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Abstract 39 

Tumor cell vasculogenic mimicry (VM), also dubbed vascular mimicry, describes the plasticity 40 

of aggressive cancer cells forming de novo vascular networks and is associated with the 41 

malignant phenotype and poor clinical outcome. VM is described in a plethora of tumors, 42 

including carcinomas, sarcomas, glioblastomas, astrocytomas and melanomas. The presence 43 

of VM is associated with a high tumor grade, short survival, invasion and metastasis. A variety 44 

of molecular mechanisms and signal pathways participates in VM induction and formation. 45 

Due to VM's contribution on tumor progression, more VM-related strategies are being utilized 46 

for anticancer treatment. After describing the main features of VM, this review will outline 47 

the importance of the tumor microenvironment during this process, and highlight the 48 

predominant molecular targets and signaling pathways involved. These data will make it 49 

possible to discuss the importance of VM-associated mediators in antitumor therapy and how 50 

it could allow to better understand the resistance to anticancer therapy. 51 

 52 
Keywords: Cancer cells; tumor microenvironment; vessels; signaling pathways; endothelial 53 

cells; anticancer therapy 54 
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Abbreviations 79 

αSMA: alpha smooth muscle actin 80 

CAF: cancer-associated fibroblast 81 

COX2: cyclo-oxygenase 2 82 

CSC: cancer stem cell 83 

Dll: Delta-like ligand 84 

EMT: epithelial-mesenchymal transition 85 

EphA2: ephrin A2 receptor 86 

EVs: extracellular vesicles 87 

FAK: focal adhesion kinase 88 

GSC: glioblastoma stem-like cell 89 

HCC: hepatocellular carcinoma 90 

HDAC: histone deacetylase 91 

HIF: hypoxia-inducible factor 92 

lncRNA: long non-coding RNA 93 

LOXL2: lysyl oxidases like 2 94 

miRNA: micro-RNA 95 

MMP: matrix metalloproteinase 96 

ncRNA: non-coding RNA 97 

NSCLC: non-small cell lung cancer 98 

PAS: periodic acid-Schiff 99 

PGE2: prostaglandin E2 100 

PI3K: phosphatidylinositol-3-kinase 101 

TAM: tumor-associated macrophage 102 

TGF-ß: transforming growth factor beta 103 

TME: tumor microenvironment 104 

uORF: upstream open reading frame 105 

VEGF: vascular endothelial growth factor 106 

VE-PTP: vascular endothelial protein tyrosine phosphatase 107 

VM: vasculogenic mimicry 108 
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1. Introduction 110 

Since the studies of Judah Folkman (Folkman, 1971) supplemented by those of Napoleone 111 

Ferrara (Kim et al., 1993), tumor growth and metastasis have been explained by a change in 112 

the tumor vascular structure through angiogenesis and vasculogenesis. Formation of the 113 

tumor vasculature was largely thought to parallel physiological processes of 114 

neovascularization, with endothelial sprouting and proliferation being the principal routes of 115 

new blood vessel formation. However, this dogma was discussed after the demonstration by 116 

Maniotis et al. in 1999 (Maniotis et al., 1999) of vascular mimicry (VM) in malignant 117 

melanoma. In these tumors, the patterned vascular channels characteristic of aggressive 118 

primary and metastatic melanoma are different from angiogenic vessels in that vascular 119 

channels in aggressive melanomas are embedded in highly patterned matrix whereas 120 

angiogenic vessels are characterized by clusters of vessels and are not patterned. 121 

Furthermore, the patterned melanoma vascular channels were not found to be lined by 122 

endothelium whereas the contribution of an endothelium to angiogenic vessels is clearly 123 

identified. The hypothesis proposed to explain this new vascular architecture was a process 124 

of dedifferentiation of tumor cells into an endothelial-like phenotype whose clinical 125 

implications are clear: VM-forming tumors were more aggressive than their non-VM 126 

counterparts (Qin et al., 2019). Furthermore, VM-lined channels might not respond 127 

predictably to conventional anti-angiogenic therapies in melanoma (Schnegg et al., 2015) or 128 

other cancers (Angara et al., 2017; Hori et al., 2019). 129 

A major controversial commentary has been proposed on the topic entitled 130 

“Vasculogenic mimicry: how convincing, how novel and how significant” (McDonald et al., 131 

2000). Briefly, the main criticisms raised from this commentary focused on different aspects 132 

of the original and rather descriptive VM study, which led the authors to the following 133 
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questions: (i) Can the VM structures be considered as blood vessels and do they contribute 134 

meaningfully to blood flow? (ii) Can the presence or absence of endothelial cells and tumor 135 

cells surrounding the vascular lumen be established using unambiguous markers? (iii) Is there 136 

an interface between endothelial cells and tumor cells in blood vessel walls? Thus, the 137 

relevance of the conclusions from Maniotis et al. was questioned, considering the possibility 138 

that perhaps VM channels were not functional (Maniotis et al., 1999). Moreover, there were 139 

serious technical limitations in identifying VM channels using conventional 140 

immunohistochemistry which was prone to artifacts and not entirely objective. Despite these 141 

criticisms, it seems that VM has re-entered the spotlight in cancer research with several 142 

publications in journal with good scientific impact (Williamson et al., 2016; Xiang et al., 2018) 143 

and also with a significant publication rate in the last 10 years (940 hits on Pubmed with 144 

keywords “vascular mimicry cancer” or “vasculogenic mimicry cancer”). These last studies 145 

provide the basis to better define tumor VM which is the source of many resistance to 146 

anticancer therapies and also explain the aggressiveness of certain tumors. 147 

 148 

2. Characteristics of vascular mimicry 149 

During its vascular stage, tumor nutrition through diffusion is no longer sufficient and 150 

expansion of new vasculature is necessary for tumor growth (Folkman, 1990; Gimbrone et al., 151 

1972). Presently, five vascularization modes are now recognized (Carmeliet and Jain, 2011): 152 

sprouting and intussusceptive angiogenesis, vessel co-option (Kuczynski et al., 2019), 153 

endothelial cell transdifferentiation and VM. 154 

VM is defined as the formation of new blood vessels following the acquisition of 155 

vascular cell features or functions by tumor cells of a non-vascular origin. Two distinct VM 156 

types have been identified: tubular and patterned matrix VM. Patterned VM is composed of 157 
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an extracellular matrix of irregular thickness, that is positive for periodic acid-Schiff (PAS), 158 

laminin or heparan sulfate, and surrounding islets of cancer cells (Fig. 1A). Although patterned 159 

VM networks are shown to conduct fluids, the patterned matrix does not contain a continuous 160 

lumen and is morphologically different than blood vessels or their vascular matrix (Folberg 161 

and Maniotis, 2004; Maniotis et al., 1999). Furthermore, tubular VM is composed of tumor 162 

cells that mimic the normal endothelium to form hollowed and perfused tube-like channels 163 

(El Hallani et al., 2010) (Fig. 1B). Whilst blood and lymph vessels are formed by a monolayer 164 

of endothelial cells surrounded by a semi-continuous basement membrane, tubules from VM 165 

are formed by cancer cells resting on an inner glycoprotein rich matrix (Fig. 2) (Valdivia et al., 166 

2019). In this review, unless specified, the term VM encompasses both tubular and patterned 167 

VM types. 168 

Ongoing discussions in the field suggest a minimal set of experiments which needs to 169 

be performed in order to ascertain the occurrence of VM. Historically, both in vivo and in vitro 170 

models VM structures were positively stained with PAS, and they did not possess endothelial 171 

markers such as CD31 or CD34 (Maniotis et al., 1999). Although immunohistology and 172 

molecular studies have highlighted the expression of endothelial markers (CD31, CD34, VE-173 

cadherin) in VM structures, PAS+/CD31- staining is currently the most widely used marker for 174 

VM. In vitro, the molecular characteristics underlying VM are traditionally confirmed in models 175 

of highly invasive cell lines able to form tubes on Matrigel®. Finally, the functionality of hollow 176 

VM structures has been confirmed in vitro upon dye perfusion, and in tumor biopsies with the 177 

presence of red blood cells in VM structure’s lumen (Ruf et al., 2003; Sood et al., 2001). To 178 

date, the occurrence of VM has been shown in various pre-clinical models of breast 179 

(Wagenblast et al., 2015), ovarian, prostate (Liu et al., 2012), astrocytoma, glioblastoma, 180 

hepatocellular carcinoma (HCC) and lung cancers. Depending on the cancer type, the 181 
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incidence of VM positive tumors (based on PAS+CD31- staining) varies considerably (5 to 65%) 182 

(Valdivia et al., 2019). However, these investigations need to be taken with a pinch of salt and 183 

backed-up by rigorous tissue examination (McDonald et al., 2000). 184 

 185 

2.1. Epithelial-mesenchymal transition and VM 186 

VM formation is a sophisticated process involving various mechanisms. While similarities have 187 

been shown between epithelial-mesenchymal transition (EMT) and VM, several studies have 188 

stressed the main role of tumor microenvironment (TME) during VM.  189 

Initially, EMT has been recognized as a key step during embryonic morphogenesis 190 

(Nieto et al., 2016). In different pathophysiological conditions, including cancer, EMT involves 191 

various cellular changes in which epithelial cells loosen (i) their attachments to neighboring 192 

cells and (ii) their apico-basal cell polarity, while (iii) they start acquiring mesenchymal markers 193 

including vimentin, N-cadherin and fibronectin (Thiery, 2002). EMT is highly dynamic, implying 194 

transient (dubbed partial-EMT) and reversible states (Ribatti et al., 2020), as well as direct cell-195 

cell interaction or secreted cues (reviewed in (Kim et al., 2020)). EMT implies different 196 

signaling pathways including (among other) TGF-b, Wnt, Notch and Hedgehog (Chen et al., 197 

2016; Islam et al., 2016; Ma et al., 2018), as well as the expression of specific transcription 198 

factors (Snail, Twist1, SOX4 and ZEB1) acting as repressors of epithelial markers (Gil et al., 199 

2016; Leskela et al., 2019; Ma et al., 2018). This transcriptional remodeling is accompanied by 200 

a cadherin switching (Wheelock et al., 2008), particularly from E-cadherin to a panel of 201 

mesenchymal cadherins (N-, P-, R-, T- and cadherin 11), that was correlated with tumor 202 

progression and invasiveness in squamous cell carcinomas (Miro et al., 2019) and endometrial 203 

adenocarcinoma (Fan et al., 2019). Thus, during EMT, cancer cells trade their epithelial 204 

characteristics to mesenchymal traits including cytoskeleton reorganization and higher 205 
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motility (Sannino et al., 2017). Altogether, initiating the first step of the invasion–metastasis 206 

cascade, detrimental for patient’s prognosis and raising cancer death-toll (Pastushenko and 207 

