is identified in the graph, named the original compound. It is defined 
as the source of the map of metabolism, and the compound is described by its SMILES 
canonical formula available in PubChem database [39]. We then introduce a rank label 
for each edge, which describes the position of the reaction in the graph with respect to 
the original compound: first rank reactions correspond to edges having the original com-
pound as input, second rank reactions corresponds to edges whose input is the output of 
a first rank reaction, etc...

Pipeline for building a map of metabolism Maps of metabolism were built using a 
combination of several tools, which are precisely described in the Methods section.

The pipeline is shown in Fig. 3 and starts with the selection of an original compound 
described by its SMILES canonical formula available in PubChem database. In this 
paper, the method was applied to 31 original compounds: caffeine (for the sake of valida-
tion of the method), and 30 HAA, see Results below.

For each original compound, the SyGMa python package [22] is applied to compute 
nodes (e.g, metabolites of the original compound) and edges (e.g., transformations 
between metabolites) of the associated map of metabolism. In our studies, SyGMa was 
iterated twice, in order to predict first-rank and second-rank reactions with respect to 

Fig. 3 Pipeline for building an enriched map of metabolism. Scheme representation of the pipeline to 
obtain labels to enrich a metabolism map. Labels are depicted in green (metabolites) and blue (reactions) 
squares. They are computed using the various tools and methods (grey squares) which require as input the 
information provided by other labels. SMIRKS labels dictionary is detailed in Additional file 2
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the original compound, e.g, all possible metabolites of the original compound with at 
most two transformations.

The SMILES label (and its associated 2D structure) of each node is generated by the 
RDKit package implemented in SyGMa. To define the DNA reactivity label of each node, 
we consider that a node is reactive with DNA if at least one of the atoms of the metabo-
lite has a score of reactivity computed by XenoSite Reactivity [10] greater than 0.85.

For each edge, a manual curation procedure is performed to determine the atom num-
ber of reaction. This label represents the number of the atom, according to IUPAC num-
bering [37], of the input metabolite of the edge, on which the reaction occurs to produce 
the output metabolite of the edge. These atom numbers of reactions are obtained by 
manually comparing the structure of the input and output metabolites of each reaction 
provided by the MarvinView tool [40], in order to identify the IUPAC numbering of the 
transformed atom.

The next step of the pipeline consists of annotating edges with rank, rule name and 
enzyme labels. For each edge, the rank label is defined to be the number of iterations of 
SyGMa from the original compound allowing the prediction of the reaction. The rule 
name label is also provided by SyGMa, according to a catalogue of 176 SMIRKS rules 
(149 for phase I xenobiotic metabolism reactions and 27 for phase II xenobiotic metabo-
lism reactions).

In order to label each edge with an enzyme, we created a dictionary mapping every 
SMIRKS rule label with an enzyme family label (see Additional file 2). The 149 SMIRKS 
rules corresponding to phase I reactions are mapped to the CYPs enzyme family. Among 
the 27 SMIRKS rule labels corresponding to phase II reactions, 25 label rules are associ-
ated with the UGTs (13 SMIRKS labels), NATs (5 SMIRKS labels), SULTs (6 SMIRKS 
labels) and GSTs enzyme family (1 SMIRKS labels). The two remaining SMIRKS rule 
labels are not related to CYPs, UGTs, NATs, GSTs or SULTs and are out of the scope of 
the method. The corresponding edges are removed from the metabolic map. In addition, 
nodes appearing to be isolated in the map after this curation are also removed from the 
map.

The pipeline continues with a procedure used to annotate each edge with a site of 
metabolism (SOM) prediction score. The procedure selects the SOM prediction tools 
to annotate reactions of metabolic maps following the hypothesis that reactions of 
first-rank can be considered mostly as phase I reactions and reactions of second-rank 
should contain most of the reactions of phase II. This assumption is motivated by the 
fact that xenobiotics metabolism is divided in two phases (Fig.  1) [2, 4, 5], a phase I, 
oxidative, and a phase II, conjugation. This implies that in major cases phase II reactions 
need first a phase I reaction to occur. In practice, our procedure depends on the rank, 
enzyme label and atom number of reaction. The main steps are (a) Reactions of first-rank 
can be considered mostly as phase I reactions, catalyzed by different isoforms of CYPs. 
Therefore, the tool Way2Drug SOMP [29] is used to compute SOM scores for edges of 
first-rank, because it provides refined annotations of CYP isoforms (CYP1A2, CYP3A4, 
CYP2D6, CYP2C9 and CYP2C19), involved in phase I metabolism. As the tool also pro-
vides annotations for reactions catalyzed by UGTs, the predicted scores for such reac-
tions are also conserved. (b) Assuming that reactions of second-rank can be considered 
mostly as reactions of phase II (catalyzed by SULT, UGT, NAT, GST), the tool FAME3 
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[31] is used to annotate reactions of second rank, because it is associated with the larg-
est family of phase II enzymes. Note that reactions of second-rank catalyzed by UGT 
are annotated with a different score than reactions of first-rank catalyzed by UGTs, in 
order to have homogeneous and comparable scores for reactions with the same rank. (c) 
Notably, when an edge can be annotated with SOMs associated with different enzymes 
(especially for isoform predictions), the edge is duplicated for each enzyme to avoid con-
fusion. All reactions which could not be annotated with a SOM score are removed from 
the metabolic map, as well as the resulting isolated nodes.

As a final step, all the metabolites of the map are associated with a SOM-based path-
way production probability score (production probability score). This score depicts the 
probability for each node to be formed for each metabolite, according to all the anno-
tations of the reactions of the metabolic map. This approach relies on the formalism 
of Bayesian networks [41], a relevant framework to ensure that all possible produc-
tion pathways contribute to the probability of metabolite production (See methods for 
details).

Validation of the method: construction and analysis of a map of metabolism for caffeine

In order to validate our modeling approach based on SOM predictions of phase I and 
phase II xenobiotics metabolism enzymes, we applied the pipeline to caffeine. Indeed, 
caffeine metabolism is well described and shares enzymes with HAA metabolism, linked 
to xenobiotics metabolism enzymes, such as CYP1A2, the main enzyme of caffeine 
metabolism, but also CYP3A4, CYP2E1 and CYP2D6 [42]. Caffeine metabolism is also 
known to involve metabolites produced by NATs, the phase II enzymes of xenobiotic 
metabolism.

Figure  4 shows maps of metabolism obtained as several steps of the pipeline were 
applied to the caffeine molecule, modelled by its SMILES formula extracted from 
pubchem [39]. The first step of the pipeline consisted of the prediction of caffeine 
metabolites according to two transformation steps using SyGMa [22]. SyGMa can make 
chemical structures predictions using two parameters that define a scenario, for more 
information refer to the methods section. We chose to use all sets of reactions available 
in SyGMa that are related to xenobiotics metabolism. We also chose to set the number 
of SyGMa iteration at 2 due to the fact that the first two reactions of xenobiotics metab-
olism [2] (phase I and phase II) are the main biotransformation steps. The resulting map 
contains 23 metabolites and 31 reactions shown in Fig. 4.

