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Abstract: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related
deaths worldwide, and its incidence is rising. HCC develops almost exclusively on the background of
chronic liver inflammation, which can be caused by chronic alcohol consumption, viral hepatitis, or an
unhealthy diet. The key role of chronic inflammation in the process of hepatocarcinogenesis, including
in the deregulation of innate and adaptive immune responses, has been demonstrated. The inhibition
of Akt (also known as Protein Kinase B) directly affects cancer cells, but this therapeutic strategy also
exhibits indirect anti-tumor activity mediated by the modulation of the tumor microenvironment, as
demonstrated by using Akt inhibitors AZD5363, MK-2206, or ARQ 092. Moreover, the isoforms of
Akt converge and diverge in their designated roles, but the currently available Akt inhibitors fail
to display an isoform specificity. Thus, selective Akt inhibition needs to be better explored in the
context of HCC and its possible combination with immunotherapy. This review presents a compact
overview of the current knowledge concerning the role of Akt in HCC and the effect of Akt inhibition
on the HCC and liver tumor microenvironment.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of liver malignancy
(75–85%), and it ranks fourth among the causes of cancer-related deaths worldwide [1].
HCC generally emerges from a chronic inflammatory environment caused by various
reasons. They could be of viral origins, like hepatitis C and B viruses (HCV, HBV), or
caused by metabolic disorders leading to non-alcoholic fatty liver diseases (NAFLD) and
non-alcoholic steatohepatitis (NASH). Moreover, chronic consumption of alcohol or con-
sumption of toxins (such as aflatoxins) and hereditary diseases such as hemochromatosis
lead to chronic liver inflammation, which could further develop into HCC [2].

Chronic liver inflammation often leads to fibrosis followed by cirrhosis and finally
HCC. The changes in the state of the liver throughout the development of HCC are
accompanied by a change in the tumor microenvironment (TME) profile, which sustains a
niche favoring malignancy. The modulations in the status of TME affect an array of cells that
include immune cells (resident and migratory), endothelial cells, hepatic stellate cells, and
others. This leads to the differentiation of cells into those that support tumor development
and progression: tumor-associated macrophages (TAMs), tumor-associated neutrophils
(TANs), and cancer-associated fibroblasts (CAFs) [3]. The changes in the phenotypic and
secretory profile of cells of TME result from the change in the transcriptome and/or an
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altered protein function in the cells accompanied by dysregulation of the complex signaling
pathways in the cells. The alteration of the signaling pathways is common in HCC and is
crucial for the progression of the tumor. RAS/RAF/MEK/ERK, HGF/MET, VEGF, PDGF,
EGF, IGF, JAK/STAT, p53, MAPK, Wnt/β-catenin, TGF-β, and PI3K/Akt/mTOR [4] are
among the altered signaling pathways.

HCC is challenging to diagnose and has limited therapeutic options. HCC patients
often remain asymptomatic until they reach an advanced stage, hindering diagnosis.
Alpha fetoprotein, the most widely used biomarker for HCC surveillance and diagno-
sis, is ineffective in accurately detecting early HCC [5,6]. Several advances have been
made recently in the field of liver imaging and the development of novel biomarkers
to attempt early detection of HCC, but most detected HCC cases are still diagnosed in
advanced stages.

At an early stage of the disease, HCC can be treated by surgical resection, percutaneous
ablation, or liver transplantation. At a later stage, the therapeutic options have been limited
during the last decade to Sorafenib (a multikinase inhibitor) [7,8]. Recently, other first-
line treatments such as lenvatinib and second-line treatments such as regorafenib and
cabozantinib have been proposed for treatment. However, these drugs demonstrate no
superior efficacy compared to Sorafenib [9]. In 2020, immunotherapy re-shuffled the
cards with the combination Atezolizumab (an anti-programmed death-ligand 1 (PDL-1)
antibody) plus Bevacizumab (an anti-vascular endothelial growth factor (VEGF) antibody),
considerably increasing tumor response and survival outcomes and becoming the new
first line therapy of advanced HCC. [10]. Nevertheless, only a minority of HCC patients
benefit from this therapy, and alternative strategies are needed to augment host immune
response [11].

