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Abstract: Diffuse low-grade gliomas are slowly growing tumors that always recur after treatment.
In this paper, we revisit the modeling of the evolution of the tumor radius before and after the
radiotherapy process and propose a novel model that is simple yet biologically motivated and
that remedies some shortcomings of previously proposed ones. We confront this with clinical data
consisting of time series of tumor radii from 43 patient records by using a stochastic optimization
technique and obtain very good fits in all cases. Since our model describes the evolution of a tumor
from the very first glioma cell, it gives access to the possible age of the tumor. Using the technique of
profile likelihood to extract all of the information from the data, we build confidence intervals for
the tumor birth age and confirm the fact that low-grade gliomas seem to appear in the late teenage
years. Moreover, an approximate analytical expression of the temporal evolution of the tumor radius
allows us to explain the correlations observed in the data.

Keywords: mathematical modeling; gliomas; radiotherapy; optimization; data analysis

1. Introduction

Gliomas are tumors of the central nervous system that arise from precursors of glial
cells and account for almost 80% of primary malignant brain tumors. Although relatively
rare, they result in more years of life lost than any other tumor: approximately 13,000
deaths and 18,000 new cases of primary malignant brain and central nervous system
tumors occur annually in the United States [1]. Historically, the tumors of the central
nervous system have been classified by the World Health Organization into four grades
based on their histological characteristics and on the aggressiveness of the tumor [1]:
grade 1 gliomas are benign, well delineated, and can be cured by surgery. In grades 2
and above, the tumors are diffuse and, because of that, incurable. Recently, a revision of
the World Health Organization classification was proposed, and it is now the isocitrate
dehydrogenase (IDH) enzyme mutation status that allows one to classify these tumors
in the first place [2]. In this paper, we mostly use data from patients who were recruited
before 2016. The status of the IDH enzyme mutation was not assessed, so we just followed
the WHO classification that was in use at the time of diagnosis and used the term of
diffuse low-grade gliomas (DLGGs) for these patients’ tumors, which included low-grade
astocytomas and oligodendrogliomas [3].

In high-grade gliomas, the rate of proliferation is very large, and in the center, the cells
become hypoxic and, finally, necrotic. In contrast, in DLGGs, the rate of proliferation is
lower, and these tumors are composed only of isolated migrating tumor cells that infiltrate
the normal tissue. On a magnetic resonance imaging (MRI) scan, DLGGs present a T1
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hypointense signal without contrast enhancement (since there is no angiogenesis), but also
a T2-Fluid Attenuated Inversion Recovery (FLAIR) hyperintense signal [4,5]. It has been
shown that tumor cells migrate well beyond the limits of the tumor’s hyperintense area on
T2-FLAIR-weighted MRI scans [6,7].

Though DLGGs are associated with an extended life expectancy compared to higher-
grade gliomas, they represent a real public health issue because patients are often young
(between 20 and 40 years old) with a previously normal social and professional life. DLGGs
grow slowly, but their invasive features are responsible for their unavoidable recurrence,
even after oncological treatments [8].

Treatments primarily consist of surgery when possible. Chemotherapy and then
radiotherapy are proposed for progressive residual tumors and at tumor progression.
However, despite technical progress in imaging techniques and therapeutic management,
treatment only confers a modest improvement in overall survival [9–12]. However, even
worse, all low-grade lesions eventually evolve into higher-grade malignant tumors when
neoangiogenesis is triggered [13]. For DLGGs, the goals of radiotherapy (RT) are to control
tumor growth, improve progression-free survival and patient quality of life by reducing
the risk of seizures, and delay anaplastic transformation [14].

Several aspects of DLGGs have already been the objects of models, from their ori-
gin [15] to their natural evolution [11,16], their response to treatments (in particular, with
RT [17–21]), and their anaplastic transformation [22].