Predicted metabolites Our results are consistent with the knowledge in the literature 
[42–46], considering that 11 of the 16 known metabolites of caffeine, including caffeine 
itself, are effectively recovered according to two steps of reactions associated with phase 
I and phase II reactions. These metabolites are shown as green in Fig. 4, except for caf-
feine which is red in the figure. Only two metabolites, 5-acetylamino-6-formylamino-
3-methyluracil, i.e., AFMU, and 6-amino-5-(N-formylmethylamino)-1,3-dimethyluracil, 
i.e., 137-TAU, are not identified and are both associated with a NAT catalysed reaction. 
The other known metabolites of caffeine, such as 3-methyluric acid (i.e., 3MU), 7-meth-
yluric acid (i.e., 7MU), and 1-methyluric acid (i.e., 1MU), are out of the scope of the 
method because they can not be predicted with chosen parameters (number of reaction 
steps).
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Fig. 4 Map of metabolism of caffeine predicted by the tools SyGMa. Among the 23 metabolites, the caffeine 
node is shown in red and metabolites which have been experimentally observed in previous studies are 
shown in green. Among the 31 reactions depicted by arrows, the 13 black arrows depict transformations with 
literature-based evidence. Site of metabolism (SOM) score annotating reactions are shown in orange bolt 
on arrows. They are provided by SOM prediction tools (Way2Drug SOMP, FAME 3). The figure is available in a 
plain page format in Additional file 3
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The method predicted 16 reactions between known metabolites (green nodes), includ-
ing the 13 reactions supported by the literature (black arrows) [42, 45, 46]. Therefore, 
our method predicted three new possible transformations from 137U (1,3,7-trimeth-
yluric acid, node 4 in the figure) to 13U (node 8), 17U (node 17) and 37U (node 13), 
through a demethylation. The latter is similar to other reactions of the model. This sug-
gests that the metabolite 137U could be transformed into several metabolites although 
this hypothesis has not been tested because of the low quantities produced in human 
metabolism and its elimination [42].

In addition to 11 known metabolites of caffeine, the method predicted that 12 other 
compounds are potential caffeine metabolites (blue nodes). Indeed the metabolite node 
5 ( Cn1c(=O)c2c(n(C)c1=O)[n+](O)cn2C ) is predicted to be derived from caffeine 
after one step reaction. Ten other compounds are predicted to be derived from caffeine 
after two step reactions. Among these ten metabolites, three (nodes 9, 14, 18) are also 
predicted to be metabolites of node 5. A single metabolite (node 22) is predicted to be 
derived only from the newly metabolite node 5, which has the specificity to lose the aro-
matic structure of the imidazole.

Production probability scores of predicted metabolites In order to estimate the confi-
dence of the predicted metabolites, we computed production probability scores for each 
of them. As detailed in the Methods section, the production probability score first takes 
into account scores associated with reactions, which are computed from several site of 
metabolism (SOM) scores predicted by dedicated tools (Way2Drug SOMP, FAME3), e.g. 
the chance that a transformation occurs on a given atom. In addition, the production 
probability score for the metabolites also takes into account the different pathways, e.g. 
chains of reaction, from caffeine to the considered metabolite, combined according to a 
Bayesian framework.

The SOM score associated with reactions are indicated as an orange label on arrows in 
Fig. 4. We notice that five reactions have a null score. The production probability score 
for metabolites are shown in Fig.  5a, where metabolites are ordered from top-score 
metabolites to lowest scores.

The 11 known metabolites (green nodes) have the largest scores. The 12 unknown pre-
dicted metabolites are represented with a blue bar.

We observe that these predicted metabolites can be gathered into three groups, 
each of them is shown by an ellipse with a specific color. The first group (black ellipse) 
describes metabolites with a score greater than 0.70: it contains all known metabolites 
predicted by our method and two unknown metabolites, node 9 (Cn1c(=O)c2[nH]
c[n+](O)c2n(C)c1=O) and node 11 (Cn1c(=O)c2c(ncn2C2OC(C(=O)O)C(O)C(O)
C2O)n(C)c1=O). The second group (violet ellipse) contains three metabolites with a 
medium score (between 0.20 and 0.70) corresponding to the unknown metabolites node 
14, node 5 and node 18. The last group of seven unknown metabolites (yellow ellipse) 
with low score (< 0.20) corresponding to the nodes 15, 20, 22, 10, 16, 19 and 21. The 
remaining nodes 10, 16, 19 and 21 have a score of 0.00, which is explained by the fact 
that all the pathways which produce them contain at least one reaction with a null score.

Filtered caffeine metabolic map The production probability scores were used to filter 
the caffeine map of metabolism as follows. The metabolites of the filtered map are all 
metabolites of the first group (black ellipse) in Fig. 5a, and the reactions in the map are 
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those of Fig. 4 transforming nodes in the black ellipse group. The filtered map is shown 
in Fig. 5b. We observe that all the known 11 metabolites and 13 reactions belong to this 
map and therefore were conserved by the filtration procedure.

The filtering procedure removed metabolites associated with nodes 5, 14, 18 and 22, 
which have a specific configuration regarding nitrogen atoms on the imidazole part. 

Fig. 5 Filtered map of metabolism for caffeine. a Production probability score of predicted metabolites. The 
production probability score of each metabolite is computed according to a Bayesian model based on the 
reaction production probability scores. Red, green and blue bars are associated with caffeine, known and 
unknown metabolites, respectively. Metabolites are grouped into three groups according to their range of 
scores (black, red and yellow ellipses). b Filtered map of metabolism of caffeine. This map is the filtration of 
the previous predicted map in order to keep metabolites with a high production probability score (black 
ellipse, score > 0.70). The map contains 13 metabolites and 17 reactions. Two unknown metabolites (nodes 
9 and 11) are predicted to be nearly as likely to be produced as the known metabolites according to the 
production probability scores. Each (a) and (b) figure are available in a plain page format in Additional file 4
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These four metabolites are the only ones that are oxidized metabolites of caffeine with 
a pattern N=C-N or N-C-N such that one of the nitrogens is methylated and the other 
nitrogen is linked to an oxygen atom.

The other metabolites that were eliminated by the filtration procedures are nodes 10, 
15, 16, 19, 20, and 21. They are all glucuronyl-conjugates of caffeine and caffeine metab-
olites whose glucoronyl group is not associated with the methylated nitrogen atom of 
the caffeine imidazole part. The fact that most of the glucuronyl conjugates are filtered 
is consistent with the literature because there is no glucuronyl-conjugate metabolite of 
caffeine described in humans yet. The only glucuronyl-conjugate appearing in the final 
map is node 11 (with SMILES formula : Cn1c(=O)c2c(ncn2C2OC(C(=O)O)C(O)C(O)
C2O)n(C)c1=O, or IUPAC name: 6–(1,3–dimethyl–2,6–dioxo–2,3,6,7–tetrahydro–
1H–purin–7–yl)–3,4,5 –trihydroxyoxane–2–carboxylic acid), whose glucoronyl group 
is linked to the imidazole part.

This suggests that node 1 (theophylline or 13x), which is already known to be metab-
olized into nodes 6 (3-methylxanthine or 3MX), 7 (1-methylxanthine or 1MX) and 8 
(1,3-dimethyluric acid or 13U) could also have the potential to be biotransformed into 
another new metabolite. However the 13U and 1MX which are the most observed 
metabolites from 13X [42], could compete with this new metabolite and make it 
undetectable.

Apart from node 11, the only unknown metabolite of the initial map conserved after 
the filtration is node 9 (Cn1c(=O)c2[nH]c[n+](O)c2n(C)c1=O or 9–hydroxy–1,3–
dimethyl–2,6–dioxo–2,3,6,7–tetrahydro–1H –purin–9–ium). According to our method, 
this metabolite is formed from node 1, e.g. 1,3-dimethylxanthine (theophylline or 13x), 
with a SOM score predicted by Way2Drug of 0.714 for enzyme CYP3A4. This reaction 
from node 1 is an oxidation on an nitrogen atom of the imidazole part. Contrary to the 
oxidation of the carbon atom between the nitrogen atoms in the imidazole part which 
produced node 8 (13U) from node 1 with a predicted SOM score of 0.606 for enzyme 
CYP2D6, with the same order of magnitude, this reaction occurs on an un-methylated 
nitrogen atom of the imidazole part. This suggests that the oxidation on nitrogen atoms 
of caffeine could theoretically occur although it has never been experimentally observed.