As the search for therapies for HCC continues, several researchers are trying to
pinpoint specific effector proteins that could be targeted. In this review, we demonstrate
the role played by Akt (also known as Protein Kinase B) in the progression of HCC at the
level of the tumor and TME and the growing interest in targeting Akt as a therapeutic
option for HCC, Figure 1.
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Figure 1. The possible impact of Akt inhibition on hepatocellular carcinoma and its tumor microenvironment. Akt, ex-
pressed as three isoforms, Akt1, Akt2, and Akt3, has been shown to play a role in the progression of cancer by controlling 
the growth, proliferation, and survival in tumor cells, and by modulating tumor microenvironment (namely CD8+ T cells, 
regulatory T cells (Tregs), mast cells, neutrophils, and macrophages). 

2. Akt Isoforms: Differences and Uniqueness 
Akt is a serine/threonine protein kinase family member discovered in 1991 [12]. The 

~56 kDa protein exists in mammals in three isoforms translated from three distinct 
genes: Akt1 (PKB alpha), Akt2 (PKB beta), and Akt 3 (PKB gamma). While the first two 
isoforms are constitutively expressed throughout the body—with a preference for insu-
lin-sensitive tissues for Akt2—Akt3 is said to be expressed in the brain and the testes. On 
the structural level, Akt consists of the following three domains: (1) the amino-terminal 
pleckstrin homology (PH) domain, (2) a central domain sharing homology with other 
cAMP-dependent protein kinases (AGC kinases), and (3) a carboxyl-terminal domain 
serving as a regulatory domain. These three isoforms share homologies in their catalytic 
domains, but they diverge in the PH and regulatory domains [13]. Akt is said to be a 
master regulator serving as the center point in the phosphatidyl inositol 3 kinase 
(PI3K)/Akt pathway, which regulates several cellular processes encompassing cell sur-
vival, cell size/growth, survival, proliferation, glucose metabolism, transcription, protein 
synthesis, genome stability, and neovascularization, and thus any disturbance in this 
pathway has drastic effects on the cellular homeostasis [13]. The recruitment of various 
Akt isoforms to the plasma membrane is crucial for their activation. The PH domain 
binds to the phosphatidyl inositol-3,4,5-triphosphate (PIP3) generated by the action of 

Figure 1. The possible impact of Akt inhibition on hepatocellular carcinoma and its tumor microenvironment. Akt,
expressed as three isoforms, Akt1, Akt2, and Akt3, has been shown to play a role in the progression of cancer by controlling
the growth, proliferation, and survival in tumor cells, and by modulating tumor microenvironment (namely CD8+ T cells,
regulatory T cells (Tregs), mast cells, neutrophils, and macrophages).

2. Akt Isoforms: Differences and Uniqueness

Akt is a serine/threonine protein kinase family member discovered in 1991 [12]. The
~56 kDa protein exists in mammals in three isoforms translated from three distinct genes:
Akt1 (PKB alpha), Akt2 (PKB beta), and Akt 3 (PKB gamma). While the first two isoforms
are constitutively expressed throughout the body—with a preference for insulin-sensitive
tissues for Akt2—Akt3 is said to be expressed in the brain and the testes. On the structural
level, Akt consists of the following three domains: (1) the amino-terminal pleckstrin ho-
mology (PH) domain, (2) a central domain sharing homology with other cAMP-dependent
protein kinases (AGC kinases), and (3) a carboxyl-terminal domain serving as a regulatory
domain. These three isoforms share homologies in their catalytic domains, but they diverge
in the PH and regulatory domains [13]. Akt is said to be a master regulator serving as
the center point in the phosphatidyl inositol 3 kinase (PI3K)/Akt pathway, which reg-
ulates several cellular processes encompassing cell survival, cell size/growth, survival,
proliferation, glucose metabolism, transcription, protein synthesis, genome stability, and
neovascularization, and thus any disturbance in this pathway has drastic effects on the
cellular homeostasis [13]. The recruitment of various Akt isoforms to the plasma membrane
is crucial for their activation. The PH domain binds to the phosphatidyl inositol-3,4,5-
triphosphate (PIP3) generated by the action of PI3K at the plasma membrane. While there,
Akt is prone to two phosphorylation events at the following threonine (Thr) and serine (Ser)
residues: Thr 308 and Ser 473 for Akt1, Thr 309 and Ser 474 for Akt2, and Thr 305 and Ser