Blanpain, 2019). 208 

Interestingly, several studies have shown that EMT is involved in VM formation (Fig. 2, 209 

inset i). As proof, it has been reported that ZEB1 small hairpin RNA inhibits both the formation 210 

of VM and EMT in triple negative breast cancer (Liang et al., 2018) and colorectal cancer 211 

models (Liu et al., 2012). Likewise, it has been found that Twist1 is able to regulate VM 212 

formation in astrocytoma, and that its expression is associated with the grade of astrocytoma, 213 

one of the most vascularized types tumor in human (Cao et al., 2019; Li et al., 2020). Thus, it 214 

suggests a non-negligible role of VM in glioma tumor vascularization. In HCC cell lines, 215 

chromatin immunoprecipitation and luciferase assays demonstrated that Twist1 binds the VE-216 

cadherin promoter region and induces VE-cadherin transcription (a molecule which function 217 

is developed further below) (Sun et al., 2010). In breast cancer cell lines, Twist1 could mediate 218 

VM formation by transcriptional repression of claudin 15 (Zhang et al., 2020). Moreover, in 219 

HCC model, it has been confirmed that Twist1 regulates VM formation abilities, through the 220 

VE-cadherin/AKT pathway (Sun et al., 2010). Wnt signaling is involved in various physiological 221 

processes, such as tumor cell proliferation (Yang et al., 2017), endothelial cell differentiation, 222 

and angiogenesis (Shetti et al., 2019). Furthermore, several studies suggested that Wnt 223 

signaling induces EMT by repressing glycogen synthase kinase-3β (GSK3β)-mediated 224 

phosphorylation that subsequently regulates the phosphorylation/degradation of Snail, an 225 

important mediator of EMT (reviewed elsewhere in (Zhong et al., 2020)). Initially, it has been 226 

reported that Wnt/β-catenin signaling was involved in VM formation in colon cancer (Qi et al., 227 

2015). Recently, the mechanistic basis of osteosarcoma VM has been extended to 143B and 228 
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HOS cell lines where microarray analyzes showed enriched TGF-b and Wnt signaling pathway 229 

(Yao et al., 2020). 230 

TGF-β is one of the key EMT driver in various pathologies including cancer (Wendt et al., 231 

2009). Thus, it is not unfounded to assume that TGF-b signaling pathway may also regulate 232 

VM. As such, in vitro and clinical studies observed that (i) HCC patients with VM and ZEB2 233 

nuclear expression have a shorter survival period than those without expression, and (ii) ZEB2 234 

promotes VM by TGF-b induced EMT (Yang et al., 2015b). Moreover, in a model of SHG44 235 

glioma cells transfected with TGF-b cDNA, EMT regulated by p38/MAPK signaling pathways 236 

could participate in VM formation, suggesting a role of this cytokine in the unfavorable 237 

evolution of glioma (Ling et al., 2016). As an integral part of the EMT, TGF-b drives the cadherin 238 

switching with a loss of E-cadherin and an increase of N-cadherin. Seemingly, VEGF-A plays a 239 

similar role during the hypoxia-induced VM in salivary adenoid cystic carcinoma (Wang et al., 240 

2019) and various models of liver tumor (Chen et al., 2019). Thus, these findings suggest that 241 

the signaling pathways involved in EMT and VM formation are likely identical or perhaps 242 

complementary. A thorough transcriptomic meta-analysis of several VM-competent and TGF-243 

b-treated cancer cell lines could help clarifying this point. 244 

 245 

2.2. Tumor microenvironment, team spirit in VM 246 

The tumor microenvironment (TME) is the sophisticated cellular milieu in which the tumor 247 

develops. Apart from the tumor cells, TME comprises blood and lymphatic vessels, the 248 

extracellular matrix and other non-malignant cells including cancer stem cells (CSCs), 249 

fibroblasts or immune cells (Wu et al., 2017). Several factors deeply influence the TME and 250 

are thus powerful modulators of cell’s behaviors. In the following sections, we discuss new 251 

findings about how cells from TME contribute to the process of VM (Fig. 2). 252 
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Cancer stemness properties and VM 253 

CSCs are rare subpopulations of neoplastic cells within a tumor, usually less than 5%, which 254 

are able to generate new tumors in appropriate animal hosts. CSCs have been first identified 255 

in human acute myeloid leukemia in 1994, where authors showed that cancer cells grafted 256 

into SCID mice produce a large number of CD34+/CD38- subpopulation of leukemic cells 257 

(Lapidot et al., 1994). CSCs are also expressed in several solid tumor entities such as breast 258 

(Yue et al., 2018), brain (Ren et al., 2018), colon (Lenos et al., 2018), gastric (Zavros, 2017) or 259 

prostate (Gorodetska et al., 2019) cancers. Additionally, evidence point out that these CSCs 260 

are the cause of tumor initiation, progression, invasion, metastasis, chemoradiotherapy 261 

resistance, and relapse underscoring their paramount importance in tumorigenesis (Peitzsch 262 

et al., 2017). Among the hypotheses behind the formation of VM, this process would be the 263 

ability of VM tumor cells to adopt the pluripotent phenotype of embryonic cells (Seftor et al., 264 

2002). CSC marker expressions associated with VM in human malignant tumors suggest that 265 

CSCs may participate in the formation of VM (Fig. 2, inset ii). Different biomarkers are used to 266 

characterize and identify CSCs. CD133, also called prominin-1, is a common biomarker of CSCs 267 

that was initially described as a biomarker in human hematopoietic stem and progenitor cells 268 

(Yin et al., 1997). Currently, CD133 overexpression in various human cancers is considered a 269 

significant (unifying?) marker of CSCs (Aghajani et al., 2020; Lathia et al., 2015; Wang et al., 270 

2020b). CD133+ tumor cells are able to induce tumor cell proliferation (Pavon et al., 2018), 271 

metastasis (Liou, 2019) and to differentiate into other kinds of cells (Virant-Klun et al., 2019; 272 

Zhang et al., 2020). Aldehyde dehydrogenase 1 (ALDH1) is another biomarker of CSCs in liver, 273 

lung, ovarian, gastric, colorectal or breast cancer (Tomita et al., 2016), and described as a 274 

potent inducer of tumor cell proliferation, differentiation and oxidative stress (Vishnubalaji et 275 

al., 2018; Zhou et al., 2020). Different studies conducted on various tumor types have shown 276 
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a correlation between an increase of CD133 and ALDH1 expression, and VM formation. For 277 

instance, in osteosarcoma, an aggressive malignant bone tumor in children and adolescents, 278 

positive rates of CD133, ALDH1 and VM are significantly higher in tumor tissues compared 279 

with control tissues, and positively associated with lymph node and distant metastasis, as well 280 

as poor patient overall survival (Bao et al., 2018). In HCC, CD133 and VM are also reported to 281 

be significantly higher in tumor tissues than in normal liver tissues (Xu et al., 2018a). Recently, 282 

in human and mice triple-negative breast cancer models, it has been confirmed that CD133+ 283 

and ALDH1+ cells form more VM channels in vivo (Sun et al., 2019). These results confirmed 284 

CSCs as crucial modulators in the process of VM formation.  285 

Because human neural stem cells have been shown to transdifferentiate into 286 

endothelial cells (Wurmser et al., 2004), it is established that the differentiation of CSCs into 287 

endothelial cells represents one of the hypotheses explaining VM formation. Indeed, renal 288 

CSCs can generate endothelial cells in vitro and give rise to vessels with a human origin in vivo 289 

(Bussolati et al., 2008). Furthermore, human breast CSCs undergo endothelial differentiation 290 

to generate functional endothelial cells in vitro and in vivo (Bussolati et al., 2009). 291 

Subsequently, these data, obtained from in vitro studies, were supplemented by more robust 292 

pre-clinical and clinical studies. Thus, in glioblastoma, it has been reported that CSCs generate 293 

endothelial cells that form CD105+ (endoglin) tumor vessels (Wang et al., 2010). Moreover, 294 

Ricci-Vitiani et al. showed that a broad range (20-90%) endothelial cells in glioblastoma 295 

harbors the same chromosomal alterations as in tumor cells (Ricci-Vitiani et al., 2010). 296 

Although controversial, these studies demonstrate that CSCs in multiple tumors have 297 

endothelial differentiation abilities and could contribute to VM formation. This fact is 298 

supported by a study conducted on human glioblastoma samples, showing that the so-called 299 

glioblastoma stem-like cells (GSCs) may differentiate into CD31+/CD34+ endothelial cells and 300 
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promote VM formation (Mei et al., 2017). In another study conducted on HCC1937/p53 cells, 301 

derived from triple-negative breast cancer, cancer cell-transdifferentiated endothelial cells 302 

expressed endothelial markers such as VE-cadherin, matrix metalloproteinase (MMP)-2 and -303 

9 and exhibited VM formation ability on Matrigel® (Izawa et al., 2018). Besides, in a mouse 304 

embryonic stem cell-induced model of lung CSCs, these cells were able to transdifferentiate 305 

into an endothelial cell-like phenotype expressing CD31 and capable of forming tubes on 3D 306 

matrix (Prieto-Vila et al., 2016). Taken together, cancer cell’s plasticity and transdifferentiation 307 

clearly contribute to VM formation. However, presently the exact mechanism driving 308 

transdifferentiation and a common underlying signaling across cancer types are lacking but 309 

may be worth investigating for therapeutic purpose (see further below). 310 

 311 

Hypoxia and VM  312 

Intratumoral hypoxia, which is commonly observed in various solid tumors (Denko, 2008), 313 

could trigger numerous signaling pathways which may lead to adverse clinical outcomes 314 

including higher cancer invasiveness through promotion of tumor metastasis, EMT or 315 

angiogenesis (Chiu et al., 2019) (Fig. 2). Among different hypoxia-related pathways, hypoxia-316 

inducible factors (HIFs) have been studied extensively (Wigerup et al., 2016). As major 317 

transcriptional regulators in response to hypoxia, HIFs consist of an oxygen-regulated HIF-a 318 

subunit (HIF-1a or HIF-2a) dimerizing with HIF-1b under hypoxia. The dimer then complexes 319 

with CREB-cAMP-response element binding protein and activates the transcription of a 320 

panoply of target genes harboring hypoxia responsive elements (HRE). Various studies have 321 

evaluated the influence of oxygen decrease in the regulation of EMT and VM formation. For 322 

instance, Du et al. confirmed that hypoxia contributes to VM formation by inducing EMT. 323 

Interestingly, HIF-1a expression, analyzed by immunohistochemistry in 71 specimens of 324 
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epithelial ovarian cancers, was correlated with loss of E-cadherin expression and up-regulated 325 

vimentin expression in 61% of VM-positive patients. Moreover, ovarian cancers with evidence 326 

of VM were significantly more likely to have high Twist1, Slug and VE-cadherin expression 327 

levels under hypoxia. In vitro, ovarian cancer cells presented morphological EMT-like changes 328 

under hypoxic conditions (Du et al., 2014). Furthermore, an association of HIF-1a expression 329 

and VM formation has been reported in other solid cancers such as melanoma or HCC. An 330 

interesting study has confirmed that HIF-1a promotes VM formation in HCC through lysyl 331 

oxidases like 2 (LOXL2, a secreted copper-dependent amine oxidase) up-regulation in hypoxic 332 