We will now focus on the previous models of DLGGs under RT. In [17], two pop-
ulations of cells are defined: one that is quiescent and another one that proliferates. RT
damages the cells of the proliferating population, thus transforming them into quiescent
cells. The model is based on ordinary differential equations and does not include any
spatial structures. However, in the case of gliomas, a spatial structure is essential in a
model, since a key feature of DLGGs is their capacity to invade surrounding normal tissue.
In [23], the authors use the diffusion–proliferation model with a term for cell death due
to RT (present only while the therapy lasts), and they applied it to high-grade gliomas.
However, this model is not adequate for low-grade gliomas because it cannot account for
the most striking feature of the clinical follow up, i.e., the reduction of the tumor radius,
which lasts much longer than the treatment with RT itself. In [18], our group proposed
a diffusion–proliferation model coupled with the production of edema by tumor cells.
We successfully fitted 29 follow-ups of patients. However, even though this model is the
closest to the biological characteristics of DLGGs, it involves five parameters, including
the two parameters for the edema dynamics. These two parameters are unknown and
cannot be easily experimentally measured. Without any estimation of their values to
with which to compare, it is difficult to validate the model and make predictions. In [19],
the authors developed a model based on a diffusion–proliferation model that involves two
cell populations, one damaged by RT and one that is not damaged, similarly to that in [17].
The advantage of this model is that it contains a spatial structure and also allows a slow
decrease in the tumor radius after the end of the RT treatment. The authors used the model
to study the impact of a fractionation of the RT treatment [20,24]. However, these studies
are theoretical, and the model was not applied to real clinical data.

In this article, we develop a simple biophysical model of DLGG evolution based on
the diffusion–proliferation model with the addition of the effect of RT and confront it
with clinical data from a large number (43) of patients. We use state-of-the art analysis
techniques to adjust the model and show that it is possible to get an excellent agreement
between the model and the data for all of the patients. We then study the birth ages of the
tumors, the parameter values, and the correlations among several observables before and
after RT.
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2. Materials and Methods
2.1. The Patients

We had at our disposal a set of 43 patients with DLGGs who were diagnosed at
the Sainte-Anne Hospital (Paris, France) from 1989 to 2000. These patients were se-
lected according to precise criteria that are detailed elsewhere [3]. In short, only adults
with typical DLGGs (that is, no angiogenesis and, thus, no contrast enhancement on
gadolinium-T1 images), available clinical and imaging follow-ups before, during, and after
RT, and RT as their first oncological treatment except for stereotactic biopsies were eligi-
ble. The external conformational RT was given using the same methodology (total dose,
50.4–54 Gy; 6-week period) at 2 outside institutions. The patients had an MRI follow-up
before, during, and after RT. Three tumor diameters in the axial, coronal, and sagittal planes
on each MRI image with T2-weighted and FLAIR sequences were measured manually.
The mean radiological tumor radius was defined as half the geometric mean of these three
diameters and was measured as a function of time. The error bars for the measured mean
radius were estimated by clinicians and were set to±1 mm. From this cohort, we discarded
the patients that did not have any sign of tumor regrowth at the last time point or those
that had fewer than five time points in their follow-up.

2.2. Standard Protocol Approvals, Registration, and Patient Consent

The study received the required authorizations (IRB#1: 2021/20) from the human
research institutional review board (IRB00011687). The requirement to obtain informed
consent was waived according to French legislation (observational retrospective study).

2.3. The Model
2.3.1. Free Tumor Evolution

The diffusion–proliferation model plays a special role in the modeling of the evolution
fields of gliomas. It is based on a differential equation governing glioma cell density, and in
its simplest form, it involves only two key phenomena (and thus two parameters): the
migration (modeled as a diffusion) of the cells and their proliferation. It is the mathematical
translation of the fact that the rate of change in the tumor cell density at a given position is
equal to the change in the tumor cell density due to diffusion plus the rate of change in the
tumor cell density due to proliferation.

This model was first proposed in 1995 [25] and has been extensively used for high-
grade gliomas since then [26–31]. However, in fact, the model is more adapted to DLGGs.
Despite its simplicity, this model can, in particular, reproduce an important feature of
DLGG growth that has been verified with clinical data, which is that the tumor radius
increases linearly with time (over large amounts time) [32,33].

The diffusion–proliferation model describes the evolution of the glioma cell density
ρ as

∂ρ

∂t
= D∆ρ + κρ(1− ρ) (1)

where ρ(~r, t) = C/Cm, C is the glioma cell density, Cm is the maximal cell concentration
that the tissue can handle (also called the carrying capacity), D is the diffusion coefficient
of the glioma cells, and κ is the proliferation coefficient.