Int. J. Mol. Sci. 2021, 22, 1794 4 of 15

472 for Akt3. The Thr phosphorylation events are executed by phosphoinositide-dependent
kinase-1 (PDK-1), whereas Ser phosphorylation events are executed by other kinases like
the mammalian target of rapamycin complex 2 (mTORC2) and integrin-linked kinases
(ILK). These two phosphorylation events are essential for Akt to attain its full function.
However, it remains functional only with the Thr phosphorylation. In some instances, the
activation of Akt surpasses the PIP3 checkpoint and can be activated by actin, heat shock
protein (Hsp) 90, Hsp27, and Posh [13,14]. Various substrates are prone to phosphorylation
by Akt, and they are said to be the downstream effectors of this pathway to regulate
the various cellular processes. Some of these that can be highlighted are the following:
proline-rich Akt substrate of 40 kDa (PRAS40), cyclin-dependent kinase (CDK) inhibitors
P21 and P27, paladin and vimentin, inhibitors of KappaB Kinase alpha (IKKα), and tumor
progression locus 2 (Tpl2). Moreover, Akt-mediated phosphorylation of tuberous sclerosis
(TSC)1/2 complex and mTORC1 regulate cell growth. Survival has also been found among
the cellular processes controlled by Akt through the direct inhibition of pro-apoptotic
proteins like Bad or the inhibition of pro-apoptotic signals fired by the transcription factors
such as Forkhead box protein O1 (FoxO1) [14]. Metabolism-related proteins like glycogen
synthase kinase (GSK) 3β are also among the substrates for Akt. Although the different
isoforms show an overlap in their activity, the substrate-specificities of Akt1/2/3 exist.
These are dependent on the distribution of the Akt isoforms in the tissues, the differential
activation of Akt by external stimuli (amplitude and timing of activation), the preferential
intrinsic catalytic activity of the different isoforms, and the specific cell-context factors
(subcellular localization and substrate proximity) [15]. Finally, a negative feedback loop
exists for turning off this pathway, and this feedback is mediated by protein phosphatase
2A (PP2A), PH domain leucine-rich-repeat-containing protein phosphatase 1/2 (PHLPP2),
and phosphatase and tensin homolog (PTEN) [13].

3. Akt in the Development and Progression of Hepatocellular Carcinoma

The PI3K/Akt signaling pathway has been receiving a lot of attention in cancer
research as it has been shown to be hyper-activated in different types of cancer. The
PI3K/Akt hyper-activation appears often due to the activating mutations in the effector
molecules upstream and downstream of Akt rather than in Akt itself—except for the
E17K mutation in the PH domain of Akt. The common activating mutations include the
following: (i) a mutation hitting the catalytic subunit of PI3K rendering it constitutively
active, (ii) loss of PTEN (whose role is to deactivate Akt), (iii) activation mutations of
RAS and growth factor receptors, and (iv) gene amplification mutations of Akt and/or its
effectors [16].

Activation of the Akt signaling pathway is closely related to the occurrence and devel-
opment of liver inflammation and fibrosis [17–19] and is associated with a poor prognosis
for HCC patients [20]. Importantly, a bioinformatic study analyzed 331 candidates for HCC
prognostic factors among which all the three Akt isoforms were selected for further clinical
validation, and the results showed a correlation between tumor aggressiveness and poor
prognosis [21].