TME. Thus, from clinical HCC tissues, HIF-1a, LOXL2 expression and CD31/PAS double staining 333 

were examined by immunohistochemical staining and correlated to poor prognosis. These 334 

data have been backed up by series of in vitro assays that confirmed a positive relationship 335 

between hypoxia, HIF-1a and LOXL2 protein. Thus, HIF-1a was found to induce EMT, HCC cell 336 

migration, invasion and VM formation by regulating LOXL2 (Wang et al., 2017). Hence, hypoxia 337 

appears as a critical player during EMT and VM formation, and could act on several intricate 338 

pathways. 339 

 340 

Cancer-associated fibroblasts and VM  341 

Cancer-associated fibroblasts (CAFs) are major components of stromal cells that surround 342 

cancer cells, and control proliferation, survival, angiogenesis, metastasis, immunogenicity and 343 

resistance to therapies (Su et al., 2018). CAFs constitute the main pool of collagen-producing 344 

cells, which directly communicate with cancer cells and various cells from the TME such as 345 

endothelial or inflammatory cells. However, the biological properties of CAFs are disparate 346 

with different types of CAF driving distinct functional contributions. Besides, previous studies 347 

indicated that CAFs arise from different sources of origin including local infiltrating fibroblast, 348 
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epithelial or endothelial cells, pericytes or adventitial fibroblasts of the vascular system, or 349 

cancer cells themselves undergoing fibroblastic transformation, which may explain CAF’s 350 

morphological, phenotypical and functional variability (Chen and Song, 2019). In this context, 351 

it has been proposed that CAFs could be determinant in VM formation (Fig. 2, inset iii). Thus, 352 

in a recent study, VM-competent murine melanoma cells endogenously expressing the 353 

matricellular protein CCN2 (also named CTGF), were injected in mice carrying a CAF-specific 354 

CCN2 deletion. Interestingly, the absence of fibroblast-derived CCN2 reduced tumor 355 

vasculature, including VM occurrence (Hutchenreuther et al., 2018). Furthermore, PAS+ 356 

tissues from human cutaneous melanoma were also positive for the vascular pericyte marker 357 

a-smooth muscle actin (αSMA) within the extracellular matrix networks lined by tumor cells. 358 

Moreover, when VM-competent tumor cells were co-cultured with pericytes, there was a 359 

striking stabilization of the VM networks for up to 96 h (Thijssen et al., 2018). We could parallel 360 

these findings with the fact that in glioblastoma, VM structures co-express aSMA and PDGFR, 361 

another vascular pericyte marker (Francescone et al., 2012; Scully et al., 2012). The 362 

importance of CAFs has also been found in gastric cancers where they promote tumorigenesis 363 

through EphA2 (Hong et al., 2018; Nakamura et al., 2005). Pioneer studies in melanoma have 364 

previously correlated the activation of the EphA2 receptor tyrosine kinase with VM formation 365 

(Hess et al., 2001; Hess et al., 2006) (developed further below). Consequently, EphA2 was 366 

significantly associated with VM formation in head and neck squamous cell carcinoma (Wang 367 

et al., 2014) and gastric cancer cells (Kim et al., 2019b), which process was lowered in both 368 

cases upon EphA2 knockdown. These findings were supplemented by a recent study in gastric 369 

cancer AGS cells, showing that VM tube formation was significantly induced by CAF-derived 370 

secretome, while conditioned media from normal fibroblasts derived from the same patient 371 

had no effect. EphA2 silencing strategy in gastric cancer cells revealed that the CAF-mediated 372 
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VM promoting effect was mediated through the EphA2-PI3K pathway (Kim et al., 2019a). 373 

Altogether, these data suggest that CAFs, as powerful modeler of the TME, may have an 374 

underappreciated (yet) function in promoting VM formation. 375 

 376 

Tumor-associated macrophages and VM  377 

Both innate and adaptive immune cells are present and interact with the tumor cells via direct 378 

contact or through chemokine and cytokine signaling which shape the behavior of the tumor 379 

and its response to therapy. It is well established that tumor-associated macrophages (TAMs) 380 

are key regulators in the TME. In solid tumors, the main source of TAM is circulating 381 

monocytes rather than proliferating resident macrophages inside tumors. Macrophages can 382 

be categorized into M1 and M2 subtypes based on their polarization status. M1 macrophages 383 

can be activated by Th1 cytokine interferon gamma and microbial products, while M2 384 

macrophages differentiate in response to Th2 cytokines such as IL-4, IL-10 or IL-13 (Qian and 385 

Pollard, 2010). In this context of TAMs, M1 macrophages are considered to exert tumoricidal 386 

properties whereas M2 macrophages promote tumorigenesis. Both M1 and M2 TAM 387 

phenotypes are plastic and reversible, and the TME plays a major role in the regulation of their 388 

functional polarization (Duluc et al., 2009; Hagemann et al., 2008). Since inflammatory 389 

microenvironment is involved in angiogenesis and plasticity of tumor cells, it has been 390 

assumed that inflammatory microenvironment might also promote VM formation (Fig. 2, inset 391 

iv). Thus, the infiltration of macrophages in VM-positive areas and the role and underlying 392 

mechanism of M2 macrophages in inducing VM formation have been studied in glioblastoma 393 

cells (Rong et al., 2016; Zhang et al., 2017). As such, the capability of channel formation in U87 394 

cells with or without coculture with M2 (IL-4 stimulated) macrophages has been evaluated. 395 

The results revealed that M2 macrophages could enhance the ability to generate vascular 396 
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channels in U87 cells under normal oxygen condition. The high aSMA and barely detectable 397 

VE-cadherin expression in U87 cells proved that these vascular channels consisted of mural-398 

like cells transdifferentiated from tumor cells. To gain additional insights into the mechanism 399 

by which M2 macrophages promote VM formation in U87 cells, the proinflammatory cyclo-400 

oxygenase 2 (COX-2) signaling was investigated in the coculture model. Interestingly, COX-2 401 

expression and the secretion of its downstream effector prostaglandin E2 (PGE2) were up-402 

regulated in U87 cells after M2 macrophages coculture. Hence suggesting that M2 403 

macrophages could induce VM via up-regulating COX-2 expression in glioblastoma cells (Rong 404 

et al., 2016). Seemingly, M2-like macrophages enhanced VM through amplification of IL-6 405 

secretion by cancer cells (Zhang et al., 2017). These studies highlight intercellular 406 

communications (between M2-like macrophages and glioma cells) that induce VM formation 407 

via the involvement of different pro-inflammatory mediators. 408 

Within the TME, several factors can influence the outcome and progression of 409 

tumorigenesis. For instance, hypoxia and inflammation contribute to cancer cell plasticity, 410 

which could reinforce both EMT and VM (Fig. 2). Concomitantly, tumor-associated 411 

macrophages are also important mediators of TME by altering tumor inflammatory status, 412 

and interacting with several stromal cells. Finally, growing evidences suggest that CAFs and 413 

mural cells are likely to contribute and stabilize VM network formation. In depth in vivo 414 

profiling would be required to properly assess cellular interactions occurring during VM. In 415 

particular, we envision that state-of-the-art single cell technologies and ligand-receptor 416 

prediction algorithms would allow a thorough understanding of VM, but such studies are 417 

currently lacking. 418 

 419 

3. Molecular mechanisms in VM 420 
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In the following section, we discuss latest insights into the molecular mechanism and signaling 421 

pathways driving VM. Non-coding RNA molecules, acting as important epigenetics modifiers, 422 

will also be discussed in the context of VM. While a detailed molecular characterization driving 423 

VM is still lacking, this section primarily aims at presenting the most acknowledged 424 

mechanisms contributing to VM. 425 

 426 

3.1. VEGF signaling beyond angiogenesis, involvement in VM 427 

VEGF molecules and its receptors (VEGFRs) are key mediators in physiological (e.g. 428 

development and wound healing) and pathological angiogenesis including cancer. VEGF-A, the 429 

most studied VEGF member, regulates angiogenesis and vascular permeability by activating 430 

VEGFR-1 (FLT-1) and VEGFR-2 (KDR/FLK1), while VEGF-C/-D mostly regulate 431 

lymphangiogenesis via their receptor VEGFR-3 (FLT-4). In melanoma, the autocrine secretion 432 

of VEGF-A is shown to activate PI3K/PKCα and integrin-signaling pathways downstream 433 

VEGFR-1, thereby leading to VM (Vartanian et al., 2011). Endothelin 1, through its receptor 434 

endothelin-receptor type B (EDNRB), was identified as a melanoma progression marker and is 435 

thus associated to an aggressive phenotype (Bittner et al., 2000), and also appeared to play 436 

an important role in VM. Indeed, the endothelin 1/EDNRB axis could enhance the expression 437 

of VEGFR-3 and its ligands VEGF-C/-D via a cross talk involving the activation of c-SRC in a β-438 

arrestin-1-dependent fashion (a pathway also linked to VE-cadherin signaling; see below) (Fig. 439 

3A). This cooperative interaction between EDNRB- and VEGFR-3-mediated signaling resulted 440 

in the induction of melanoma cell migration and VM tube formation, and was further inhibited 441 

upon the concomitant blockade of these two receptors (Spinella et al., 2013). Peroxiredoxin-442 

2 belongs to an important family of antioxidant proteins. In colorectal cancer, peroxiredoxin-443 

2 expression was associated with VM formation and its knockdown reduced VEGFR-2 444 
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activation, allegedly due to an excessive level of oxidative molecules (Zhang et al., 2015a). 445 

Similarly, in Epstein-Barr virus-associated malignancies such as nasopharyngeal and gastric 446 

cancers where VM was reported, Epstein-Barr virus infection was shown to induce VEGF 447 

expression (Xiang et al., 2018; Xu et al., 2018b). However, the exact contribution of VEGF 448 

during nasopharyngeal cancer VM is still a matter of debate. Indeed, a first descriptive study 449 

indicated that transient silencing of VEGF-A or VEGFR-1 disrupted tubular structures from 450 

nasopharyngeal cancer cells, whereas inhibition of VEGFR-2 did not affect the process. Despite 451 

the fact LMP-1 and VEGFR-1 expressions were correlated to VM formation, in-depth 452 

investigation of the signaling involved was not further investigated by the authors (Xu et al., 453 

2018b). Moreover, further study in the same Epstein-Barr virus-associated cancer outlined a 454 

VEGF-independent mechanism (demonstrated by the means of anti-VEGF blocking antibodies 455 

and specific anti-VEGFR inhibitors), which activates the PI3K/AKT/mTOR/HIF-1α signaling 456 

cascade to induce VM (Xiang et al., 2018). 457 

 458 

3.2. CSC-related VEGF signaling in VM 459 

As previously discussed in this review, CSCs are discrete but critical sub-populations 460 

influencing tumorigenesis and therapy response. In line with their chemoresistance capacities, 461 

CSCs express stemness markers and high levels of drug efflux ATP-binding cassette (ABC) 462 

transporters. In melanoma, ABCB5-expressing CSCs co-express Tie-1 and VE-cadherin that are 463 

characteristic VM markers in aggressive uveal melanoma cells (Hendrix et al., 2001; Schatton 464 

et al., 2008). As compared to ABCB5- cells, ABCB5+ melanoma cells overexpress VEGFR-1 and 465 

preferentially associate with VM structures. As such, VEGFR-1 signaling was important for 466 

laminin deposition as VEGFR-1 knockdown xenograft showed reduced VM occurrence and 467 

lower tumor growth (Frank et al., 2011). However, melanoma are heterogeneous with some 468 
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tumors that may initially respond to anti-VEGF therapy while other are intrinsically resistant. 469 