A tumor is a 3D object, so it seems logical to solve Equation (1) in 3D. We do not want
to enter into too many details about its precise shape for each patient, so we will assume a
spherical symmetry for all tumors.

In 3D, assuming a spherical symmetry of the tumor, Equation (1) becomes:

∂ρ(r, t)
∂t

= D(
∂2ρ(r, t)

∂r2 +
2
r

∂ρ(r, t)
∂r

) + κρ(r, t)(1− ρ(r, t)) (2)
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As explained in [16], when introducing an auxiliary variable u = rρ, Equation (2)
takes the form:

∂u
∂t

= D
∂2u
∂r2 + κu(1− u

r
) (3)

with u(r = 0, t) = 0 and ∂ρ
∂r (r = 0, t) = 0.

We solve Equation (3) by discretizing it on a mesh of spatial size δr = 10−2 mm=10 µm
and with a time step δt = 10−2 yr, using an implicit scheme for the diffusion part and a
homographic-type discretization for the logistic part.

The limit of MRI-signal abnormality (with T2-weighted or FLAIR sequences) is usually
assumed to be a curve of the iso-density of glioma cells. The radius of this visible part of
the tumor in MRI (usually called the “tumor radius") is thus defined as the distance r to
the tumor’s center, where the cell density ρ crosses a fixed threshold ρ∗. The value of this
parameter ρ∗ is not precisely known, but we expect that its value, as long as it stays much
smaller than 1, will not have a strong influence on our conclusions. We set ρ∗ = 0.02 for all
of the simulations [19,27].

The initial conditions are the same for all of the simulations and correspond to the
appearance of the first tumor cell: ρ(r = δr, 0) = 1 and ρ(r > δr, 0) = 0. Here, we assume
that the tumor has been developing with the same proliferation and diffusion coefficients
since the appearance of the first tumor cell.

2.3.2. Modeling RT

Next, we turn to the modeling of the radiotherapy process itself. The action of RT on
the glioma cells is modeled as an instantaneous event, since the duration of the treatment
(typically 6 weeks, or 0.11 yr) is negligible compared to the mean regrowth delay after RT
(1.25 yr for our patients) [3]. The origin of time is set to the time of RT.

We introduce a new model to capture the essence of what happens after the radiother-
apy by adding to the free evolution Equation (1) a time-dependentdeath term:

∂ρ(~r, t)
∂t

= D∆ρ(~r, t) + [κ − κD(t)]ρ(~r, t)(1− ρ(~r, t)). (4)

The simplest way to introduce some characteristic time is to choose

κD(t) = κde−(t−tr)/τ (5)

for t > tr, where tr is the time of RT and κD(t) = 0 for t < tr.
To the two parameters that describe the natural evolution of the tumor (κ, D) and the

two others related to the effect of RT on tumor cells (κd, τ), we add a fifth one, the tumor
age T at the time of RT. Although not derived from physical modeling, it is an unknown of
the problem that must then be determined with the others (in statistical terminology, it is
a nuisance parameter.). This parameter is important because we need to ensure that T is
always smaller than the age of the patient themselves at the time of RT.

2.4. Fitting Procedure

For each patient, we determine the set of parameters that best fits our data by numeri-
cally performing a multidimensional minimization of the objective function:

χ2(T, D, κ, κd, τd) =
Ndata

∑
i=1

[Rdata(ti)− Rmod(ti; T, D, κ, κd, τd)]
2, (6)

where Rdata(ti) denotes the radius measured at time ti and Rmod is the theoretical value
of the radius. This value Rmod is obtained by numerically solving our theoretical model,
which means that the cell concentration profile is calculated at each time, as well as by
following our model equations and thresholding it at ρ∗ to obtain the radius (we recall that
the error on the measurements is about 1 mm, so there is no need to rescale the residuals.).
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We also add the constraint that from a radius of 15 mm, the tumor should evolve
almost in the asymptotic regime. This linearity has been observed in clinical data [32] and
has already been implemented in [16]. More specifically, we compute the relative difference
between the velocity from the model (computed as the slope of the radius curve) and the
asymptotic value c = 2

√
Dκ

r15 =

(
dRmod

dt
(15)− c

)
/c, (7)

and if this value exceeds 20% we add a quadratic term to the χ2:

χ2
extra =

(
r15 − 0.20

0.01

)2
. (8)

Finally, to avoid aberrant values, we will use some light bounds on the possible
parameter range: 0 < D < 10 mm2/yr, 0 < κ < 10 yr−1 , 0 < κd < 500 yr−1, and
0 < τd < 50 yr.