The contribution of the various Akt isoforms in the progression of HCC has been
explored by research carried out over the years. As far as Akt1 is concerned, a study in
2019 showed that the Akt1-mediated phosphorylation of mTORC2 is crucial for triggering
hepatocarcinogenesis in humans and mice, as it contributes to cellular growth through
c-Myc activation [22]. Further, the altered metabolic state of the liver in HCC commonly
exhibits a marked up-regulation of aldose reductase. Interestingly, aldose reductase has
been shown to interact with the catalytic domain of Akt1, leading to an activation of the
Akt/mTOR pathway [23]. Moreover, the TME components can lead to an activation of Akt.
For instance, an in vitro study mimicking the augmented TME polyamine levels in HCC
showed a subsequent increase in the levels of Akt1 along with those of ornithine decar-
boxylase, spermidine/spermine N1 acetyl transferase, hypoxia inducing factor 1α, matrix
metalloproteinase 9, VEGF, and downregulated p27. The previous fluctuations resulted
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in an increase in the proliferation and the migration of HepG2 cells (HCC cell line) [24].
To further support the role of Akt1 in HCC progression, a study demonstrated that the
overexpression of myriostylated Akt1—and thus constitutively active Akt1—led to a liver
tumor development in mice, and its combination with S-phase kinase-associated protein
overexpression exacerbated the phenotype [25]. Interestingly, a real-time imaging study
of Akt1 in HCC cells demonstrated that the nuclear translocation of Akt1 is independent
of the phosphorylation events at the Thr308 and Ser473 [26]. In contrast, a study showed
that a decrease in β-catenin levels in the HepG2 cell line showed no change in the Akt1
expression level, while it decreased the phosphorylated and consequently decreased cell
growth. This stresses the cross-communication between the different signaling pathways
activated by the signals from TME, which converge onto the Akt1 activity and its effect on
HCC progression [27].

Akt2 has also been shown to be a contributor to HCC progression, and some re-
searchers argue that its role in HCC prognosis surpasses that of Akt1. A study by Xu
et al. detected overexpression of Akt2 in 38% of the HCC tissues of the studied cohort
with a moderate or less expression of Akt1 in all the cases. The high expression of Akt2
correlated with the histopathological differentiation, portal invasion, and the number of
tumor nodules, while Akt1 did not correlate with any of these clinicopathological fea-
tures [28]. An in vitro study conducted to investigate the role of Akt2 in the proliferation
and migration of HCC cells showed that Akt2 was regulated by STAT3. The ablation of
STAT3 by small-interfering RNA (siRNA) led to a decrease in the phosphorylated form of
Akt2 and a subsequent decrease in the proliferation and migration of HCC cells. Moreover,
the in vivo transfection with siRNA against STAT3 decreased the pace of the tumor growth,
a process that was reversed by the expression of Akt2. This points to the significant role of
Akt2 in the growth of the tumor [29]. Another in vivo study highlighted the importance of
Akt2 in the process of hepatic steatosis and carcinogenesis. In this study, the hydrodynamic
transfection of a mutated form of PI3K subunit alpha alone into mouse livers led to hepatic
steatosis, whereas the transfection with a combination of a mutated form of PI3K subunit
alpha combined with either NRASV12 or c-Met in the mouse liver led to the develop-
ment of tumor nodules, which exhibited an increase in the activation of Akt/mTOR and
RAS/MAPK signaling pathways. The ablation of Akt2 in mouse livers inhibited both the
hepatic steatosis in the former case and tumorigenesis in the latter one [30]. Interestingly,
a study of Zebra fish showed that the induced expression of oncogenic Kras led to the
development of HCC having great resemblance to the human tumors with an elevated
Akt2 activation [31]. On the other hand, the concomitant and systemic deletion of Akt1
and Akt2 in adult mice caused hypoglycemia, liver inflammation, and death [32], pointing
to potential toxicities of strong and long-lasting Akt inhibition.

Despite the previous knowledge about the focused expression of Akt3 in the testes
and brain, some studies have shown the implication of Akt3 in HCC. A series of studies on
micro-RNA (miRNA) profiles in HCC revealed the downregulation of miRNA-144, and
miRNA-582-5p. The downregulation of the previously mentioned miRNAs resulted in
a sustained expression of their downstream targets. Both the aforementioned miRNAs
showed Akt3 among their targets, and their subsequent downregulation supported tumor
progression and growth. This supports the contribution of Akt3 in HCC progression [33,34].