Application to heterocyclic aromatc amines (HAA) and DNA reactivity predictions

The caffeine example suggests that there is an added value to building a map of metabo-
lism by combining several approaches such as assembling reaction prediction tools, pre-
dicting sites of metabolism and filtering the map according to a production probability 
score. Based on this validation, we have further investigated how this method may facili-
tate the prediction of DNA adducts formation derived from xenobiotics. In this vein, we 
first constructed the predicted maps of metabolism of the 30 human HAA (see Addi-
tional file 5for details). Afterwards, we annotated maps of metabolism for six HAA of 
interest in order to study the prediction of DNA adduct formation.

Unfiltered maps of metabolism of HAA The pipeline was applied to predict maps 
of metabolism of the 30 identified HAA. The characteristics of the maps predicted by 
the tool SygMa are described in Table 1. HAA are ordered according to the number 
of metabolites in the maps predicted by the SyGMa tool. HAA associated with the 
largest map are 4-CH2OH-8-MeIQx and 4,7,8-TriMeIQx (194 predicted metabolites). 
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The smallest maps correspond to the HAA Harman (70 metabolites) and norharman 
(50 metabolites). The size of these maps could be explained by the chemical struc-
ture of both HAA that have few sub-structures on which SyGMa transformation rules 
can be applied. The maps predicted for two of the three well characterized HAA in 
primary human hepatocytes [12, 13, 15], MeIQx—155 metabolites—and PhIP—128 
metabolites, have a medium size. On the contrary, A α C, the third one, is associated 
with one of the smallest maps of metabolism.

We also noticed that the maps associated with pairs of HAA such as 7,8-DiMeIQx 
and 7,9-DiMeIgQx, MeIQx and 7,MeIgQx or IQ and IQ[4,5-b] are associated with 
maps with similar characteristics: they have the same number of metabolites, reac-
tions and metabolites reactive to DNA. The closeness of the chemical structure of 

Table 1 Characteristics of the maps of metabolism predicted according to biotransformations rules 
by the SyGMa tool for 30 HAA

HAA Metabolites Reactions Metabolites which are 
reactive to DNA

Ratio of 
metabolites 
reactive to DNA

4,7,8-TriMeIQx 194 282 91 46.9

4-CH2OH-8-MeIQx 189 266 80 42.3

7,8-DiMeIQx 174 250 81 46.6

7,9-DiMeIgQx 174 250 81 46.6

4,8-DiMeIQx 174 250 79 45.4

6,7-DiMeIgQx 169 245 76 45.0

AMPNH 157 225 16 10.1

7-MeIgQx 155 220 70 45.2

MeIQx 155 220 70 45.2

GluP1 142 202 64 45.1

IQx 137 192 62 45.3

IgQx 133 188 56 42.1

TrP1 129 179 61 47.3

PhIP 128 177 57 44.5

MeIQ 125 175 64 51.2

4’-OH-PhIP 123 166 49 39.8

3,5,6-TMIP 122 172 57 46.7

APNH 120 165 10 8.3

MeAαC 113 154 48 42.5

TrP2 113 154 49 43.4

GluP2 110 151 46 41.8

IQ 109 150 59 54.1

IQ[4,5-b] 109 150 59 54.1

1,5,6-TMIP 107 153 59 55.1

1,6-DMIP 95 132 53 55.8

IFP 90 123 37 41.1

AαC 85 111 33 38.8

PheP1 76 97 35 46.1

Harman 70 98 9 12.7

norharman 50 65 0 0.0

Average 127,6 178.7 53.7 41.0

Median 124 173.5 58 45.2
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isomers could explain such a similarity between maps: as planar isomers are com-
posed of the same chemical substructures, the transformation rules contained in the 
SyGMa database have a high probability to occur equivalently on the metabolites of 
both HAA.

For each HAA, we estimated the number of metabolites reactive to DNA by assum-
ing that each metabolite with a XenoSite Reactivity score greater than 0.85 is reactive 
to DNA, following the criteria introduced in [36]. The four HAA, 4-CH2OH-8-MeIQx, 
7,8-DiMeIQx, 7,9-DiMeIgQx and 4,7,8-TriMeIQx have both the largest map and the 
greatest amount of metabolites reactive to DNA (91, 80, 81 and 81). norharman charac-
terized by the smallest map contains no metabolite reactive to DNA. Harman, AMPNH 
and APNH are also associated with a very small ratio of metabolites reactive to DNA 
(12.7%, 10.1% and 8.1%). The ratio for the other HAA ranges from 38.8 to 55.8%. MeIQx 
and PhIP have a relatively high ratio of metabolites reactive to DNA (45.2% and 44.5%) 
while A α C has a lower ratio (38.8%) in spite of its known higher reactivity towards DNA 
compared with MeIQx or PhIP [15]. This observation might be related to its small-
est map of metabolism (average and median of numbers of metabolites and reactions 
in the map). Several hypotheses can be made about the variability of the sizes of the 
maps of metabolism: (a) the metabolites reactive to DNA do not have the same impor-
tance in vitro, (b) the reaction predictions performed by SyGMa may be incomplete, as 
we observed it for NAT2 reactions in the case of caffeine, (c) the reactions performed 
by SyGMa may not be homogeneous. As detailed below, the analysis of the production 
probability scores of the maps suggests that the last two hypotheses are highly probable.

Manual annotation and filtering of six maps of metabolism As the pipeline for the 
study of maps of metabolism encompasses a part of manual annotations for atom num-
ber of reactions, we applied the pipeline to a selection of six HAA among the 30 HAA. 
We first selected A α C, PhIP and MeIQx, three HAA which are well described in human 
hepatocytes [12–15]. We complemented this list with the two HAA with the largest map 
(4-CH2OH-8-MeIQx and 4,7,8-TriMeIQx). We finally selected 7,8-DiMeIQx which rep-
resents the pair of isomers (7,8-DiMeIQx and 7,9-DiMeIgQx) having large maps. Note 
that the three selected HAA (4-CH2OH-8-MeIQx, 4,7,8-TriMeIQx and 7,8-DiMeIQx) 
have also the largest number of metabolites reactive with DNA. We applied the predic-
tion pipeline and the annotated maps of metabolism obtained were explored to iden-
tify enzyme families and isoforms associated with reactions. We confirmed that most 
enzyme families (SULTs, NATs, CYPs, UGTs) and CYPs isoforms (CYP1A2, CYP2C19, 
CYP2C9, CYP2D6 and CYP3A4) annotate at least one reaction in each map with the 
exception of GSTs.