Mirroring this clinical observation, VEGF-A inhibition in anti-VEGF responsive xenografts leads 470 

to an increase in VM, CSC markers, as well as the induction of the HIF-1a expression (Schnegg 471 

et al., 2015), reported to regulate VM and CSC phenotype in other cancers such as HCC (Ma 472 

et al., 2011), Ewing sarcoma (van der Schaft et al., 2005), melanoma (Zhang et al., 2009) and 473 

breast cancer (Mao et al., 2020). Examining whether HIF-1a inhibition could prevent the 474 

increase in VM induction and CSC maintenance following VEGF-A inhibition in melanoma will 475 

be an interesting strategy. Further stressing the importance of cellular context and treatment 476 

response heterogeneity, Notch 3 knockdown in melanoma cells exhibiting high endogenous 477 

levels of this marker led to retarded tumorigenicity in vivo through depleting CSC fraction, 478 

corroborated with a reduction in VM. In contrast, Notch 3 silencing affected neither tumor 479 

growth nor CSCs in a melanoma cell line with relatively low endogenous Notch 3 expression 480 

(Hsu et al., 2017). In several cancers the zinc-finger transcription factor Slug is reported to be 481 

an essential mediator of Twist1-induced EMT and metastasis. As such, in HCC Slug is critical to 482 

maintain CSC subpopulation, VE-cadherin and mesenchymal markers expression, which 483 

further contribute to VM formation (Sun et al., 2013). 484 

 CSCs have been particularly well documented in brain tumors, where VM was reported 485 

and correlated to higher aggressiveness and shorter overall survival (El Hallani et al., 2010; Liu 486 

et al., 2011a; Liu et al., 2011b; Wang et al., 2013; Wang et al., 2012; Yue and Chen, 2005). 487 

Immunohistochemistry analysis showed that VM in glioblastoma is principally composed of 488 

mural cells co-expressing VEGFR-2, aSMA and PDGFR – the latter two representing vascular 489 

pericyte markers – whilst the endothelial marker CD31 was mostly absent (Francescone et al., 490 

2012; Scully et al., 2012). Patient-derived glioblastoma CSCs, the so-called GSCs, were not 491 

capable to form any capillary-like structures in vitro. Conversely, this ability was retained by 492 
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GSC-derived differentiated cells expressing high levels of VEGFR-2 and aSMA, via a process 493 

dependent on VEGFR-2 and ERK signaling but not of its ligand VEGF (Francescone et al., 2012; 494 

Scully et al., 2012). Noteworthy, conflicting reports from another group indicate that VEGF, 495 

instead, could stimulate GSC-derived VM, albeit they also describe VEGFR-2 as paramount in 496 

inducing VM tube formation (Wu et al., 2017; Yao et al., 2013). These discrepancies could be 497 

attributed to the distinct GSC models used: fresh patient-derived versus U87 cell line-derived 498 

GSCs. Orthotopic mouse tumors with VEGFR-2-silenced GSCs showed decreased tumor 499 

growth and aSMA+CD31- vessels without affecting the percentage of mouse CD31+ vessels 500 

(Scully et al., 2012). Thus, the authors hypothesized that a small population of GSC (<1,5%) 501 

could undergo EC transdifferenciation, which participates in tumor angiogenesis as previously 502 

described (Ricci-Vitiani et al., 2010; Wang et al., 2010). 503 

 504 

3.3. VE-cadherin, more than an endothelial marker 505 

VE-cadherin (also known as CD144 or cadherin-5) is a trans-membrane protein crucial for 506 

vascular development, as demonstrated by early lethal phenotype in knockout mouse model 507 

(Carmeliet et al., 1999). Endothelial VE-cadherin is a key player controlling cell-cell adhesion 508 

and barrier properties (see review in (Treps et al., 2013)). Via its extracellular calcium domains, 509 

VE-cadherin forms cis- or trans-homodimers to support cell-cell adhesion. Besides, the 510 

extracellular calcium domain can bind the endothelial transmembrane receptor-type 511 

phosphatase VE-PTP (vascular endothelial protein tyrosine phosphatase) to poise endothelial 512 

barrier and keep endothelial permeability at low level (Orsenigo et al., 2012). Of note, VE-513 

cadherin’s intracellular domain is the target of numerous post-translational modifications 514 

including phosphorylation which orchestrate different signaling cascades depending on the 515 

cell type considered (see below). 516 
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Although VE-cadherin is an archetypal marker of endothelial cells, a fundamental study 517 

reported its expression in highly aggressive human melanoma cells whilst being absent in 518 

poorly aggressive melanoma cells derived from the same patient (Hendrix et al., 2001). Highly 519 

metastatic melanoma cells had the ability to form vessel-like network in 3D matrix in vitro, but 520 

this was hampered upon VE-cadherin silencing or CRISPR-Cas9 knockout (Delgado-Bellido et 521 

al., 2019; Hendrix et al., 2001). In aggressive melanoma, the molecular pathways downstream 522 

VE-cadherin involve its phosphorylation on Y658 residue (pY658) by the focal adhesion kinase 523 

(FAK) (Delgado-Bellido et al., 2019) (Fig. 3B). Indeed, FAK silencing or pharmacological 524 

inhibition reduced pY658-VE-cadherin levels, even upon VEGF treatment, and decreased VM 525 

tube formation. Interestingly, a nuclear pool of pY658-VE-cadherin in complex with p120 was 526 

identified in the metastatic uveal cell line MUM2B (Delgado-Bellido et al., 2019). While this 527 

phenomenon was already described for p120 and other cadherins such as E-cadherin, this is 528 

a premiere for VE-cadherin and would require further validation in other cancer cell types 529 

prone to VM. FAK appears to be paramount in controlling the nuclear pY658-VE-cadherin 530 

relocalization, which can then associate in complex with Kaiso, a known transcriptional 531 

repressor. Upon interaction and binding with p120, Kaiso-transcription repression’ activity is 532 

counteracted and the target genes induced. Thus, pY658-VE-cadherin could repress the 533 

binding of Kaiso to their target genes, induce the expression of CCND1 and Wnt 11, and thus 534 

poise the cells to induce VM in vitro (Fig. 3B). This recent report highlights how cancer cells 535 

such as melanoma cells could highjack existing pathways to induce VM. Recently, a study has 536 

developed an original model of culture by coating plates with a fusion protein consisting of 537 

the human VE-cadherin extracellular domain coupled to the immunoglobulin G Fc region (Fig. 538 

3B). Strikingly, when the Bel7402 HCC cells were cultured on this substrate, they 539 

spontaneously adopted tube-like structures, reminiscent of VM. Concomitant with this 540 
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cytoskeleton rearrangement, the cells showed an increased expression in VE-cadherin, EphA2, 541 

MMP-2/-9 secretion and PAS staining. Phenotypically, these HCC cells demonstrated an 542 

increased migration and invasion, and higher levels of pFAK and pY658-VE-cadherin, 543 

associated to several EMT markers (Shuai et al., 2020). Altogether, this would indicate that 544 

VE-cadherin has a pivotal place in inducing the EMT, PI3K/MMPs and EphA2/FAK/p-VE-545 

cadherin signaling, and thus trigger VM formation (Fig. 3B). 546 

 547 

3.4. VE-PTP, a VE-cadherin-associated receptor 548 

As mentioned above, the transmembrane receptor-type phosphatase VE-PTP associates with 549 

VE-cadherin to prevents its pY658 and thus maintains endothelial permeability at minimal 550 

level (Orsenigo et al., 2012). Similarly to VE-cadherin, VE-PTP is found expressed in aggressive 551 

melanoma cell lines, albeit absent in non-aggressive forms. Despite the fact that VE-PTP 552 

knockdown in HUVECs led to an expected increase in pY658-VE-cadherin (due to the absence 553 

of VE-PTP phosphatase activity), in aggressive melanoma cells it provoked a distinct outcome 554 

with a sharp reduction in pY658- and VE-cadherin total levels. Interestingly enough, 555 

immunoprecipitation experiments pointed out that, in this model, VE-PTP does not interact 556 

with VE-cadherin but rather with p120 catenin, which is important to prevent VE-cadherin 557 

degradation and to sustain the VE-cadherin nuclear pool (Fig. 3B). Noteworthy, the molecular 558 

interactions are different in HUVECs where VE-PTP appears linked to VE-cadherin rather than 559 

p120 (Delgado-Bellido et al., 2020). Altogether, this highlight that, albeit mimicking normal 560 

endothelial cell function, VE-cadherin and VE-PTP behave differently in aggressive melanoma 561 

cells to support VM. 562 

 563 

3.5. EphA2 signaling in VM 564 
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The Ephrin family of receptor tyrosine kinases (Eph) and their membrane-tethered ligands 565 

(ephrins) constitutes the vastest family of tyrosine kinase receptor. The Ephrin/Eph signaling 566 

is involved in various biological processes throughout development, adulthood and 567 

pathogenesis (Kania and Klein, 2016). For instance, EphA2, formerly called ECK (epithelial cell 568 

kinase), and its ligand ephrin-A1 have been shown to contribute to pathological tumor 569 

angiogenesis, albeit via an uncharacterized mechanism. Compared to poorly aggressive 570 

melanoma cell lines, EphA2 is overexpressed in most advanced melanoma cell lines (up to 14.8 571 

fold-change) (Easty et al., 1995; Hess et al., 2007; Hess et al., 2001) and metastatic melanoma 572 

biopsies. Furthermore, it is associated with cancer progression and invasion (Easty et al., 1995; 573 

Hess et al., 2007). In metastatic aggressive melanoma cell lines, VE-cadherin expression is 574 

instrumental in regulating EphA2 localization at cell-cell adhesion complexes, and EphA2 575 

tyrosine phosphorylation. Immunostaining and immunoprecipitation indicate that these two 576 

transmembrane proteins form a complex in vitro, but this might be indirect and could involve 577 

additional signaling molecules (Hess et al., 2006). However, even though VE-cadherin-EphA2 578 

co-localization has been demonstrated in situ in human melanoma sections, a thorough 579 

validation is currently lacking (e.g. tube formation). In gastric adenocarcinoma, a positive 580 

association between EphA2 expression and VM is highlighted, and further validation studies 581 

in gastric cancer cell line indicate that EphA2 knockdown led to a reduction in 3D tube 582 

formation in vitro (Kim et al., 2019b). Opposingly, EphA2 overexpression in pancreatic 583 

adenocarcinoma (Duxbury et al., 2004) and F10-M3 melanoma cells (Parri et al., 2009) 584 

increases cell invasiveness in 3D assays, which is in line with the invasive features of VM cells. 585 