4. Akt Modulates the Immune Cells

In addition to direct anti-tumor activity, there is growing evidence that targeting the
Akt pathway has an indirect anti-tumor activity that is mediated by the response of immune
cells [35]. In fact, TME, which is generally immunosuppressive and metabolically stressed,
can be modulated by Akt, as this pathway is essential to the differentiation, maturation,
and functioning of many immune cells. At present, the immunomodulation by Akt is best
characterized at the level of T cells and macrophages.
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4.1. Akt Regulates the Functions and Fate of T Cells

The regulation of the nutrient metabolism in the T cells is important for the control of
their differentiation, as it shapes their function and survival. Quiescent T cells require oxida-
tive catabolic metabolism and use low amounts of nutrients. T cell activation through T cell
receptors (TCR) induces a metabolic switch to aerobic glycolysis and anabolic metabolism
to sustain cell division and differentiation. Then, different subsets of activated T cells
adopt fine-tuning of metabolism homeostasis according to their functions and fate. For
example, the glycolytic rates are higher in Th1, Th2, and Th17 than in the T regulatory
cells (Tregs). Tregs use fatty acid oxidation for their energy demand, while memory T cells
use mitochondrial oxidative phosphorylation and fatty acid oxidation for their long-term
persistence [36].

The PI3K-Akt pathway orchestrates the nutrient uptake and utilization within the cell.
Thus, it is a key pathway to regulate the functions and fate of T cells. The TCR and CD28 co-
stimulation by their respective ligands is known to engage the PI3K/Akt/mTOR signaling
cascade [37]. The differentiation into effector T cells and memory T cells is achieved, in part,
by asymmetric division, where daughter cells contain different amounts of active mTORC1.
Thus, the high levels of active mTORC1 in effector T cells increase glycolytic activity, and
the low levels in memory T cells increase lipid metabolism. This event is achieved by RagC
mediated translocation of mTOR to the lysosomes through a CD98 and leucine-dependent
mechanism [38]. The mTOR inhibition in T cells induces tolerance through the T cell
energy [39] and blocks the differentiation to effector T cells leading to the generation of
FoxP3+, Tregs, and CD8+ memory T cells. This is associated with the lower activation
of the transactivation factors STAT4, 6, and 3 in response to IL-12, 4, and 6 stimulations.
Interestingly, and in contrast with hepatocytes, the Akt-dependent induction of mTORC1
activity in the T cells does not require mTORC2 for their differentiation into Th1 and Th17.
In contrast, the T cell differentiation into Th2 requires functional mTORC2 [40]. TCR can
induce the mTOR activation through upstream PI3K/Akt activation, which is the signaling
that is enhanced by costimulatory receptors (e.g., CD28) [37].

In contrast, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 can an-
tagonize the mTOR activity via Akt and PI3K inhibition. Indeed, the CTLA-4 mediated
inhibition of Akt is dependent on PP2A. The PD-1-induced Akt inhibition involves a block-
ade of the CD28 cytoplasmic tail function (probably through SHP1/2), thus preventing the
synthesis of PI3P by PI3K. In addition, the PD-1-induced PI3K/Akt pathway inhibition
is more potent to block T cell differentiation than the CTLA-4-induced PI3K/Akt inhibi-
tion [41]. Notably, the PI3K/Akt/mTOR pathway also regulates lymphocyte trafficking
through the modulation of CD62L and CCR-7 expression [42].

Regarding the Akt isoform dichotomization in T cell activation, recent publications
suggest a divergence in Akt1, 2, or 3 functions. The Akt-1 isoform downregulates prolifera-
tion of the thymus-derived Tregs, thus facilitating antigen-specific Th1/Th17 responses. On
the other hand, Akt2 increases the proliferation of Tregs and suppresses the antigen-specific
Th1/Th17 responses. Furthermore, the treatment with a specific Akt1 inhibitor suppresses
disease progression in a mouse model of autoimmune encephalomyelitis [43]. The Akt3
signaling in T cells, and not neurons, is necessary for maintaining the central nervous
system integrity during an inflammatory demyelinating disease (in vivo model of myelin-
oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis) [44].
Further studies are needed to clarify the role of each Akt isoform in the T cell activation
process and antitumor activity.

In conclusion, the Akt pathway is at the epicenter of the T cell activation/differentiation
process. This needs to be taken into consideration while choosing the therapeutic targeting
of this pathway.