The 5D optimization problem from a non-analytical and non-linear equation is chal-
lenging for standard minimization procedures. These procedures often rely on the use
of analytical gradients, which are not available here. After several tests, the optimiza-
tion method that we chose is the covariance matrix adaptation evolution strategy (CMA-ES
(http://cma.gforge.inria.fr (accessed on 2 February 2020)) [34]. It is a stochastic method
that belongs to the class of evolutionary algorithms and is often used for challenging
optimization problems. The algorithm CMA-ES proceeds as follows: At each time step,
several new candidate solutions are sampled from a multivariate normal distribution, and
the N candidate solutions that correspond to the smallest value of the objective function f
are selected. A weighted combination of the N best candidate solutions is used to update
the internal state variables, such as the mean of the distribution of candidates, the step size,
and the covariance matrix. One advantage of this method over other evolutionary ones
is that there are only a few parameters that have to be chosen: the starting point, some
estimate of the associated errors (which we choose to be about 10%), and the population
size, which we tuned to 50 to obtain stable results. For each patient, since the algorithm is
stochastic, 10 runs are performed, and the best fit (lowest χ2

min value) is kept. In practice,
the 10 results are very similar.

3. Results
3.1. Characterization of Our Model

In Equation (4), the κ− κD(t) term accounts for a net proliferation that can be positive
if cells are actually created (before RT, dashed lines on Figure 1) or negative if cells are killed
(after RT, colored lines). In Figure 1, one can see that before RT, the front of the profiles
moves with a constant positive velocity, and the same amounts of proliferating cells are
created during a given time interval (light gray, dark gray, and black profiles of proliferating
cells, dashed lines). Since the center of the tumor reaches saturation, the proliferating cells
are located at the border of the tumor. After RT, the front moves backwards, and the
net proliferation becomes negative: Cells are killed. Since the death term has exactly the
same structure as the proliferation term, cells do not die where the cell density is close to
saturation—at the center of the tumor. Cells are killed at the border, and because the death
parameter decreases exponentially with time, the amount of cells dying during each time
interval decreases. After some time, proliferation surpasses death, and the tumor starts to
regrow (see the pink profile, Figure 1).

This is different from models with two populations (damaged/undamaged cells) with
constant death rates, where the density is uniformly decreased. As shown later, these
models lead to a linear decrease just after RT (which is clearly not what is observed), while
our model allows for an exponential-type decrease (more about the comparison in the
Appendix A).

http://cma.gforge.inria.fr
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Figure 1. Cell density (full lines) and proliferating/killed cell density (dashed lines) profiles for different times: before (light
and dark gray lines), at the time of RT (black lines), and after RT (colored lines). The time interval between two profiles
is ∆t = 1.1 yr. The profile of proliferating/killed cells is obtained by subtracting two successive profiles. Parameters:
κ = 1.3 yr−1, D = 0.8 mm2 yr−1, κd = 8 yr−1,τd = 2 yr.

Simple analytical considerations can give insights about the early linear-versus-
exponential decrease in the radius. If we assume that, at the time of RT, the asymptotic
regime is reached, then the profile of the cell density is a sigmoidal curve, and the front
propagates at a constant velocity:

v = 2
√

Dκ (9)

At the time of RT (t = tr), the profile of the cell density then follows [35]:

ρ(r, tr) '
1

1 + exp((r− r1/2)/λ)
(10)

where the characteristic length is λ = 2
√

D
κ and r1/2 is defined so that ρ(r1/2, tr) = 1/2.