The F10-M3 metastatic clone of the widely used B16 mouse melanoma cell line has been 586 

shown to not express EphA2 and ephrin-A1. However, ectopic expression of EphA2 leads to 587 

its tyrosine auto-phosphorylation and downstream signal transduction via FAK activation, 588 
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suggesting a ligand-independent activation (Parri et al., 2009) (Fig. 3B). We can note here that, 589 

as mentioned above in melanoma cells, FAK controls pY658-VE-cadherin and its nuclear 590 

localization as well as 3D tube formation (Delgado-Bellido et al., 2019). Therefore, although 591 

these studies were not performed using the same melanoma cell line, they indicate a possible 592 

link between VE-cadherin, EphA2 and FAK signaling in VM. 593 

As with many other receptor tyrosine kinases, EphA2 auto-phosphorylation promotes 594 

its endocytic internalization, the first step of exosomal sorting (Tkach and Thery, 2016; Walker-595 

Daniels et al., 2002). Such an autocatalytic EphA2 system needs to be poised by the opposing 596 

activity of protein tyrosine phosphatases (PTP) and particularly PTP1B located near the 597 

pericentriolar recycling endosomes (Nievergall et al., 2010). Another non classical EphA2 598 

signaling mechanism was brought to light by studying the secretion profile of doxorubicin-599 

induced senescent cells, and particularly their extracellular vesicle (EV) content. Upon ROS-600 

induced PTP1B inhibition, EphA2 was shed among small EVs and promoted the ERK-601 

dependent proliferation of recipient breast cancer cells through a EphA2/ephrin-A1 reverse 602 

signaling (Takasugi et al., 2017). Notwithstanding EphA2 phosphorylation has been linked to 603 

VM (Hess et al., 2001; Hess et al., 2006), to our knowledge no study has yet considered the EV 604 

communication during VM tube formation (although several studies carried out conditioned 605 

media treatments). Additionally, other EphA2 post-translational modifications such as 606 

ubiquitination, which balances the EphA2 membranous versus internalization remains 607 

uncharacterized regarding VM (Sabet et al., 2015). 608 

 609 

3.6. MMPs, powerful modelers of the tumor microenvironment 610 

These endopeptidases of the zinc-dependent family are implicated in a large variety of 611 

physiological processes including wound healing and organogenesis, as well as in pathological 612 
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conditions including tumorigenesis. All 28 MMPs are produced as proenzymes, and require a 613 

post-translational proteolytic cleavage to generate mature MMPs that have proteolytic 614 

activity against a broad range of substrates located on the extracellular matrix. As an example, 615 

the substrates from MMP-2/-9 include aggrecan, collagens, elastin, fibronectin, laminins, and 616 

glycosaminoglycans. MT1-MMP is a membrane-type collagenase which activates the MMP-617 

2/TIMP-2 complex (Fig. 3A), and is considered as a key mediator of cancer progression, EMT 618 

and metastasis (Kessenbrock et al., 2010). Additionally, MMPs play a crucial role in reshaping 619 

cell-cell and cell-matrix adhesive characteristics, as well as the extracellular matrix, all 620 

processes occurring during VM. As such, first evidence came from the group of Mary J.C. 621 

Hendrix with microarray analyses revealing that the expression of several MMPs, MT1-MMP, 622 

TIMP-1 and laminin-g2 were fostered in highly versus poorly aggressive patient-derived 623 

cutaneous melanoma cell lines (Seftor et al., 2001). Beside, MMP-1/-2/-9, MT1-MMP and 624 

laminin-g2 immunostaining showed a preferential expression in 3D tubular structures formed 625 

by aggressive ovarian and melanoma cell lines (Sood et al., 2001) and confirm that MT1-MMP 626 

is required for VM tube formation (Fig. 3A). 627 

The Rictor/mTORC2 complex can phosphorylate AKT at Ser473, thereby activating a 628 

central component in the PI3K-AKT pathway that regulates the expression of several MMPs. 629 

In melanoma cells, Rictor silencing decreased VM channels formation, cell migration and 630 

invasion, pSer473-AKT and the expression of MMP-2/-9 (Liang et al., 2017). Myoferlin, a type 631 

II membrane protein, is also a regulator of MMP-2 expression and vouch for adequate VM 632 

(tube formation and expression of EMT markers) in A375 human cutaneous melanoma cell 633 

line (Zhang et al., 2018). Likewise, supporting initial findings in melanoma and ovarian cancers, 634 

a recent study in large cell lung cancer cell lines indicates that recombinant MMP-2 could 635 

enhance tube formation ability, while recombinant MMP-13 (collagenase-3) or its ectopic 636 
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overexpression in H460 and H661 cell lines decreased VM formation (Li et al., 2017a). In 637 

melanoma and large cell lung cancer cell lines, the same group showed that while MMP-2 638 

proteolytically cleaves laminin-5 into the 105 kD laminin-5g2ʹ and 80 kD laminin-5g2x, MMP-639 

13 can generate small laminin-5 fragments (20 to 40 kD). MMP-13-digested laminin-5 could 640 

decrease 3D tube formation but enhanced melanoma cell invasion in Transwell assay (Li et al., 641 

2017a; Zhao et al., 2015). The authors hypothesized that MMP-13 proteolytic action may lead 642 

to the cleavage of the laminin-5g2-containing EGF domain, thereby curbing EGFR downstream 643 

Raf/ERK/AKT signaling, as well as the rearrangement of F-actin, vimentin and a-tubulin (Li et 644 

al., 2017a). Overall, high MMP-13 expression was inversely correlated with VM occurrence in 645 

melanoma patients and H460 subcutaneous tumors, and associated to metastasis in patients 646 

(Li et al., 2017a; Zhao et al., 2015). MMP-13 expression was also correlated to poorer overall 647 

survival of melanoma patients but this could be attributed to endothelium-dependent tumor 648 

vascularization rather than VM (Zigrino et al., 2009). 649 

Fine-tuning histone acetylation pattern by means of histone deacetylases (HDACs) is 650 

an important process controlling gene expression profile and frequently deregulated in 651 

cancers. This is the case for HDAC3, commonly upregulated in solid tumors (Karagianni and 652 

Wong, 2007). In glioma, HDAC3 silencing steers to an impaired 3D tube formation along with 653 

a decrease in MMP-14, laminin-5g2 (the latter likely involved in AKT/ERK activation signaling) 654 

(Liu et al., 2015). More generally, pharmacological inhibition of class I and II HDACs (HDAC1-655 

10) in glioma cell lines (with SAHA and MC1568), also affects vascular tube formation. The 656 

same holds true for GSCs, albeit at higher concentration (2 to 100-fold depending on the HDAC 657 

inhibitor), reflecting their well-known resistance to pharmacological treatments (Pastorino et 658 

al., 2019). Bromodomain and extra-terminal domain (BET) proteins are epigenetic decoders 659 

that recognize acetylated marks on proteins (including histones) and recruit proteins driving 660 
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transcriptional activation. JQ1, a BET inhibitor was effective in inhibiting VM of pancreatic 661 

ductal adenocarcinoma cells by decreasing the ERK1/2-MMP-2/-9 signaling pathway both in 662 

vitro and in vivo (Zhuo et al., 2019). 663 

A large body of data report the interleukin-33 (IL-33) and its receptor ST2 (encoded by 664 

IL1RL1) to be important in tumor immune response and cancer cell invasion. As such the IL-665 

33/ST2 axis is now considered as a promising new immunotherapy (Liew et al., 2016). 666 

Recently, IL-33 was shown to promote VM tube formation in aggressive melanoma cell lines. 667 

Mechanistically, downstream ST2 IL-33 could trigger the ERK1/2 phosphorylation and MMP-668 

2/-9 expression (Yang et al., 2019). However, even though IL-33 was previously described to 669 

induce a migrating mesenchymal phenotype, this aspect was not investigated in the context 670 

of VM. LOXL2 also plays a key role in extracellular matrix remodeling and particularly in 671 

collagen and elastin fibers stabilization which is involved in several processes including cell 672 

adhesion, migration, invasion and the EMT. Particularly, LOXL2 interacts and cooperates with 673 

Snail to downregulate E-cadherin expression in metastatic carcinoma (Peinado et al., 2005). It 674 

is thus not surprising that LOXL2 was found correlated to VM (and to VE-cadherin expression 675 

in cancer cells), metastasis and poor patient prognosis in HCC (Shao et al., 2019). 676 

 677 

3.7. Semaphorins, potential guides in VM 678 

The Semaphorin family is composed of membrane-anchored and secreted guidance cues 679 

which provide a wide repertoire of signals, paramount for neuronal growth, angiogenesis and 680 

epithelial barrier integrity (Treps et al., 2013). As such, semaphorins have been linked to EMT 681 

in pancreatic (Saxena et al., 2018; Tam et al., 2017), hepatic (Lu et al., 2018; Pan et al., 2016), 682 

breast (Yang et al., 2015a), cervical (Song and Li, 2017), ovarian (Tseng et al., 2011), head and 683 

neck (Wang et al., 2016) and oral cancers (Liu et al., 2018; Xia et al., 2019). Analogous to the 684 
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Ephrin guidance molecules described in the aforementioned section, the expression of the 685 

membranous Semaphorin-4D is correlated with VM in a cohort of non-small cell lung cancer 686 

(NSCLC). Downstream its receptor plexinB1, Semaphorin-4D triggers the RhoA/ROCK pathway 687 

thereby promoting cancer cell migration and invasion, and the occurrence of VM in vitro and 688 

in xenograft model (Xia et al., 2019). Accordingly, previous studies already reported the 689 

involvement of the RhoA/ROCK signaling in VM formation in melanoma, osteosarcoma and 690 

HCC (Xia et al., 2017; Xia et al., 2015; Zhang et al., 2014b; Zhang et al., 2015a). Semaphorin-691 

4D silencing also led to a reduction in VE-cadherin, EphA2 and MMP-2/-9, suggesting an 692 

intertwined relationship between these partners during VM in NSCLC (Xia et al., 2019). In 693 

other models of lung adenocarcinoma, downstream the SAV1-MST1/2-LATS1/2-YAP/TAZ axis 694 

Semaphorin-4D was also shown to participate in VM formation (Zhao et al., 2020). Moreover, 695 

at the surface of head and neck squamous cell carcinoma cell lines, MT1-MMP proteolytically 696 

cleaves Semaphorin-4D and induces Semaphorin-4D-dependent pro-angiogenic response in 697 

surrounding endothelial cells (Basile et al., 2006). It is thus not farfetched to hypothesize that 698 

this phenomenon could also occur between cancer cells, allowing a directional migration 699 

during VM network formation. 700 

 701 

3.8. Notch signaling in VM 702 

The Notch pathway is a highly conserved intercellular signaling. Activated by the interaction 703 

of the trans-membrane ligands Delta-like (Dll1-4) and Jagged-1/-2 with Notch receptors 704 

(Notch 1-4) expressed on adjacent cells, signal transduction is propagated via the g-secretase-705 

driven proteolytic cleavage of Notch receptor intracellular domain (NICD) that is released and 706 

form a nuclear transcriptional activator complex (Bray, 2016). Initial work indicates that Notch 707 

1/2, Jagged-1/-2 and Dll1 are upregulated in ‘dysplastic nevi’ and melanomas as compared to 708 
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common melanocytic nevi (Massi et al., 2006). Similarly, Notch 4 and Dll4 are overexpressed 709 

in aggressive melanoma cell lines where Notch 4 is enriched in melanoma VM networks 710 