4.2. Macrophage Polarization

Macrophages are a heterogeneous population of cells arising from the myeloid lineage
and are involved in innate immunity. The roles of these cells during pathogen encoun-
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ters are broad, and they encompass antigen processing, presentation, orchestration of
inflammatory response, clearance, and repair. A dichotomy between “classically activated
macrophages” and “alternatively activated macrophages” depending on different stimuli
has been described and led to the emergence of an “M1” versus “M2” terminology. As
simple as this classification sounds, in reality, such clear division was challenged by the
discovery of TAMs that do not fit in this classification system. Different subsets of M2
macrophages (M2a, M2b, M2c, and M2d) were brought into the spotlight in accordance
with their transcription profiles and responses to the different stimuli. Importantly, the
presence of TAMs is generally associated with a poor prognosis in solid tumors [45].

The different polarization states of the macrophages result in different modes of ac-
tion according to the tissue environment based on the signals that they receive from the
surrounding cells. M1 macrophages exhibit a pro-inflammatory function along with a mi-
crobicide activity and resistance to pathogens. M2 macrophages predominantly mount an
anti-inflammatory response, parasite control, tissue remodeling, and immune modulation.
The macrophage polarization fate is dictated by the regulation of cytokine production,
phagocytosis, autophagy, apoptosis, and metabolism. All of these pathways seemed to
have Akt as the converging node. In fact, signaling cascades controlled by PI3K-Akt largely
contributed to macrophage polarization [46].

The PI3K/Akt pathway plays a key role in the increase of anti-inflammatory mark-
ers such as arginase-1 and IL-10 and inhibition of the production of pro-inflammatory
cytokines [47,48]. It has been described that activation of the PI3K-Akt pathway results
in increased polarization of M2 macrophages [46], and BMP7 and SMAD 1/5/8 might
play a major role in these events [49]. Expectedly, published data also suggest that the
inhibition of either PI3K or mTOR results in M1 macrophage polarization [50,51]. For
example, rapamycin treatment has been found to promote M1 polarization [52]. Never-
theless, the Akt pathway can also be triggered in macrophages by TLR4 activation [53],
activating downstream NFkB [54] and mTORC1 [55], which are responsible for M1 genes
transcription.

While differences in the PI3K/Akt pathway involvement upon macrophage activation
might arise from distinct tissue environments or macrophage origins between studies, the
differences in the Akt isoforms (Akt 1, 2, or 3) play an important role in this matter [46].
Studies using double and triple gene knockout have showed increasing evidence that
each Akt isoform possesses non-overlapping functions. Indeed, in a study using dextran
sodium sulfate-induced colitis, the genetic ablation of Akt1 isoform exacerbated the disease;
however, the ablation of Akt2 in these mice protected them. This difference was due to the
M1 profile and M2 profile in these two cases, respectively [56]. Moreover, studies have
shown that knocking down of the Akt1 expression promotes the upregulation of iNOS
and IL-12β (M1 activation) and suppresses TLR4-induced M1 macrophage activation. In
contrast, as reviewed previously, the knockout of Akt2 resulted in an M2 phenotype along
with elevated M2 markers (Arg1, Ym1, and Fizz1), endotoxin tolerance, and elevated levels
of IL-10 [46].

Still, the role of the Akt isoform subcellular localization in macrophages has been
poorly documented, and a further level of complexity exists based on the acute versus
chronic activation of Akt that remains to be tested in terms of macrophage fate. In con-
clusion, activation of macrophages is highly dependent on the Akt pathway, but the full
picture of Akt involvement in macrophage polarization remains to be completed, especially
concerning the role of each Akt isoform in TME of HCC.

4.3. Other Cells in TME

TANs are major players in the TME of HCC. They recruit both macrophages and
Tregs to promote the progression of HCC [57]. Akt signaling cascade is involved in
migration, degranulation, and O2 production, and the Akt2 isoform has a predominant
role in regulating neutrophil functions [58].
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Additionally, mast cells modulate the immune response and mediate angiogenesis.
It has been demonstrated that the recruitment of mast cells increases angiogenesis by
PI3K-Akt-GSK3β-AM signaling, which can be reversed by Akt inhibition [59].

5. Targeting Akt in the Management of HCC

Numerous compounds have been reported to inhibit the PI3K/Akt/mTOR pathway,
as reviewed previously [60,61]. Akt inhibitors have been tested as an anti-tumor treatment
in several preclinical studies and early clinical phase trials, mostly in gynecologic and
prostate cancers. Furthermore, data from preclinical and clinical studies are also available
for HCC (as summarized in Table 1).