The annotated maps of metabolism obtained from A α C, PhIP and MeIQx were 
explored in order to identify the metabolites corresponding to the metabolites described 
in humans of these three HAA (see Additional file  6for more details). Upon the 11, 
10 and 9 metabolites experimentally shown for A α C, MeIQx and PhIP, respectively, 
9, 6 and 7, respectively are found in the annotated maps of metabolism. Among the 8 
known metabolites not present in annotated maps of metabolism, three are N-sulfonyl 
metabolites of each HAA and three are N-acetoxy metabolites of each HAA. This sug-
gests that N-sulfonyl and N-acetoxy metabolites may not be predicted using SyGMa’s 
SMIRKS rules, supporting the hypothesis (b) above. The last two known metabolites 
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of MeIQx, 7-oxo-MeIQx and N-desmethyl-7-oxo-MeIQx are not present in anno-
tated maps of metabolism but we identified two metabolites, with SMILES formula 
Cc1nc2c(ccc3c2nc(N)n3C)nc1O and Cc1nc2c(ccc3[nH]c(N)nc32)nc1O, which are 
close to these known missing metabolites. The main structural difference between those 
metabolites and 7-oxo-MeIQx and N-desmethyl-7-oxo-MeIQx is that the ketone group 
of the 7-oxo-MeIQx part is replaced by a hydroxyl group. This result suggests also that 
SyGMa’s SMIRKS rules are not able to predict the ketone group linked to a carbon of a 
heterocycle, which still supports the hypothesis (b) above.

Figure  6a–c, show that the distribution of the production probability scores of the 
known metabolites of each HAA is rather scattered with scores ranging from 0.9 to 0.2. 
Surprisingly, the metabolite MeIQx-N2-SO3H, in the map of metabolism of MeIQx, is 
the only experimentally identified metabolite associated with a production probability 
score of 0.0. A null score suggests that the metabolic pathways leading to the metabolite 
contains at least one reaction that has not been annotated either by Way2Drug for a 
reaction of rank 1, or by FAME 3 for a reaction of rank 2.

Fig. 6 Distribution of prediction probability scores in annotated maps of metabolism. Distribution of 
prediction probability score of A α C (a), MeIQx (b) and PhIP (c). The original compound of each map is shown 
with a red bar. Metabolites which have been experimentally observed are indicated by a green bar and other 
metabolites are indicated with a blue bar. The names of metabolites shown in the X-axis are either the name 
found for known metabolites or a two parts name: Unknown + X where X describes the identifier of the node 
in the map associated with this metabolite. All elements of this figure are available in Additional file 7in full 
page format
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In general, we notice that PhIP and MeIQx have a high amount of metabolites associ-
ated with a low production probability score, compared to A α C. 83 metabolites (53.5% 
of the map) of the MeIQx map have a score lower than 0.1, including 36 metabolites with 
a nul score (23.2% map). Similarily, 65 metabolites (50.8% of the map) of the PhIP map 
have a score lower than 0.1 including 18 metabolites with a nul score (14.1% map) and 
no known metabolite. On the contrary, only 26 metabolites (30.6% of the map) of the 
A α C map have a score lower than 0.1, including 13 metabolites with a nul score (15.3% 
map). Based on this remark, and after comparing the effect of different thresholds, we 
used the value 0.10 to filter metabolites with little support according to our model.

Table 2 describes the characteristics of the six selected filtered maps of metabolism. 
Details about metabolites contained in these maps are provided in Additional file 8 and 
the 6 maps are shown in Additional files 9–14 We observe that the filtration procedure 
has a strong impact on sizes of the maps of metabolism. 126 metabolites derived from 
4-CH2OH-8-MeIQx map of metabolism are filtered representing 66% of the map and 
more than half of metabolites are filtered in the maps of PhIP, MeIQx, 7,8-DiMeIQx 
and 4,7,8-TriMeIQx. By contrast, the filtration procedure had a lower impact on A α C 
since only 26 metabolites are filtered. This suggests that many reactions which were pre-
dicted according to existing transformation rules were currently not supported by sites 
of metabolism.This over-approximation is consistent with the fact that methods predict-
ing metabolites using rule-based approaches are known to generate a large number of 
potential metabolites [23, 47].

We observe that the filtering procedure based on prediction probability scores tends 
to homogenize the size of the final maps of metabolism while keeping a similar ratio of 
metabolites predicted to be reactive to DNA (between 40 and 50%). This suggests that 
there is a strong interest in using SOM scores (as included in the production probability 
scores) to homogenize maps of metabolism and eliminate unsupported DNA reactive 
metabolites.

Optimal enzymatic signature in terms of DNA reactivity As described previously, 
the pipeline relies on the computation of SOM scores on reactions involving manu-
ally annotated metabolites to reduce the maps of metabolism according to a Bayesian 
prediction probability. As SOM scores are directly related to enzymes, the production 
probability score is influenced by enzyme availability. We define enzymatic contexts to 
be tables describing all the possible combinations of enzymes that may be considered to 

Table 2 Characteristics of six HAA maps of metabolism filtrated according to production probability 
scores computed after the annotation of all metabolites of each map

HAA Metabolites 
after 
filtration

Filtered 
metabolites

Reactions 
after 
filtration

Filtered 
reactions

DNA reactive 
metabolites 
after filtration

Filtered DNA 
reactive 
metabolites

4,7,8-TriMeIQx 87 107 120 162 41 50

7,8-DiMeIQx 90 84 116 134 43 38

MeIQx 72 83 90 130 27 43

PhIP 63 65 74 103 22 35

4-CH2OH-8-
MeIQx

63 126 78 188 31 49

AaC 59 26 72 39 20 13
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be available. In our study, there are 512 such different enzymatic contexts. Each enzy-
matic context is associated with a specific distribution of production probability scores. 
Indeed, when an enzyme is described as unavailable in an enzymatic context, the reac-
tions annotated with this enzyme cannot be taken in account for the calculation of the 
production probability scores.

Based on this assumption, for each of the six filtered maps of metabolism described 
above, and for each of the 512 enzymatic contexts, we computed the production prob-
ability scores of all metabolites of the map. This allowed us to determine the global reac-
tivity score of an HAA in a given context that we defined as the sum of the production 
probability score (in the considered context) of all metabolites reactive to DNA in the 
considered map of metabolism.

In this framework, it becomes possible to define optimal enzymatic signatures in terms 
of reactivity, which are all the enzymatic contexts where the global reactivity score is 
maximized while they contain the smallest number of activated enzymes. Intuitively, 
optimal enzymatic signatures therefore correspond to enzymatic contexts where the 
chance to obtain at least one metabolite reactive to DNA is maximal according to our 
models.

Impact of enzymatic context to the production probability score and application on 
DNA adduct formation of HAA Fig. 7 shows all optimal enzymatic signatures for the six 
HAA.

We observe that the enzymes UGTs, SULTs and CYP1A2 are present in all optimal sig-
natures of the six HAA. This is consistent with the literature which describes the impli-
cation of SULTs and CYP1A2 in the formation of HAA DNA adducts [2, 48]. In addition, 
it has been recently shown that UGTs are also involved in a pathway leading to DNA 
adduct formation for A α C [15].

Conversely, the enzymes NATs and GSTs are absent in all optimal signatures. While 
the absence of GSTs is explained by the fact that annotated maps of metabolism do not 
contain any GSTs, the absence of NATs suggest that the resulting metabolites are not 
reactive to DNA since NATs are present in all maps of metabolism. However, NAT2 has 
been previously involved in formation of DNA adducts derived from HAA [2, 48]. We 
hypothesise that NATs reaction implicates other isoforms in the maps of metabolism. 
In accordance with this hypothesis, NAT2 enzymes did not appear in the map of metab-
olism predicted for caffeine since it is involved in the only known missing metabolite 
(AFMU).

Fig. 7 Optimal enzymatic signatures in terms of reactivity. A blue cell corresponds to an available enzyme. A 
grey cell corresponds to an unavailable enzyme. The threshold to determine if a metabolite is reactive to DNA 
was 0.85
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Figure 7 also suggests that HAA is characterized by a specific profile of enzymes. For 
example, CYP3A4 belongs to the signature of four HAA which all have a chemical struc-
ture close to that of MeIQx.. This suggests that the involvement of CYPs, other than 
CYP1A2, in the formation of reactive metabolites depends on the chemical structure of 
HAA.