(Demou and Hendrix, 2008), while Notch 4 blocking antibodies impair VM in vitro in a Nodal-711 

dependent manner (NICD can bind and drive Nodal gene expression) (Hardy et al., 2010). 712 

Remarkably, Nodal was overexpressed in metastatic melanoma tissues, and curbing 713 

downstream signaling pathway (via an ALK 4/5/7 inhibitor) could abrogate melanoma cell 714 

invasion and tube formation capacity (Topczewska et al., 2006). In breast cancer, 715 

overexpression and silencing strategies underline that Nodal promotes VM via the Smad2/3 716 

pathway (Gong et al., 2016). Additionally, Notch 4 and Dll4 were also found to be associated 717 

with VM, metastasis and poor prognosis in NSCLC (Wang et al., 2018). In aggressive human 718 

melanoma cell lines, disruption of the Notch signaling with the DAPT g-secretase inhibitor 719 

leads to a seemingly more matured and stabilized in vitro tubular network, and melanoma 720 

xenografted tumors displays larger and more branched VM channels, associated with an 721 

increase in MMP-2 and VEGFR-1 expression (Vartanian et al., 2013). Choriocarcinoma, a rare 722 

and highly metastatic gestational trophoblastic cancer, is reported to involve VM with 723 

syncytiotrophoblasts lining pseudovascular channels (Shih, 2011), a process that is similar to 724 

the embryonic microcirculatory networks (Rai and Cross, 2014). Forskolin is an inducer of 725 

syncytiolization, and Forskolin treatment in choriocarcinoma cells resulted in high expression 726 

of the VM markers MMP-2/-9, EphA2 and VE-cadherin, tube formation, as well as the 727 

activation of the Notch 1 signaling pathway. However, invasive ability and VM markers were 728 

reversed by DAPT, suggesting a mechanism whereby Notch-signaling down tunes VM in 729 

choriocarcinoma (Xue et al., 2020). Notwithstanding the behavior of trophoblasts is similar to 730 

aggressive tumors during differentiation and implantation (Rai and Cross, 2014), Notch 1 731 



 31 

signaling seems to have an opposing effect in melanoma and NSCLC (Vartanian et al., 2013; 732 

Wang et al., 2018), calling for further investigations before therapeutic applications. 733 

 734 

3.9. COXs inflammation in VM 735 

COX-2 is an enzyme responsible for catalyzing the conversion of arachidonic acid into 736 

prostaglandins such as PGE2, of paramount importance during inflammation. Subsequently, 737 

PGE2 binding to the prostaglandin E2 receptor subtypes (EP1-4) activates the EGFR signaling, 738 

and PKC-dependent ERK1/2 activation, pathways described to be involved in VM (Fig. 3A). In 739 

breast cancer, COX-2 expression correlates directly with aggressiveness and metastasis. As 740 

such, in vitro VM tube formation is largely impaired by celecoxib treatment, a selective COX-741 

2 inhibitor, but nearly completely rescued when cells are supplemented with prostaglandin 742 

E2. Unbiased bulk RNA-sequencing approach was followed to disentangle the underlying 743 

regulatory mechanism. Interestingly, genes related to angiogenesis (e.g. MMP-1, fibronectin, 744 

LAMC2) and proliferation (STAT1, EGFR, MAPK) were diminished. Protein array further 745 

validated a reduction in major angiogenic proteins such as VEGF and TIMP-1/-2, making a 746 

parallel between VM and angiogenic pathways (Basu et al., 2006). Treatments with specific E2 747 

receptor antagonists further highlight the involvement of the EP3 and EP4 receptors to 748 

mediate the aggressive phenotype of SUM149 and SUM190 inflammatory breast cancer cells, 749 

and mediate VM 3D tube formation (Robertson et al., 2010). Of note, in glioblastoma, the 750 

presence of VM channel is associated with the expression of COX-2 and MMP-9 (Liu et al., 751 

2011b). In an elegant in vitro coculture model of U87 glioma cell line and IL-4-activated M2 752 

macrophages (as a model of TAMs), tube formation and COX-2 expression were increased. 753 

Downstream COX-2, the PGE2/EP1/PKC pathway was of prime importance to induce VM 754 
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formation, and further confirmed in vivo with COX2-deficient U87 xenograft model (Rong et 755 

al., 2016). 756 

 757 

3.10. Non-coding RNAs 758 

Non-coding RNAs (ncRNAs) are not translated into proteins but bear a remarkable variety of 759 

biological functions such as RNA processing, transcription and translation regulations. ncRNAs 760 

can be grouped according to their length with long non-coding RNAs (lncRNAs) exceeding 200 761 

nucleotides in length, small non-coding RNAs between 200 and 50 nucleotides, and tiny 762 

ncRNAs for the smallest. The latest group includes siRNAs, miRNAs and piRNAs. In this section, 763 

we summarized the mechanistic insights of ncRNAs involved during the process of VM (Table 764 

1). For ease of reading, the different ncRNAs are mostly discussed and grouped by tumor 765 

type. 766 

Similar to melanoma where VM was initially described (Maniotis et al., 1999), 767 

aggressive but not poorly invasive triple negative breast cancer cells, efficiently undergo 768 

matrix-associated VM under hypoxia. Upon transfection with miR-204, VM tube formation 769 

was highly impaired. The pleiotropic effect of the miRNA was assessed using ELISA-based 770 

phosphorylation antibodies arrays that revealed a reduced expression and phosphorylation 771 

levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. 772 

Subsequent validation studies using inhibitors confirmed that PI3K-α and c-SRC signaling were 773 

a requisite for VM, and impeded by miR-204 (Lozano-Romero et al., 2020; Salinas-Vera et al., 774 

2018). The lncRNA TP73-AS1 was found upregulated in VM positive tissues from triple 775 

negative breast cancer (Tao et al., 2018). Twist1, that accelerates tumor cell VM in breast 776 

cancer (Zhang et al., 2014a) harbors a potential miR-490-3p binding site. Tao et al. showed 777 

that TP73-AS1 inhibition could release the post-translational suppression of Twist1 induced 778 
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by miR-490-3p, and thus precluded VM formation (Tao et al., 2018). Interestingly, miR-490-779 

3p was also identified to be play a role in clear cell renal cell carcinoma. Particularly, the 780 

NR2C2 (nuclear receptor subfamily 2 group C member 2; aka TR4) could repress the miR-490-781 

3p-dependent vimentin inhibition, and thus favor VM, tumor growth and metastasis (Bai et 782 

al., 2018). Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is responsible for the 783 

conversion of asymmetric dimethylarginine (ADMA) to citrulline. ADMA is an endogenous 784 

inhibitor of the nitric oxide synthase (NOS) and plays a key role in angiogenesis (Eelen et al., 785 

2018). In aggressive breast cancer cell lines, DDAH1 overexpression was counteracted by miR-786 

193b which further disrupted VM (Hulin et al., 2017). The miR-124 was previously shown to 787 

inhibit EMT and breast cancer metastasis by targeting Slug (Liang et al., 2013). A report 788 

indicates that in cervical cancer, miR-124 down-regulates VM, migration and invasion, as a 789 

result from its interaction with AmotL1, a member of the angiomotin family that regulates 790 

cell growth and motility. 791 

A recent study identified 11 miRNAs that are differently expressed by the SKOV3 792 

ovarian cancer cell line during tube formation in an hypoxic environment. Among the so-793 

called “hypoxamiRs”, miR-765 was deeply downregulated upon hypoxia, and could decrease 794 

the levels of AKT/SRC axis and exert a negative regulation on VEGF-A by specific binding to its 795 

3‘UTR (Salinas-Vera et al., 2019). This time without any link to hypoxia, miR-200a expression 796 

was significantly lower in VM positive ovarian cancer. In vitro works indicate that it miR-200a 797 

and miR-27b negatively regulates EphA2 and VE-cadherin expression, respectively, and thus 798 

inhibits VM (Liu et al., 2017; Sun et al., 2014). 799 

Expression of the lncRNA LINC00312 is found to be higher in lung adenocarcinoma 800 

patients with metastasis. Seemingly, mice inoculated with LINC00312-overexpressing 801 

adenocarcinoma cells presented more lung metastatic tumor nodules and higher VM. RNA 802 
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pull-down assay identifies YBX1 as the sole interacting partner with LINC00312, that allows 803 

the increased expression of VE-cadherin, TGF-β, VEGF-A/-C levels putatively via AKT 804 

activation (Peng et al., 2018). Oncogenic signaling downstream estrogen receptor beta (ERβ) 805 

play an important role in NSCLC progression and EMT. Particularly, ERβ activation up-806 

regulates MALAT1 expression and thus prevent miR-145-5p-mediated NEDD9 807 

downregulation. In this setup, the oncogene NEDD9 seems primordial in inducing VM and cell 808 

invasion (Yu et al., 2019). MALAT1 expression was also tightly associated with VM in gastric 809 

cancer, via the induction of several signaling pathways including VE-cadherin/β-catenin 810 

complex, ERK/MMP and FAK/paxillin signaling (Li et al., 2017b). Investigating whether these 811 

pathways are also affected during NSCLC-associated VM would be interesting. 812 

It was shown that c-Myc and SOX2 are important to maintain the pool of liver CSCs, 813 

and also to induce VM (Sun et al., 2013). As such, when c-Myc and SOX2 were co-transduced 814 

in the HCC cell line HepG2, these cells displayed increased migration, invasion and 3D tube 815 

formation properties (Zhao et al., 2018). When compared to HepG2 parental cells, unbiased 816 

bulk RNA-sequencing identified 748 differentially expressed ncRNAs, among which lncRNA 817 

n339260 that was enriched in the c-Myc/SOX2 overexpressing cells. LncRNA n339260 818 

overexpression in HepG2 was able to promote VM (higher VE-cadherin expression) and CSC 819 

markers, and VM tube formation. The miR-31-3p, miR-30e-5p, miR-520c-5p, miR-519c-5p, 820 

and miR-29b-1-5p were considered to be downstream the lncRNA n339260 (or regulated by 821 

the latter) as their expression increased/decreased following lncRNA n339260 822 

upregulation/downregulation respectively (Zhao et al., 2018). In colorectal cancer, SOX2 is 823 

also important for maintaining CSC properties. Ectopic overexpression of miR-450a-5p was 824 

shown to suppress the expression of SOX2 by targeting its 3’ UTR region and hence restrained 825 

SOX2-induced CSC properties, angiogenesis, and VM (Chen et al., 2020). Yang et al. studied 826 
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the mechanism of VM formation in the context of HCC tumor cells and CAF communication. 827 

While CAF-secreted TGF-ß and SDF1 promote VM formation in tumor cells, miR-101 could 828 

attenuate TGF-ß signaling by targeting its receptor TGF-ßR1 and the downstream effector 829 

Smad2 in tumor cells, and simultaneously abrogate SDF1 expression in CAFs. miR-101 is thus 830 

pivotal to extinguish VM-promoting signaling in two different cell types (Yang et al., 2016). 831 

Zhao et al. found that miR-27a-3p expression was inversely associated with Twist1 832 

expression. miR-27a-3p appears to mediate the inhibition of EMT and VM by downregulating 833 