Classical ATP-competitive Akt inhibitors such as ipatasertib (GDC-0068) and capi-
vasertib (AZD5363) are currently in phase-I and phase-II clinical trials for mono- or
combination-therapies. However, because the ATP-binding pocket of Akt is highly con-
served among kinases, the selectivity of these inhibitors is limited, and their use is as-
sociated with side effects during treatment and lack of efficacy. The efforts to identify
more specific and selective small molecules have resulted in the development of allosteric
inhibitors such as MK-2206, ARQ092, and ARQ751 [62,63].

First, an ATP-competitive Akt inhibitor GDC-0068 showed promising antitumor
activity, ranging from tumor growth delay to regression in multiple tumor xenograft
models as a single agent to the potentialized antitumor activity of classic chemotherapeutic
agents [64]. A high basal level of phospho-Akt, PTEN loss, and PIK3CA kinase domain
mutations were predictive of a better response to GDC-0068 [64]. More specifically, in
an in vitro model of sorafenib-resistant HCC cells, the exposure to GDC-0068 combined
with sorafenib restored sensitivity to Sorafenib by switching autophagy, one of the known
resistance mechanisms, from a cytoprotective role to a death-promoting mechanism. This
association induced a synergistic antitumor effect suggesting, at the time, that GDC-0068
represents a good candidate for further clinical trials in combination with Sorafenib [65].
In clinics, to this day, GDC-0068 was tested in a phase-I basket trial with multiple solid
tumors including only one HCC patient without any further study carried out in this
pathology [66]. This compound is currently mostly studied in prostate and breast cancers
in combination with other anticancer agents.

AZD5363, also known as Capivasertib, is another Akt inhibitor that binds to and
inhibits all Akt isoforms. In a large number of cancer cell lines, it has been shown to decrease
FOXO3a phosphorylation through Akt inhibition, leading to FOXO3a translocation to
the nucleus where it can “switch on” the expression of genes, such as p27, FasL, and
BIM by inducing cell-cycle arrest and promoting apoptosis [74]. Moreover, AZD5363
suppresses the proliferation of human HCC cell lines, HepG2 and Huh-7, by inhibiting
the phosphorylation of downstream molecules in the Akt signal pathway in a dose- and
time-dependent manner [67]. AZD5363 was studied in combination with the β-catenin
inhibitor (FH535) in vitro. This combination induced a stronger effect on cell death and
displayed antiproliferative effects on transformed human hepatocytes through inhibition
of cell-cycle progression, enhanced autophagy marker protein expression, and autophagy-
associated death. These promising results suggest that inhibiting both Akt and β-catenin
pathways may represent a new therapeutic way of treating HCC that would, however,
require further preclinical and clinical investigations [75]. AZD5363 was tested in a phase-I
trial in multiple advanced solid tumors including HCC, and it showed acceptable safety
and tolerability profiles [68]. Moreover, it is still under investigation in a large phase-I
study, the MATCH screening trial, that includes multiple solid tumors harboring druggable
mutations including Akt mutations (NCT02465060).
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Table 1. Akt inhibitors in the management of HCC.

Inhibitor Mechanism of Action,
Structure Experiment Setup Antitumor Effect Effect on TME Clinical Trial
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Table 1. Cont.

Inhibitor Mechanism of Action,
Structure Experiment Setup Antitumor Effect Effect on TME Clinical Trial

ARQ 751
[71]

allosteric pan-AKT inhibitor
Chemical structure of ARQ
751 is currently unavailable.

Single agent and in
combination with sorafinib in
DEN-induced cirrhotic rat
model of HCC

- inhibition of tumor
proliferation

- synergistic antitumor
effect when combined
with sorafenib

- Improved liver fibrosis

Phase-Ib (NCT02761694)
in solid tumors with
PIK3CA/AKT/PTEN
mutations including HCC:
ongoing