Impact of the XenoSite Reactivity threshold In order to test the impact of the reactivity 
threshold chosen to characterize all the compounds of a DNA reactive map, we decided 
to explore all the thresholds from 0 to 1.0. For the 101 threshold values considered (step 
of 0.01), we recalculated all the metabolites considered to be “reactive” (i.e. associated 
with a XenoSite Reactivity score greater than or equal to the threshold), and then cal-
culated the optimal signatures for reactivity to DNA. According to our previous results 
we did not consider NATs and GSTs. As shown in Fig. 8, the enzymes CYP1A2, UGTs 
and SULTs are present in the optimal signature whatever the threshold thereby suggest-
ing that the result described in Fig. 7 for the reactivity threshold value 0.85 is robust. 
Figure 8 also confirms the specificity of CYP3A4 in optimal signatures of HAA with an 
MeIQx chemical structure.

We further observed a low variability between HAA since the largest optimal signa-
ture is reached at a reactivity threshold of 0.89 for A α C, 0.91 for 4-CH2OH-8-MeIQx, 
0.92 for MeIQx and PhIP, 0.93 for 4,7,8-TriMeIQx and 0.95 for 7,8-DiMeIQx. In addi-
tion, the use of any reactivity threshold lower than 0.89 returns the same optimal signa-
ture for each HAA. This suggests that enzymes involved in metabolic pathways leading 
to the most reactive metabolites (given by XenoSite Reactivity scores), are sufficient for 
activating all the pathways leading to the less reactive metabolites.

Figure  9 is the counterpart of Fig.  8 to compare the values of XenoSite reactivity 
associated with the appearance of each enzyme in an optimal signature. When con-
sidering high XenoSite Reactivity thresholds, we observed that cytochromes P450 
isoforms are the only enzymes present in all optimal signatures (thresholds from 
0.96 to 0.97). This suggests that CYPs are responsible for the production of most of 
DNA-reactive metabolites, especially CYP1A2 found in all HAA. Therefore, reactive 
metabolites derived from CYPs-annotated reactions may form DNA adducts more 
easily than reactive metabolites derived from phase II enzyme annotated reactions. 
In addition, we have observed that the enzymes UGTs and SULTs were present in 

Fig. 8 Optimal enzymatic signatures in terms of reactivity for each reactivity score thresholds. Each line 
describes an optimal enzymatic signature for each HAA for a reactivity score threshold
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the optimal signatures for reactivity thresholds between 0.95 and 0.89. For MeIQx, 
4-CH2OH-8-MeIQx, 7,8-DiMeIQx and 4,7,8-TriMeIQx, we noted that the reactivity 
thresholds for which SULTs is present in the optimal signature is greater than the one 
for UGTs. This suggests that SULTs-associated metabolites are more likely to form 
DNA adducts than UGTs-associated metabolites when the chemical structure of the 
HAA is close to the MeIQx structure.

Discussion and conclusion
In this study, we introduced a pipeline for predicting the metabolism of xenobiotics in 
humans. The pipeline was applied to six HAA of interest as well as caffeine. Our predic-
tion pipeline is based on the construction of so-called enriched maps of metabolism. The 
main specificity of the pipeline is to use a production probability score to sort metabolites 
according to both the prediction of site of metabolisms and the topology of the maps 
predicted by bio-transformation rules. This score allows for the comparison of metabo-
lite production in different physiopathological conditions which permit the exploration 
of the role of enzymes in the production of specific metabolites. In this study, we focus 
on metabolites and their DNA adduct formation capacity.

The pipeline was used to reconstruct the maps of caffeine metabolism and of six HAA. 
Among the four xenobiotics for which the metabolism was known i.e;, MeIQx, PhIP, 
A α C and caffeine, the majority of the metabolites described in humans were found. 
Among these known metabolites, not one was removed from the maps after the filtra-
tion on the production probability scores, with the exception of MeIQx-N2-SO3H.

In the maps of metabolism predicted by our pipeline, most experimentally identified 
caffeine and HAA metabolites are associated with a high prediction probability score. 
On the contrary, a large number of predicted metabolites, which can be considered as 
over-predicted metabolites, are not supported by site of metabolism predictions.

Fig. 9 Optimal signatures in terms of reactivity for the highest reactivity thresholds. A grey cell means that 
the enzyme is not a part of the optimal signature and a colored cell means that the enzyme is available in 
the optimal signature. Each line represents the optimal signature at a specific reactivity score threshold. 
Thresholds marking the integration of new enzymes in the optimal signature are annotated on each bar
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This fact allowed us to use prediction probability scores as filters that importantly 
reduced the size of the maps. In the case of HAA, half of the predicted metabolites were 
filtered out. In this way, maps of metabolism produced by other tools could be filtered by 
this production probability score.

The prediction of the map of caffeine and HAA metabolism highlighted areas for 
improvement in our pipeline. First, the study of the caffeine map of metabolism evi-
denced that a metabolite (AFMU), resulting from a NAT2-directed reaction, is not 
predicted by the SyGMa tool, suggesting that the tool is incomplete in predicting reac-
tions catalyzed by N-acetyl transferases. This assumption is also supported by the analy-
sis of the optimal HAA signatures as detailed in Fig.  7. The prediction of HAA maps 
of metabolism also suggested lacks of prediction of N-Sulfonyl and N-Acetoxy metabo-
lites of A α C, PhIP and MeIQx, which were not predicted because there are no SMIRKS 
rules in SyGMa adapted to the prediction of these metabolites. These different unpre-
dicted metabolites advocate for the addition of new SMIRKS biotransformation rules to 
SyGMa’s predictions rules in order to complete the maps of metabolism with relevant 
enzymes.

We designed our methods for the study of HAA. As presented in Fig. 1 the metabolism 
of HAA is basically divided into two phases of reactions. This is why we choose to make 
two iterations of SyGMa to predict metabolites obtained by the two phases. However, 
it could be relevant to use a third iteration of the rules used in the paper when apply-
ing the method to another metabolite than HAA. In addition, we notice that the meta-
bolic map of HAA could be extended with the prediction of chemical compounds able to 
bind to DNA by covalent binding. This was impossible because SyGMa does not contain 
the corresponding SMIRKS rules. However, we notice that SyGMa is a flexible tool that 
allows the user to add SMIRKS rules to predict other metabolites; it could therefore be 
possible to enrich the metabolic map by adding to SyGMa the SMIRKS rules associated 
with DNA binding and extend the maps with a third iteration of the method to identify 
DNA adducts of HAA.

A characteristic of the map of metabolism of MeIQx is that MeIQx-N2-SO3H, an 
experimentally identified metabolite, is associated with a nul prediction probabil-
ity score. This is explained by the fact that the reaction producing MeIQx-N2-SO3H is 
labeled as a rank 1 reaction, catalyzed by the SULTs. Our pipeline differentiate rank 1 
and rank 2 reactions and could not annotate reactions of rank 1 with a SOM score only 
available for tools annotating reactions of rank 2. To overcome this issue, we plan on 
differentiating the SOMs prediction tools according to the enzymes annotating the reac-
tions instead of the rank of the reactions. This, however will require the homogenization 
of the level of information about isoforms.

The production probability score that we defined allowed us to analyze the influence 
of enzymes on the production of DNA reactive metabolites and to propose a specificity 
of the CYP3A4 enzyme in the production of DNA adducts derived from AHAs close to 
MeIQx, which will be the subject of further experiments.