VE-cadherin (upon binding to its 3’UTR), and miR-27a-3p down-regulation is associated with 834 

metastasis (Zhao et al., 2016a). miR-186 also suppresses Twist1 expression in prostate cancer, 835 

and hence thwarted EMT, cell motility and tube formation in vitro and metastasis in mouse 836 

model (Zhao et al., 2016b). 837 

So far, glioma is the tumor entity with the greatest variety of miRNAs and lncRNAs 838 

described to play a role in VM. miR-Let-7f halted VM by disturbing periostin-induced 839 

migration of glioma cells (Xue et al., 2016). The levels of miR-141 (Li et al., 2018a), miR-26b 840 

(Wu et al., 2011) were inversely correlated with the grade of glioma, and both miRNAs were 841 

shown to directly target EphA2 an important regulator in VM. Recently, the group of Prof. 842 

Xue has studied two lncRNAs (LINC00339 and HOXA-AS2) that are upregulated in human 843 

glioma and positively correlated to VM. LINC00339 binds and prevents the action of the miR-844 

539-5p, thereby activating the Twist1/MMP-2/MMP-14 signaling pathway to promote VM 845 

(Guo et al., 2018) (Fig. 3B). HOXA-AS2 acts via a different pathway, which first involves its 846 

binding to miR-373. Downstream EGFR signaling, miR-373 regulates the expression of VE-847 

cadherin, MMP-2/-9 and thus VM (Gao et al., 2018). Stathmin 1 is a member of the 848 

microtubule destabilizing protein family that regulates microtubule dynamics during cell-849 

cycle progression. Stathmin 1 is overexpressed in various cancers and its expression is 850 
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positively associated with higher grades of human glioma. In glioma cell lines, stathmin 1 851 

appears to be the target of the (central nervous system) tissue specific miR-9 that refrains 852 

growth and VM of ectopic xenografts (Song et al., 2013). Interestingly, over-expression of 853 

miR-584-3p paralyses hypoxia-induced VM formation in human A172 glioma cells, by 854 

antagonizing ROCK1-dependent stress fiber formation (Xu et al., 2017). As mentioned before, 855 

the RhoA/ROCK signaling pathway has been described to participate in VM formation in 856 

melanoma, osteosarcoma and HCC (Xia et al., 2017; Xia et al., 2015; Zhang et al., 2014a; Zhang 857 

et al., 2015b). Recently, three studies from the same group identified several lncRNAs 858 

regulating VM in glioma. Important translational regulations occur from the 3ʹ and 5ʹ 859 

untranslated regions (UTR) of mRNAs. Particularly, upstream open reading frames (uORFs), 860 

commonly found in the 5ʹUTR of eukaryotic genes, are important in the initiation of 861 

translation. uORFs in a gene initiate nonsense-mediated RNA decay (NMD) that promotes 862 

transcript degradation. An uORF was identified in the lncRNA ZNRD1-AS1, namely ZNRD1-863 

AS1-144aa-uORF. ZNRD1-AS1 is highly expressed in glioma and promotes VM formation, 864 

while 144aa-uORF was down-regulated and VM hindered. Mechanistically, the lncRNA 865 

ZNRD1-AS1 binds to miR-499a-5p, which in turn regulates the ELF1/EMI1 axis to hamper VM 866 

formation (Wang et al., 2020a). Therefore, via an intricate regulatory process, the lncRNA 867 

ZNRD1-AS1 could foster VM in glioma. The human splicing factor zinc finger, Ran-binding 868 

domain containing protein 2 (ZRANB2) is a splicing protein that is part of the 869 

supraspliceosome and mediates differential splicing of numerous primary transcripts (Yang 870 

et al., 2013). The lncRNA SNHG20 is correlated with poor overall survival and tumor-node-871 

metastasis in several cancer types. In glioma cells, ZRANB2 promoted VM formation by 872 

increasing SNHG20 stability. As a consequence, SNHG20 was able to promote Forkhead box 873 

K1 degradation, thereby alleviating the transcriptional inhibition of VM-related proteins 874 
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MMP-1/-9 and VE-cadherin (Li et al., 2019). Hence, TZRANB2 and SNHG20 were powerful 875 

inducers of VM formation in glioma. Another recent report studied the regulation of the 876 

poly(A) binding protein cytoplasmic 5 (PABPC5), which binds to the 30 end of the poly(A) tail 877 

of most eukaryotic mRNAs. Interestingly, overexpression of the lncRNA HCG15 or PABPC5 878 

promoted VM, while upregulation of the transcriptional repressor ZNF331 greatly curbed VM 879 

by directly repressing LAMC2 (coding for Laminin-5g2, important for VM (Seftor et al., 2001; 880 

Sood et al., 2001)) and PABPC5 transcription. By targeting the VM-inhibitor ZNF331, the 881 

lncRNA HCG15 could thus promote VM formation in glioma (Jing et al., 2020). 882 

In conclusion, these studies highlight the complexity and diversity of VM-related 883 

processes regulated by lncRNAs and miRNAs (Table 1). To our knowledge, presently no study 884 

reports the direct implication of EVs during VM. However, these EVs are recognized carriers 885 

of several ncRNAs and also modulators of extracellular matrix remodeling, a process greatly 886 

involved during VM. As a proof-of-concept, using the user-friendly online EVmiRNA database 887 

(Liu et al., 2019), we could identified miR-450a-5p and miR-101-3p as expressed in EVs from 888 

colon carcinoma (with a preferential enrichment in microvesicles). As such, in-depth 889 

investigations of the implication of EVs and EV-carried ncRNAs may certainly warrant 890 

interesting findings in VM formation. 891 

 892 

4. VM and cancer therapy 893 

4.1. Cancer resistance 894 

For many aggressive tumors, current therapeutic strategies are insufficient. Thus, VM 895 

formation could explain the therapeutic resistances observed with cytotoxic or targeted 896 

chemotherapies: residual tumor cells may form VM channels, thereby providing oxygen and 897 

nutrients, which support cell proliferation and cancer progression. Not only has VM been 898 
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reported in different solid tumors, but tumor cell-originated neovascularization including 899 

tumor-derived endothelial cell-induced angiogenesis along with VM have been suggested to 900 

be involved in the development of resistance to anti-VEGF therapy as frequently observed in 901 

glioblastoma. Anti-angiogenic drugs, mostly affecting VEGF-VEGFR pathway, cause dramatic 902 

tumor size reduction and are largely used in glioblastoma therapy as adjuvants to control 903 

abnormal vasculature. However, the benefits are transient since glioblastoma rapidly show 904 

resistance to anti-angiogenic therapies upon prolonged treatment through the activation of 905 

alternative vascularization pathways (Angara et al., 2017; Arbab et al., 2015). Moreover, it has 906 

been noted that hypoxia associated with anti-angiogenic therapies may induce VM that 907 

represents a mechanism whereby glioblastoma can escape anti-angiogenic therapies (Angara 908 

et al., 2017). VM is also reported to represent a non-angiogenic pathway in breast-cancer 909 

metastasis. In this last tumor, it has been reported that angiogenic primary breast carcinoma 910 

can relapse not only as angiogenic, but also as non-angiogenic lung metastases. The authors 911 

propose that this non-angiogenic pathway is a novel pathway of cancer progression and such 912 

tumors are likely to be resistant to anti-angiogenic treatment. In addition, the role of anti-913 

angiogenic treatment in VM promotion has been confirmed in a study conducted in triple-914 

negative breast cancer cells. Thus, an enhancement of VM-positive cases has been observed 915 

in sunitinib (a VEGFR tyrosine kinase inhibitor)-treated cells in comparison with control cells. 916 

These effects were explained by an overexpression of HIF-1a, VE-cadherin and Twist1 (Sun et 917 

al., 2017). More recently, a study has been conducted with trastuzumab, a drug that target 918 

the receptor tyrosine kinase HER2 in breast cancer cells. Several VM markers were 919 

upregulated in trastuzumab-treated cells suggesting that HER-2 positive breast cancer cells 920 

can exhibit VM in an angiogenic microenvironment after acquiring trastuzumab resistance 921 
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(Hori et al., 2019). Hence, VM may be regarded as one of the major causes of the development 922 

of resistance to anti-angiogenic therapy in solid tumors. 923 

 924 
4.2. Therapeutic targeting of VM 925 

If it is clearly established that VM participates in the therapeutic resistances of many solid 926 

tumors, in this regards it constitutes a promising reservoir for developing novel anticancer 927 

therapeutics, and an armamentarium of drugs has been investigated (Table 2). Recently, 928 

studies have been conducted with histone deacetylase (HDAC) inhibitors both in glioblastoma 929 

and in aggressive triple-negative breast cancer. As previously described, altered expression 930 

and/or function of HDAC could play an important role in tumor initiation and progression (Li 931 

et al., 2018b) and these enzymes are promising therapeutic targets in various cancers (Sun et 932 

al., 2018). 933 

Interestingly, in vitro and in vivo evidences suggested the antitumor activity of HDAC 934 

inhibitors by preventing VM in different cancer models. For instance, it has been found that 935 

vorinostat, trichostatin A, entinostat (MS275) and MC1568 significantly decrease tube 936 

formation by U87MG and GSCs. These results were explained, at least in part, by a significant 937 

decrease of migration and invasion of glioma cells upon HDAC treatments (Pastorino et al., 938 

2019). Furthermore, it has been reported that the specific HDAC inhibitor, entinostat, is able 939 

to reduce VM structure formations in various triple-negative breast cancer cells. Thus, this 940 

study revealed that treatment of MDA-MB-231, LM2-4, BT-549 or MCF-7 with entinostat 941 

epigenetically led to the re-expression of the anti-angiogenic genes, serpin family F member 942 

1 (SERPINF1) and thrombospondin 2 (THBS2), as well as the tumor suppressor genes, 943 

phosphatase and tensin homolog (PTEN) and p21. Otherwise, it has been found that 944 

entinostat downregulated the expression of VEGF-A, and that of the EMT-related genes, 945 
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vimentin and β-catenin (Maiti et al., 2019). These two studies offer interesting perspectives 946 

for the use of HDAC inhibitors against VM. However, these studies have limited clinical 947 

translation as they lack to evaluate the impact of these molecules on VM formation in vivo. 948 

No pre-clinical or clinical studies have yet been considered with HDAC inhibitors and it is still 949 

too early to seriously envision these molecules as potential therapeutic agents against VM 950 

formation. 951 

As previously described, CSCs are main actors in VM formation and are also responsible 952 

for the low survival rate of patients with aggressive tumors. After chemo- and radiotherapy, 953 

only a small proportion of CSCs are capable to induce recurrence. Furthermore, EMT is also 954 

involved in the acquisition of CSC properties. Taken together, these findings suggest that a 955 

combination of EMT and CSC targeting may be beneficial for anti-VM formation therapy 956 

through a decrease of both invasion and metastasis and an improvement of patient’s survival 957 

rate. It has been found that salinomycin, a potassium ionophore used as an anticoccidial drug, 958 

completely suppressed VM. The most prominent property of this drug is that it selectively kills 959 