Since we are interested in the evolution of the radius, corresponding to a very low
threshold of the cell density (ρ∗ = 0.02 << 1), the profile is locally well described near ρ∗

by
ρ(r, tr) ' exp(−(r− r1/2)/λ). (11)

Just after RT, the time during which the radius decreases before regrowth is short
enough to neglect the effect of the diffusion. In this case, close to the threshold where the
saturation term can be neglected, the cell density follows the equation:

dρ

dt
= (κ − κD(t))ρ(1− ρ)

' (κ − κD(t))ρ (12)
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The solution to this equation for t > tr is:

ρ(r, t) = ρ(r, tr) exp (κ(t− tr)−
∫ t

tr
κddt). (13)

So, after RT, the cell density close to the threshold (at large r) can be rewritten as:

ρ(r, t) = exp (−(r− r1/2)/λ + κ(t− tr)−
∫ t

tr
κddt). (14)

Setting ρ = ρ∗, one finds the evolution of the radius at the threshold:

r(t) = r1/2 + λ(κ(t− tr)−
∫ t

tr
κddt− ln(ρ∗)). (15)

If the death term is constant, then
∫ t

tr
κddt = κd(t − tr), and the radius just after

RT varies linearly with a constant velocity: λ(κ − κd). On the other hand, if κD(t) is an
exponential function, we obtain:

r(t) = r1/2 + λ(κ(t− tr) + κdτd(e−(t−tr)/τd − 1)− ln(ρ∗)). (16)

We can write this equation in a more simple way by reintroducing the effective velocity
v (Equation 9) and defining rr = r(tr) as the radius of the tumor at the time of RT. After RT
(for t > tr), the equation of evolution of the tumor radius is:

r(t) = rr − vτd
κd
κ
(1− e−(t−tr)/τd) + v(t− tr) (17)

This evolution is similar to that in a two-population model where the damaged
population decreases exponentially with some characteristic time τd and amplitude vτd

κdm
κ ,

and the undamaged population still grows linearly with the asymptotic speed vt.
Finally, we stress that this is an approximate description aiming at capturing the

gross features of the evolution of the radius. In the following, the exact Equation (4) is
numerically solved.

3.2. Best Fits

For each of our 43 patients, we performed the 5D minimization of the objective func-
tion in Equation (6). The minimal value of the χ2 function (called χ2

min) was reached
for a set of parameters (T̂, D̂, κ̂, κ̂d, τ̂) that represented the “best fit" for each patient.
Figure 2 shows the agreement between our best fit model and the data for a large number
of patients with various medical follow-ups.

Our model allowed the reproduction of all of the different cases in a very satisfactory
way for all 43 patients. For reasons of space, we present the results for a subset of 20 patients
(the ones with the largest numbers of points). The 23 remaining fits are available in the
Supplementary Material).
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Figure 2. Comparison between the data points (in black) and our best fit models (red curve) for 20 patients. The abscissa
represent time in years (with the origin at RT) and the ordinate of the tumor radius (in mm). Note that the scales are floating
and span various ranges. The error bars on the measurements are 1 mm.
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3.3. Tumor Age

An original aspect of this work is that we consider the age of the tumor (defined with
respect to the time RT) as a free parameter, and we will now show that it is possible to get
some information about this parameter.

Even when there is a substantial number of points before RT (which is rarely the case),
one cannot simply linearly extrapolate back in time to determine the tumor birth date:
There exists an invisible phase corresponding to the early development of the tumor that is
below the detection level and, thus, not detectable [16,36]. In order to put a constraint on
the tumor age T, we resort to the technique of the profile likelihood (see, e.g., [37]), which we
will now explain.

The tumor age is fixed at some value T, and a minimization over the four remaining
parameters is performed, giving a χ2

min(T) value. The procedure is repeated for several T
values. By shifting all of the values to have zero as the lowest value, one can reconstruct
the profile-likelihood ∆χ2(T) of the tumor age. This profile can now be used to put a
quantitative constraint on the T parameter. Indeed, it can be shown (e.g., [38]) that this
function converges to a χ2 distribution with one degree of freedom so one can use its
quantiles to get confidence level intervals. In particular, one obtains 95% confidence level
intervals by thresholding the profile likelihood at 3.84.

We reconstructed the constraint on the tumor age (at RT) for all of our 20 selected
patients (they are available in the Supplementary Material)and highlight some typical
cases that show why the constraint depends crucially on the number of data points in the
patients’ follow-ups (Figure 2).

• (a): Patient (6): This is a case where there are many points before RT and few during
the regrowth phase.