In conclusion, our study describes a new method for the construction and analysis of 
maps of metabolism by combining prediction of biotransformation rules, predictions of 
site of metabolisms, and prediction of reactivity to DNA. The method was validated and 
applied to six xenobiotics. Further study will consist of applying the pipeline to the 24 
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other human HAA, which requires the automatization of the annotation of metabolites 
predicted by transformation rules. Moreover, our approach based on enzymes profile 
determination opens the perspective to predict various xenobiotics derived metabolites 
susceptible to bind to DNA adducts in both normal and physiopathological situations. 
The enzymatic contexts extracted from data repositories such as TCGA [49] and GTEX 
[50] make this goal achievable.

Methods
Tool for the prediction of edges and nodes of maps of metabolism: SyGMa

The SyGMa python package (Systematic Generation of potential Metabolites) [22] is 
a rule-based method to predict metabolite (e.g. derivative chemical compounds) from 
an input chemical compound. In the paper, the input compound was either caffeine 
or HAA. The method relies on an internal set of metabolic reactions (biotransforma-
tion rules) in SMIRKS format which can be applied to the input compound. If the input 
chemical structure of a SMIRKS reaction is detected in the compound, the reaction is 
applied and the resulting structure obtained is a predicted metabolite.

The first parameter required by SyGMa to make predictions is the set of SMIRKS reac-
tions to use. In this paper, we used the two sets of SMIRKS reactions, named “phase I” 
and “phase II”, obtained by data mining the Metabolite Database [22] and corresponding 
to reactions involved in phase I and II metabolism of xenobiotics.

The second parameter required by SyGMa is the number of reactions (which we call 
rank) that separates the original compound and a metabolite. If this maximal rank num-
ber is greater than 1, the metabolites obtained after a first iteration are used as a source 
for new reactions to obtain second rank metabolites, until the maximal rank is reached. 
In the paper, the maximal rank number was equal to 2. This allows the reproduction 
of the main observed xenobiotic metabolism with a first reaction associated to phase I 
enzymes of xenobiotic metabolism and a second reaction that conjugates the oxidized 
metabolite by enzymes of phase II metabolism of xenobiotics.

Tools for the prediction of sites of metabolisms (SOM)

We used tools for site of metabolism (SOM) prediction tools to annotate reactions that 
could be catalysed by phase I or phase II enzymes of xenobiotics metabolism. Each 
method used for predicting SOMs estimates the capability of an enzyme to react with an 
atom according to a reference database of reactions and their metabolites. Using these 
models, each method can evaluate each atom of a compound to see if it can be involved 
in a reaction similar to those described in the reaction database. This analysis results in 
a score for each atom of a compound that describes the probability to be transformed by 
each reaction. Therefore, the methods differ according to the parameters describing the 
atom configuration and the enzymes involved in the reactions (different enzyme family 
and/or isoforms).

In order to take advantage of the panel of existing methods, our procedure included 
different tools to annotate each edge (reaction) with a site of metabolism (SOM) predic-
tion score depending on its rank, enzyme label and atom number of reaction (see results 
section).
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Way2Drug SOMP [29] is used to predict SOMs associated with reactions applied to 
the original compound as source (first-rank reactions). This SOM predictor has different 
CYP models and can provide a SOM score for each atom of a compound for five of the 
main cytochrome isoforms: 1A2, 3A4, 2D6, 2C9 and 2C19. It also predicts SOM scores 
for the UGT enzyme family but does not specify any isoforms.

When input of a reaction is not the original compound, we used FAME 3 [31] tool, 
which provides SOM score for phase II enzymes of xenobiotics metabolism. We use 
specific models restrained to specific reactions catalyzed by the five enzyme families: 
N-acetyltransferase (NATs), Sulfotransferases (SULTs) and Glutathione S-transferases 
(GTSs), UDP-glucuronosyltransferase (UGTs) and cytochromes P450 (CYPs).

Prediction of SOR

XenoSite Reactivity [10, 11] is used to annotate the DNA reactivity of each metabolite. 
Based on the SOM scores, this tool computes a score of reactivity (SOR) for each atom 
of the metabolite meaning the ability of the atom to bind DNA. It also relies on the atom 
configuration, described by molecular descriptors, and uses deep-learning to infer a 
model that predicts the probability of an atom to be involved in a specific set of reactions 
that are DNA-binding reactions. To determine if a metabolite is considered as reactive 
to DNA, we apply a threshold on the SOR scores if at least one SOR score of an atom of 
the metabolite is retained, the metabolite is considered to be reactive to DNA. We use 
the same threshold as in [36] where XenoSite Reactivity where a threshold of 0.85 was 
learned according to metabolites known to be reactive to DNA.

Scoring metabolites with a SOM-based pathway production probability score A spe-
cific method was designed to compute a probability for each node to be formed for 
each metabolite according to all the annotations of the reactions of the metabolic map 
of metabolism. The approach relied on the formalism of Bayesian networks [41] which 
are probabilistic graphical models which represent a set of variables and their condi-
tional dependencies via a directed acyclic graph (DAG). Bayesian networks were used 
to predict the the production probability score of each metabolite of the metabolic map, 
assuming that all possible production pathways were contributing factors to this score.

The graph (DAG) on which probabilities were computed was derived from the map 
of metabolism according to two principles. (1) The first principle applies when several 
isoforms of the same enzyme can transform a compound to another. In this case, the 
total affinity of the compound with the enzyme family is approximated by the maximal 
isoform enzyme affinity. (2) The second principle applies when several members of dif-
ferent enzyme families are competing to produce the same target metabolite from differ-
ent input metabolites. In this case, the recruitment of enzymes in reactions is assumed 
to follow an exclusivity rule: each enzyme family can catalyze the production of the tar-
geted metabolite with at most one reaction.

Consequently, a variable of the Bayesian model was built for each node (e.g. metab-
olites) of the map of metabolism. It was therefore associated with the event produc-
tion of the metabolite. The DAG was built according to the following rules, which 
are illustrated in Fig.  10. (a) For reactions which have the same input and output 
and therefore varied only by the isoform of their enzyme family (in our case, CYPs), 
we selected the edge with the maximal SOM score and removed the other edges of 
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the graph. (b) For each metabolite which is the output of several edges with differ-
ent input, we selected the enzyme family (UGTs, NATs, SULTs, CYPs, GSTs) with the 
largest SOM score and removed all the other edges producing the targeted metabolite 
with the same enzyme family. We then selected the remaining enzyme family produc-
ing the targeted metabolite with the second largest score and again removed from 
the graph all the edges leading to the targeted metabolite with an enzyme of the same 
enzyme family. This was repeated until each enzyme family could produce the tar-
geted metabolite from at most an input compound.

For each edge, the SOM score was interpreted as a conditional probability, which 
is the probability of getting the output compound of the edge assuming the presence 
of input compound. The structure of the graph, which is both acyclic (because the 
pipeline for building metabolic maps cannot create cycles) and such that enzymes do 
not compete for the production of the same metabolite, yields that conditional prob-
abilities are independent. This allowed creating a complete probability table associ-
ated with each metabolite production event.

The production probability score of each metabolite was defined to be the probabil-
ity of a metabolite production. These scores were computed by using the conditional 
probability tables to expand joint probability function (Bayes formula) [41].