CSCs (Gupta et al., 2009).  960 

Furthermore, because VEGF-A enhances the ability of melanoma cells to form tube-961 

like structures by activating VEGFR-1 and the downstream PKC-a pathway, it has been 962 

suggested to target VEGFR-1 to prevent VM (Fig. 3A). Interestingly, an anti-VEGFR-1 963 

monoclonal antibody (D16F7) has shown antitumor activity by inhibiting chemotaxis, 964 

extracellular matrix invasion and VEGFR-1+ cancer cells VM in melanoma and glioblastoma, 965 

two aggressive tumors (Atzori et al., 2017; Graziani et al., 2016). Taken together, these 966 

findings highlight tumor type specificities and could explain the limited efficacy of sorafenib 967 

and thus suggesting a therapeutic benefit for tyrosine kinase inhibitors targeting preferentially 968 

VEGFR-1.  969 
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Various other strategies have been under discovery to inhibit VM formation. Because 970 

MMP-2- and MT1-MMP-mediated laminin-g2 cleavage reportedly induces VM formation, anti-971 

MMP-2 or anti-MT1-MMP blocking antibodies treatment has been proposed to abrogate it 972 

(Seftor et al., 2001). A similar outcome was achieved when treating 3D culture of ovarian 973 

cancer cells at the onset of tube formation with incyclinide (aka Metastat), an inhibitor of 974 

MMP activity. However, this treatment could not affect an established network, suggesting a 975 

role of MMPs in early steps of tube formation rather than for their stability (Sood et al., 2001). 976 

A derivative of incyclinide has made it to the clinics with COL-3 (NSC-683551) to treat patients 977 

with refractory metastatic cancers (NCT00001683).  978 

In addition, nanostructured functional drug-loaded liposomes, modified with an HIV 979 

peptide lipid-derivative conjugate and containing the chemotherapeutics epirubicin and 980 

celecoxib were tested for their effect on VM. The added value of this delivery system was to 981 

improve pharmacokinetic properties and bio-distribution of such anticancer agents. As such, 982 

tail vein injection of drug-loaded liposomes reduced VM expression via the inhibition of VE-983 

cadherin, FAK, EphA2, HIF-1α, and MMP-9 in invasive breast cancer xenografts in nude mice 984 

(Ju et al., 2014). Doxycycline has been used in combination with targeted drugs in clinical trials 985 

for patients with advanced cancer. Doxycycline is a semi-synthetic tetracycline which can 986 

inhibit MMP activation and cell proliferation, as well as interfere with tumor-related protein 987 

synthesis in mammalian cells. Doxycycline has a strong inhibitory effect on malignant cells 988 

especially NCI-H446 and A549 lung cancer cells (Cao et al., 2013; Ko et al., 2015). Interestingly, 989 

doxycycline treatment prolonged the mouse survival time and partly suppressed the growth 990 

of engrafted HCC tumor cells, with an inhibition rate of 43.39% (Meng et al., 2014). In HCC and 991 

lung cancer models, doxycycline is capable to inhibit E-cadherin degradation and down-992 

regulates the expression of vimentin protein (Cao et al., 2013; Ko et al., 2015; Meng et al., 993 
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2014). These findings show that doxycycline acts upstream of EMT-related signal transduction 994 

to inhibit a wide range of cellular function. As such, investigations in HCC revealed that (i) in 995 

vitro doxycycline promoted cell adhesion but hampered HCC cell viability, proliferation, 996 

migration and invasion; and (ii) in vivo higher amounts of VM and endothelium-dependent 997 

vessels were found in the control group than the treatment group (Meng et al., 2014).  998 

Among the new molecules used in antitumor therapies, encouraging results have been 999 

obtained with galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-bR1, that 1000 

improved glioma prognosis. Thus, from in vitro and pre-clinical studies, it has been found that 1001 

VM was inhibited by galunisertib through a decrease in VE-cadherin and aSMA expression, as 1002 

well as down-regulation of AKT and VEGFR-2 phosphorylation in galunisertib-treated glioma 1003 

cells (Zhang et al., 2016).  1004 

Recently, several studies involving molecules extracted from plants have been tested 1005 

in different tumor models. The properties of brucine, a traditional medicinal herb extracted 1006 

from seeds of Strychnos nux-vomica have been tested in a triple-negative breast cancer cell 1007 

line MDA-MB-231. The authors concluded that brucine inhibited VM through repressing 1008 

EphA2 and MMP-2/-9 expression (Xu et al., 2019). Another study evaluated the effects of 1009 

polyphyllin I, the main component of Rhizoma paridis in VM in HCC. It has been reported that 1010 

polyphyllin I blocked VM through an inhibition of PI3K/AKT – Twist1 – VE-cadherin axis 1011 

through a regulation of the transcriptional activity of Twist1 (Xiao et al., 2018). In a B16F10 1012 

metastatic melanoma model, Bhattacharyya et al. proposed lupeol as a substitute for 1013 

dacarbazine at the onset of therapeutic resistance because it is able to block VM through a 1014 

downregulation of the CSC marker CD133 (Bhattacharyya et al., 2019). If the abovementioned 1015 

studies seem exciting for their authors, they remain extremely preliminary and do not 1016 

constitute (yet) alternatives to recognized therapies. Indeed, no precise pharmacological data 1017 
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has been demonstrated for the different molecules tested. The works do not specify the 1018 

pharmacodynamic or pharmacokinetic characteristics of these molecules. For instance, 1019 

brucine is weakly liposoluble (Li and Wang, 2017) and hardly crosses the barrier formed by the 1020 

plasma and nuclear membranes. Also, if the pharmacological targets are intracellular, its 1021 

availability may be limited. In addition, in the case of lupeol, the doses used to block VM are 1022 

very high (40 mg/kg) and the published data did not provide clear evidence of a true antitumor 1023 

activity of this molecule. According to our previous work (Pautu et al., 2019), the mice model 1024 

B16F10 is extremely aggressive and, for us, it is not possible to think that lupeol is sufficient 1025 

by itself to limit the progression of this metastatic melanoma.  1026 

 1027 

5. Conclusion 1028 

As highlighted above, a plethora of signaling pathways and multiple growth factors and their 1029 

receptors are described to promote VM. Therefore, one could predict that hindering a single 1030 

signaling pathway by means of an inhibitor would have a limited suppressive effect on VM, 1031 

since other signaling pathways would immediately compensate and eventually restore the 1032 

process of switching to VM phenotype. In fact, inhibitors such as galunisertib, LY294002 (a 1033 

PI3K inhibitor), doxycycline, everolimus or regorafenib showed only limited efficacy. For 1034 

several months, it has been recognized that therapeutic combinations are essential to treat 1035 

aggressive cancers. Therefore, it is essential to increase the number of studies combining 1036 

different therapeutic approaches in order to limit tumor development by blocking significantly 1037 

VM formation.  1038 
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Figure legends 1047 

Table 1. Non-coding RNAs involved during vasculogenic mimicry 1048 

TNBC: triple negative breast cancer; HCC: Hepatocellular carcinoma. 1049 

 1050 

Table 2. Summary of therapeutics targeting vasculogenic mimicry 1051 

CSCs: Cancer stem cells; GSCs: Glioblastoma stem cells; HCC: Hepatocellular carcinoma. 1052 

 1053 

Fig. 1. The two types of vascular mimicry. 1054 

A) Patterned vasculogenic mimicry (VM) forms architectural patterns of loops and networks 1055 

 as revealed by periodic acid-Schiff (PAS)-stained phase contrast micrograph of metastatic 1056 

cutaneous melanoma C8161 3D culture. Pictures acquire after 1 week on Matrigel; 1057 

magnification x40. B) Tubular VM showing melanoma cancer cells that lined a vascular channel 1058 

containing red blood cells, but without endothelial cells identified. Hematoxylin-eosin-1059 

staining; magnification x100. Reprinted from “Vascular Channel Formation by Human 1060 

Melanoma Cells in Vivo and in Vitro: Vasculogenic Mimicry” by Maniotis et al., The American 1061 

Journal of Pathology, 155/3, 739-752, 1999, with permission from Elsevier. 1062 

 1063 

Fig. 2. Partners in crime during vasculogenic mimicry in tumors. 1064 
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Tumor vascularization can be achieved by several processes such as the classical endothelium-1065 

dependent sprouting angiogenesis vasculogenic (bottom right), and endothelium-1066 

independent tubular vasculogenic mimicry (VM). Such blood conducting network is built by 1067 

cancer cells themselves resting on an extracellular matrix (ECM) rich in laminin, stained by 1068 

periodic acid Schiff (PAS; depicted as the red outline) without endothelial markers such as 1069 

CD31 or CD34. In the tumor microenvironment, various cell types foster VM network 1070 

formation. (i) The epithelial-mesenchymal transition (EMT) whereby cancer cells lose their 1071 

polarity and acquire a migratory mesenchymal phenotype upon several signaling pathways 1072 

(TGF-ß, Wnt, Notch, etc.) and transcription factors (Snail, Twist1, ZEB1/2). (ii) Cancer 1073 

associated fibroblasts (CAFs) are important player in ECM remodeling and their secretome 1074 

contribute to VM formation. (iii) Tumor associated macrophages (TAMs) contribute to cancer 1075 

cell transdifferentiation and pro-inflammatory cytokines. (iv) Cancer stem cells (CSCs) harbor 1076 

pluripotent features allowing them to differentiate and form VM network, but also to do 1077 

endothelial transdifferentiation contributing to tumor angiogenesis. 1078 

 1079 

Fig. 3. Molecular highlights involved during vasculogenic mimicry formation. 1080 

A) VEGF-A, downstream the activation of VEGFR-1, lead to the activation of the PI3K/PKC 1081 

pathway, converging to AKT with actin reorganization, and thus promoting vasculogenic 1082 

mimicry (VM). COX-2 transforms the arachidonic acid into prostaglandin E2 (PGE2) that acts 1083 

on its receptor E2 to foster the PKC/ERK1/2 axis, important during VM. Endothelin, via its 1084 

receptor EDNRB, leads to ß-arrestin-mediated c-SRC activation, which in turn cooperates with 1085 

VEGF-C/-D to phosphorylate VEGFR-3. The VEGFR-3 activation leads to MMP2 transcription 1086 

into its pro-MMP-2 form that require proteolytic activation from the MT1-MMP/TIMP2 1087 

complex. The active MMP-2 can then trigger the cleavage of laminin-ɣ2 into laminin-5ɣ2’, 1088 
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which stimulates VM. B) Downstream VEGF-1/VEGFR-2 or EphA2 receptors, VE-cadherin can 1089 

be phosphorylated on its tyrosine 658 (Y658) by FAK. Downstream PI3K/AKT and ERK 1090 

activation, the expression of several MMPs (MMP-14/-2/-9) is induced and will activate the 1091 

MMP-2-mediated VM functions in a similar manner as described for MT1-MMP. Via pY658, 1092 

FAK mediates VE-cadherin nucleus translocation and the VE-PTP/p120 complex appears 1093 

important to control this process. In the nucleus, upon binding to p120, the transcription 1094 

repressor Kaiso can no longer repress the VM-inducible genes CCND1 and WNT11. When 1095 

cancer cells are cultured on a matrix coated with the extracellular domain of VE-cadherin, the 1096 

EphA2 and PI3K/AKT pathways are activated, and VM formation initiated. 1097 

 1098 
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