MK-2206
[72,73]

allosteric pan-AKT inhibitor
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ARQ 092 is a small allosteric pan-Akt inhibitor that showed interesting results in a
diethylnitrosamine- (DEN) induced rat model of HCC developing on cirrhosis, which was
assessed by MRI. The ARQ 092 treatment induced downregulation of the mTOR pathway
with a decrease in the active phosphorylated form of Akt and its downstream actors. ARQ
092 improved the tumor response, normalized the vascularization, and significantly de-
creased the fibrosis of the surrounding liver [69]. A combination of ARQ 092 with Sorafenib
synergistically decreased the tumor progression with the promotion of apoptosis and
reduction of tumor proliferation and angiogenesis [70], and similar effects were observed
when ARQ 751, a next-generation allosteric pan-Akt inhibitor, was used [71]. ARQ 751 is
now tested in clinics, in a phase-Ib basket trial, as a single agent or in combination with
other anticancer drugs in the case of solid tumors with PIK3CA/Akt/PTEN mutations
including HCC (NCT02761694).

MK-2206, another allosteric Akt inhibitor that has been studied in vitro and in vivo in
many cancers, has shown interesting in vitro activity resulting in cell-cycle arrest, inhibition
of cancer cell proliferation, and promotion of apoptosis in human HCC cell lines [72]. It was,
later, studied in a phase-II trial including patients with advanced HCC that was previously
treated but was prematurely arrested due to discouraging results (NCT01239355). Another
phase-II trial in the case of advanced biliary cancer was also stopped after eight inclusions
due to the absence of clinical efficacy as a single agent but with an acceptable safety profile
(NCT01425879) [73]. Further trials are needed on this front in combination with other
targeted therapies.

The data concerning Akt inhibitors in HCC are still preliminary and future clinical
development may have to involve combinations with other targeted therapies such as
β-catenin inhibitors or immune checkpoint inhibitors to improve the care of HCC patients.

6. Conclusions and Future Perspectives

Although the Akt inhibitors have been intensively studied during the past decade in
the context of cancer, their effect on TME has received less attention until very recently.
Interestingly, recent studies suggest that apart from their direct anti-tumor activity, the Akt
inhibitors have the capacity to modulate TME and to switch it from pro-tumoral to anti-
tumoral. The inhibition by AZD8835 in pre-clinical mouse tumor models directly increased
CD8+ T-cell activation, while Tregs, macrophages, and myeloid-derived suppressor cells
were strongly suppressed [76]. Similarly, in several different tumor-bearing mice, the Akt
pathway inhibitor, MK-2206, caused the selective depletion of suppressive Tregs, which
was associated with enhanced cytotoxic CD8 responses [77]. The Akt inhibitor, AZD5363,
was administered as an adjuvant after radiotherapy in tumor-bearing mice which was
associated with marked reductions in tumor vascular density, a decrease in the influx of
CD11b+ myeloid cells, and a failure of tumor regrowth [78]. Similarly, in the rat model of
HCC, which accurately recapitulated the scenario and TME of human HCC [79], the Akt
inhibition by ARQ 092 was associated with the modulations of TME mainly in the form of
a decrease in the accumulation of intrahepatic neutrophils and macrophages [70]. Recent
studies have also demonstrated the effect of the Akt inhibitors on TME in cancer patients.
For instance, in HER2 negative breast cancer patients, two oral doses of the Akt inhibitor,
MK-2206, were associated with a favorable immune profile in TME, including increased
CD3+CD8+ density and greater expression of interferon genes [80]. However, there is no
study yet assessing the impact of Akt inhibition on TME in HCC patients.

In conclusion, the Akt pathway plays an important role in the regulation of several
processes in the development and progression of HCC. It does this by controlling the
growth, proliferation, and survival in tumor cells, on one hand, and by modulating TME,
on the other. TME was the underestimated player until recently, but its involvement in HCC
progression is now well-recognized. In this article, we have emphasized the importance
of considering the effects on TME while developing strategies inhibiting Akt in HCC.
Targeting Akt can lead to a favorable change in the immune microenvironment and thus
provides a rationale for combining these agents with immunotherapeutics. Additional



Int. J. Mol. Sci. 2021, 22, 1794 12 of 15

studies are warranted to pave the way for combining Akt inhibition with immunotherapy in
HCC. Furthermore, the isoforms of Akt converge and diverge in their designated roles, but
the currently available Akt inhibitors fail to display an isoform specificity. Thus, additional
investigations are needed to define the isoform specificity of Akt-related therapeutic targets
to trigger a beneficial immune response in HCC patients.
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