• (b): Patient (14) is the inverse, with few points before RT, but the regrowth is strongly
sampled.

• (c): Patient (13): No points before RT and a few during regrowth.

The corresponding profile likelihoods are shown in Figure 3.
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Figure 3. Constraints on the tumor age (at RT) with the profile-likelihood method. Results are shown for three patients
(a–c) corresponding respectively to the data labelled (6), (14) and (13) on Fig.2. Considering the region below ∆χ2 < 3.84
(the horizontal dashed line), one can reconstruct a 95% confidence level interval (shown by the dashed vertical lines and
corresponding range values). The last value of the abscissa is the patient age.

For patient (a), one obtains both a minimum age constraint (18 years) and a maximum
one (46 years). The points before RT fix both the radius at RT and the slope. The latter
essentially constrains the product Dκ through the asymptotic speed (v = 2

√
Dκ). The

invisible phase depends essentially on the proliferation rate κ and has a natural limit [16]
because its duration cannot be smaller than the time at which the first point was measured.
This fixes the lower limit of the tumor age. The upper limit comes from the fact that when
the age increases, the proliferation rate gets smaller. However, for small κ, the evolution
of the radius after the invisible phase is more and more curved. So, for a proliferation
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coefficient that is too small, the model is in disagreement with the data near RT and with
the constraint on the linearity of the evolution at r = 15 mm. This fixes the upper limit of
the tumor age. Between these two limits, several models that correspond to several sets of
parameters fit the data equally well. This is illustrated in Figure 4, where we plotted the
four models corresponding to the four points (“bottom points") with the lowest values of
χ2 from Figure 3a (at 20, 25, 30, and 35 years), which all agree well with the data. One can
see that the black model, which is the furthest from RT (35 years), has more curvature than
the others and that the red one, which has the lowest age (20), corresponds to a very brief
invisible phase. In this case, the silent phase is close to its minimum compatibility with the
data points for this patient.

35 30 25 20 15 10 5 0
time [yrs]

0

5

10

15

20

25

30

R 
[m

m
]

Figure 4. Full evolution of the radius of the four models corresponding to the bottom points (∆χ2 < 1)
from Figure 3a. The origin time is fixed at RT, and the starting time of the tumor is indicated by
colored arrows. All of the models give similar χ2 values with respect to the data.

Patient (14) does not have much of a constraint before RT (Figure 2). However, the
same type of constraint arises from the regrowth phase, which still follows the asymptotic
limit, so we still obtain a full range of valid tumor ages.

Finally, although patient (13) has no points before RT and has points only at the
beginning of the regrowth phase, one can still put a lower limit on the tumor age through
the full fitting of the five-parameter model to the data. This demonstrates the potential of
this method, which can still put some minimum bounds on the tumor age by exploiting
the full information from the data.

Using the profile-likelihood reconstruction of all 20 patients, we can study the ages of
the patients at the birth of the tumors, which is calculated as the age of the patient at RT
minus the age of the tumor at RT. We show in Figure 5 all 95% CL intervals obtained with
this method. Although the constraints depend crucially on the data (size and sampling
dates), they are consistent with the appearance of a DLGG at adolescence, as predicted
in [16].
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Figure 5. The 95% confidence level intervals of the ages of the patients at the onset of the tumors
determined from the profile-likelihood analysis.

3.4. Tumor Characteristics

As already pointed out, the tumor age is a parameter that is very different from the
other ones: It is only an unknown of the problem, which is why we treated it separately.
The other four parameters (D, κ, κd, τd) describe the DLGG’s evolution, but, for a given
tumor age, they are strongly correlated.

To illustrate this, let us consider again all of the models corresponding to the “bottom
points" from Figure 3a (∆χ2 < 1). We show how their values depend on the tumor age; see
Figure 6a. While all of the models are essentially equivalent in terms of χ2, the parameters
vary considerably (in a correlated way), prohibiting any interesting individual constraints.

Inspired by Equation (17), we now use the following parameters instead: v = 2
√

Dκ, κd
κ ,

and τd. We show in Figure 6b that they are indeed more stable in the valid age range, so
the variables are now uncorrelated.

We then study if there are some common features among our patients. Figure 7 shows
the histograms of the measured characteristics.