Fig. 10 Creating a Bayesian network from an annotated map of metabolism. Considering a An annotated 
map of metabolism with enzymes named E1, E2, E3 and E4 and a SOM score associated to each enzyme for 
each reactions. b Illustrate the application of the rule: “only one enzyme can catalyze a reaction”. There is a 
reaction from A to C, divided in three reactions one for each enzyme annotating the reaction. Those reactions 
need to be reduced in one with a SOM score used as probability for the Bayesian Network. SOM score 
annotating reactions are indicators of enzymatic affinity so the reaction with maximal SOM score is selected. 
Here is the reaction annotated by E3. c Illustrate a different case where there are reactions from D and from C 
leading to production of F. This is the application of “if an enzyme is recruited by a reaction, another enzyme 
has to be recruited for a second reaction with the same product”. Here the maximal SOM score annotating 
reactions is 0.77 for the reaction from D to F annotated by E1. Because this reaction is the retain reaction from 
D to F, E1 is no more allowed to annotate the reduced reaction from C to F. The reaction retained from C to 
F, is the second reaction with the maximal SOM score which is the reaction annotated by E2. d Illustrate the 
final reduced graph used as Bayesian Network to calculate production probability score of metabolites



Page 24 of 26Conan et al. BMC Bioinformatics          (2021) 22:450 

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04363-6.

Additional file 1.: Extended Figure 2 The file provides the figure 2 (a) and (b) in a plain page to make structures and 
text more readable. 

Additional file 2.: Dictionary of SMIRKS rules The file provides a manually constructed catalogue of SMIRK rules 
required to map  SMIRKS rules to enzyme family labels by taking into account the rank of the reaction in the pipeline 
for building enriched maps of metabolism. 

Additional file 3.: Extended Figure 4 The file provides the figure 4 in a plain page to make structures and text more 
readable. 

Additional file 4.: Extended Figure 5 The file provides the figure 5 in a plain page to make structures and text more 
readable. 

Additional file 5.: Description of thirty HAA and Caffeine structure used as pipeline input This pdf file describes the 
SMILES formula and 2D-structure of each of the thirty HAA and the Caffeine studied in the paper. 

Additional file 6.: Metabolites of AαC, PhIP and MeIQx founded in predicted metabolism maps The file provides a 
table describing for each metabolite experimentally described if they are predicted by SyGMa and if they are known 
to produce DNA adduct. 

Additional file 7.: Distribution of 3 HAA production probability score The file provides the distribution of production 
probability scores used in Fig. 6 but in full page format. 

Additional file 8.: Description of six HAA maps of metabolism The file provides a detailed description of metabolites 
for the six HAA filtered maps of metabolism built in the paper. For each metabolite of each map, the file provides the 
identifier of the metabolite, its SMILES formula, its production probability score, its reactivity to DNA and the score of 
XenoSite Reactivity. 

Additional file 9.: Metabolism map of AαC A representation of the filtered metabolism map of AαC with chemical 
structures. 

Additional file 10.: Metabolism map of MeIQx A representation of the filtered metabolism map of MeIQx with 
chemical structures. 

Additional file 11.: Metabolism map of PhIP A representation of the filtered metabolism map of PhIP with chemical 
structures. 

Additional file 12.: Metabolism map of 4,7,8-TriMeIQx A representation of the filtered metabolism map of 4,7,8-Tri-
MeIQx with chemical structures. 

Additional file 13.: Metabolism map of 4-CH2OH-8-MeIQx A representation of the filtered metabolism map of 
4-CH2OH-8-MeIQx with chemical structures. 

Additional file 14.: Metabolism map of 7,8-DiMeIQx A representation of the filtered metabolism map of 
7,8-DiMeIQx with chemical structures.

Acknowledgements
Not applicable.

Authors’ contributions
M.C developed and implemented the pipeline and produced all the results. N.T. and S.L. analyzed the biological consist-
ency of the results. A.S. contributed to the design of the pipeline, the choice of the different parameters and the data 
analysis. All authors contributed to the manuscript. A.S. and S.L. contributed equally to the direction of the work. All 
authors read and approved the final manuscript.

Funding
The work was supported by the Institut National de la Santé et de la Recherche Médicale (Inserm), University of Rennes 
1, Ligue contre le Cancer du Grand Ouest, PNREST Anses cancer TMOI AVIESAN 2013/1/166.

Availability of data and materials
The description of HAA by SMILES formula were provided in [36]. The SMILES formula of caffeine was extracted from 
PubChem: https:// pubch em. ncbi. nlm. nih. gov/. They are all available in the Additional file 5.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
The authors declare that they consent for publication.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s12859-021-04363-6
https://pubchem.ncbi.nlm.nih.gov/


Page 25 of 26Conan et al. BMC Bioinformatics          (2021) 22:450  

Received: 27 January 2021   Accepted: 28 August 2021

References
 1. Ni W, McNaughton L, LeMaster DM, Sinha R, Turesky RJ. Quantitation of 13 heterocyclic aromatic amines in cooked 

beef, pork, and chicken by liquid chromatography–electrospray ionization/tandem mass spectrometry. J Agric Food 
Chem. 2008;56(1):68–78.

 2. Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology 
studies: lessons learned from aromatic amines. Chem Res Toxicol. 2011;24(8):1169–214.

 3. Oz F, Kaya M. Heterocyclic aromatic amines in meat. J Food Process Preserv. 2011;35(6):739–53.
 4. Gibis M. Heterocyclic aromatic amines in cooked meat products: causes, formation, occurrence, and risk assess-

ment. Compr Rev Food Sci Food Saf. 2016;15(2):269–302.
 5. Turesky RJ. Chapter 2—Heterocyclic aromatic amines: potential human carcinogens, vol. 4 of Advances in Molecular 

Toxicology. Elsevier; 2010.
 6. Marchant CA, Briggs KA, Long A. In silico tools for sharing data and knowledge on toxicity and metabolism: derek 

for windows, meteor, and vitic. Toxicol Mech Methods. 2008;18(2–3):177–87.
 7. Jeliazkova N, Jeliazkov V. AMBIT RESTful web services: an implementation of the OpenTox application programming 

interface. J Cheminform. 2011;3:18.
 8. Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B. An evaluation of the implementation of the Cramer clas-

sification scheme in the Toxtree software. SAR QSAR Environ Res. 2008;19(5–6):495–524.
 9. Rudik AV, Bezhentsev VM, Dmitriev AV, Druzhilovskiy DS, Lagunin AA, Filimonov DA, et al. MetaTox: web application 

for predicting structure and toxicity of xenobiotics’ metabolites. J Chem Inf Model. 2017;57(4):638–42.
 10. Hughes TB, Miller GP, Swamidass SJ. Site of reactivity models predict molecular reactivity of diverse chemicals with 

glutathione. Chem Res Toxicol. 2015;28(4):797–809.
 11. Hughes TB, Dang NL, Miller GP, Swamidass SJ. Modeling reactivity to biological macromolecules with a deep multi-

task network. ACS Cent Sci. 2016;2(8):529–37.
 12. Langouët S, Welti DH, Kerriguy N, Fay LB, Huynh-Ba T, Markovic J, et al. Metabolism of 2-amino-

3,8-dimethylimidazo[4,5-f ]quinoxaline in human hepatocytes: 2-amino-3-methylimidazo[4,5-f ]quinoxaline-
8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2. Chem Res Toxicol. 
2001;14(2):211–21.

 13. Langouët S, Paehler A, Welti DH, Kerriguy N, Guillouzo A, Turesky RJ. Differential metabolism of 2-amino-1-methyl-
6-phenylimidazo[4,5-b]pyridine in rat and human hepatocytes. Carcinogenesis. 2002;23(1):115–22.

 14. Nauwelaers G, Bellamri M, Fessard V, Turesky RJ, Langouët S. DNA adducts of the tobacco carcinogens 2-amino-
9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human 
hepatocytes. Chem Res Toxicol. 2013;26(9):1367–77.

 15. Bellamri M, Le Hegarat L, Turesky RJ, Langouët S. Metabolism of the tobacco carcinogen 2-Amino-9H-pyrido[2,3-b]
indole (AαC) in primary human hepatocytes. Chem Res Toxicol. 2017;30(2):657–68.

 16. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, et al. MetaSite: understanding metabolism in 
human cytochromes from the perspective of the chemist. J Med Chem. 2005;48(22):6970–9.

 17. Klopman G, Dimayuga M, Talafous JMETA. 1. A program for the evaluation of metabolic transformation of chemicals. 
J Chem Inf Comput Sci. 1994;34(6):1320–5.

 18. Yousofshahi M, Manteiga S, Wu C, Lee K, Hassoun S. PROXIMAL: a method for prediction of xenobiotic metabolism. 
BMC Syst Biol. 2015;9:94.

 19. Mekenyan OG, Dimitrov SD, Pavlov TS, Veith GD. A systematic approach to simulating metabolism in computational 
toxicology. I. The TIMES heuristic modelling framework. Curr Pharm Des. 2004;10(11):1273–93.

 20. Gao J, Ellis LB, Wackett LP. The University of Minnesota Biocatalysis/Biodegradation Database: improving public 
access. Nucleic Acids Res. 2010;38(Database:issue):D488–91.

 21. Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la Fuente A, Greiner R, Manach C, Wishart DS. BioTransformer: a compre-
hensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform. 
2019;11(1):2.

 22. Ridder L, Wagener M. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. 
ChemMedChem. 2008;3(5):821–32.

 23. Bugrim A, Nikolskaya T, Nikolsky Y. Early prediction of drug metabolism and toxicity: systems biology approach and 
modeling. Drug Discov Today. 2004;9(3):127–35.

 24. Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, et al. CypScore: quantitative prediction of reactivity 
toward cytochromes P450 based on semiempirical molecular orbital theory. ChemMedChem. 2009;4(4):657–69.

 25. Afzelius L, Arnby CH, Broo A, Carlsson L, Isaksson C, Jurva U, et al. State-of-the-art tools for computational site of 
metabolism predictions: comparative analysis, mechanistical insights, and future applications. Drug Metab Rev. 
2007;39(1):61–86.

 26. Rydberg P, Gloriam DE, Olsen L. The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics. 
2010;26(23):2988–9.

 27. Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L. SMARTCyp: a 2D method for prediction of cytochrome 
P450-mediated drug metabolism. ACS Med Chem Lett. 2010;1(3):96–100.

 28. Cruciani G, Milani N, Benedetti P, Lepri S, Cesarini L, Baroni M, et al. From experiments to a fast easy-to-use com-
putational methodology to predict human aldehyde oxidase selectivity and metabolic reactions. J Med Chem. 
2018;61(1):360–71.

 29. Rudik A, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. SOMP: web server for in silico prediction of sites of metabo-
lism for drug-like compounds. Bioinformatics. 2015;31(12):2046–8.



Page 26 of 26Conan et al. BMC Bioinformatics          (2021) 22:450 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 30. Kirchmair J, Williamson MJ, Afzal AM, Tyzack JD, Choy AP, Howlett A, et al. FAst MEtabolizer (FAME): a rapid and 
accurate predictor of sites of metabolism in multiple species by endogenous enzymes. J Chem Inf Model. 
2013;53(11):2896–907.

 31. Šícho M, Stork C, Mazzolari A, de Bruyn Kops C, Pedretti A, Testa B, et al. FAME 3: predicting the sites of metabolism 
in synthetic compounds and natural products for phase 1 and phase 2 metabolic enzymes. J Chem Inf Model. 
2019;59(8):3400–12.

 32. Li J, Schneebeli ST, Bylund J, Farid R, Friesner RA. IDSite: an accurate approach to predict P450-mediated drug 
metabolism. J Chem Theory Comput. 2011;7(11):3829–45.

 33. Campagna-Slater V, Pottel J, Therrien E, Cantin LD, Moitessier N. Development of a computational tool to rival 
experts in the prediction of sites of metabolism of xenobiotics by p450s. J Chem Inf Model. 2012;52(9):2471–83.

 34. Oh WS, Kim DN, Jung J, Cho KH, No KT. New combined model for the prediction of regioselectivity in cytochrome 
P450/3A4 mediated metabolism. J Chem Inf Model. 2008;48(3):591–601.

 35. Dang NL, Hughes TB, Miller GP, Swamidass SJ. Computationally assessing the bioactivation of drugs by N-dealkyla-
tion. Chem Res Toxicol. 2018;31(2):68–80.

 36. Delannee V, Langouët S, Siegel A, Theret N. In silico prediction of heterocyclic aromatic amines metabolism suscep-
tible to form DNA adducts in humans. Toxicol Lett. 2019;300:18–30.

 37. Favre HA, Powell WH. Nomenclature of organic chemistry. The Royal Society of Chemistry; 2014.
 38. Daylight Inc., Daylight Theory: SMIRKS—a reaction transform. Language. 2021 https:// www. dayli ght. com/ dayht ml/ 

doc/ theory/ theory. smirks. html.
 39. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. 

Nucleic Acids Res. 2019;47(D1):D1102–9.
 40. ChemAxon com. Marvin, . | ChemAxon. 2021. https:// chema xon. com/ produ cts/ marvin.
 41. Jensen FV, Nielsen TD. Bayesian networks and decision graphs. 2nd ed. Springer; 2007.
 42. Smith PF, Smith A, Miners J, McNeil J, Proudfoot A. Safety aspects of dietary caffeine-report from the expert working 

group. Australia New Zealand Food Authority. 2000; p. 20–3.
 43. Thorn CF, Aklillu E, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for 

CYP1A2. Pharmacogenet Genomics. 2012;22(1):73–7.
 44. Perera V, Gross AS, McLachlan AJ. Measurement of CYP1A2 activity: a focus on caffeine as a probe. Curr Drug Metab. 

2012;13(5):667–78.
 45. Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, et al. Genome-wide association study of caf-

feine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum 
Mol Genet. 2016;25(24):5472–82.

 46. Ngueta G. Caffeine and caffeine metabolites in relation to hypertension in U.S. adults. Eur J Clin Nutr. 
2020;74(1):77–86.

 47. Tyzack JD, Kirchmair J. Computational methods and tools to predict cytochrome P450 metabolism for drug discov-
ery. Chem Biol Drug Des. 2019;93(4):377–86.

 48. Chevereau M, Glatt H, Zalko D, Cravedi JP, Audebert M. Role of human sulfotransferase 1A1 and N-acetyltransferase 
2 in the metabolic activation of 16 heterocyclic amines and related heterocyclics to genotoxicants in recombinant 
V79 cells. Arch Toxicol. 2017;91(9):3175–84.

 49. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, et al. Comprehensive genomic charac-
terization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

 50. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 
2020;369(6509):1318–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
https://chemaxon.com/products/marvin

	Constructing xenobiotic maps of metabolism to predict enzymes catalyzing metabolites capable of binding to DNA
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Definition and construction of enriched metabolic maps
	Validation of the method: construction and analysis of a map of metabolism for caffeine
	Application to heterocyclic aromatc amines (HAA) and DNA reactivity predictions

	Discussion and conclusion
	Methods
	Tool for the prediction of edges and nodes of maps of metabolism: SyGMa
	Tools for the prediction of sites of metabolisms (SOM)
	Prediction of SOR

	Acknowledgements
	References