The measured velocities are consistent with the DLGG values for velocities, which
are in the typical [1,4]-mm/yr range [39]. The characteristic death rate times are about
τd = 1.0± 0.7 yr. The ratio between the death and proliferation rates after RT is large—
typically above 5, but with a wide distribution, with values that can go up to 40.

We can also check if there are some correlations between the evolutions before and
after RT. From the best fit models, we compute the following observables: V− = drmod

dt (t−r )),
which is the slope just before RT, tmin, which is the time at which the minimum is reached,
∆R = r(tr) − r(tmin), which is the amplitude decrease at the minimum point, and ∆T,
which is the time interval after RT when the radius comes back to its value at the time
of RT.
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Figure 6. (a) Value of diffusion, proliferation, and death rate coefficients of the four models corresponding to the bottom
points from Figure 3a (∆χ2 < 1). (b) The same for the transformed set of variables described in the text.
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Figure 7. Histograms of the best fit parameters for the velocity parameter (a), death characteristic time (b), and proliferation
ratio (c) for our selection of 20 patients.

In the dataset, we measure the following correlation coefficients:

< V−, ∆R > = +0.42

< V−, tmin > = −0.27 (18)

< V−, ∆T > = −0.63.

From the (approximate) radius evolution in Equation (17), we have

∆R ' vτd (
κd
κ
− ln

κd
κ
− 1)

tmin ' τd ln
κd
κ

(19)

∆T ' τd
κd
κ

where v is the theoretical value v = 2
√

D.κ.
From these expressions, we expect some correlation between v and ∆R, an anti-

correlation between v and tmin through κ (but moderate because of the logarithm), and a
stronger one with ∆T. This corresponds exactly to what is observed in the dataset. We
can conclude that our model correctly reproduces the correlations observed in the data
before and after RT.
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4. Discussion

DLGGs are tumors that always turn into a more aggressive form after years of indolent
growth [40]. They are also resistant to RT, since they systematically recur after the end of
the treatment. Modeling their dynamics with and without treatment can lead to a better
understanding of their evolution and their resistance to treatments.

Here, we complement a classical diffusion–proliferation model (that has already
proved its usefulness for the evolution of DLGGs) with a model of the RT effect as a
simple, time-dependent, and spatially structured death term. The spatial dependency
of the death term means that cells at the border of the tumor are killed more than cells
at the center of the tumor. The time dependency of the death term translates into a net
proliferation term (proliferation minus death) that is time-dependent: Before RT, the net
proliferation is positive, and then negative during a certain time interval after RT. When
the death coefficient is smaller than the proliferation parameter κ, the net proliferation term
is positive again, and the tumor resumes its growth at the same rate as before RT.

The first qualitative feature that our model reproduces—without RT—is the fact that
proliferating cells are situated at the border of the tumor. This spatial effect has been
observed in human tissue from DLGGs; by analyzing tissue samples from stereotaxic
biopsies, it has been shown that cycling cells (or proliferating cells) are situated at the
border of the tumor [41]. Even if DLGGs do not have a necrotic (and even hypoxic) center
as higher-grade gliomas do, the cell density is still higher than normal. It is thus possible
that some regions of sub-optimal oxygen concentration develop at the center of the tumor,
thus reducing proliferation and triggering the transformation of cells into quiescent ones.
We will see later that this spatial organization, which our model reproduces well, is crucial
in the modeling of the action of RT.

Another important point is the modeling of the RT effect. Our death term due to RT is
designed to preferentially target proliferating cells (see Figure 1), since it is well known
that proliferating cells are the most sensitive to irradiation and die via mitotic catastrophe
in particular [42]. However, our death term is also time-dependent (with a characteristic
time that can be from months to a few years depending on the patients), and we will
now discuss this point. Although it is certainly a complicated effect that varies among
patients, we argue that our choice of a time-dependent death rate is biologically realistic.
Tumor irradiation induces both direct and indirect effects that could lead to tumor cell
death. Direct effects are the result of radiation-induced DNA damage in cancer cells that
are too important to be repaired (double-strand breaks in the DNA molecules). However,
RT can also induce indirect damage to DNA (via reactive oxygen species) and to the tumor
microenvironment, such as in the vasculature. It can also trigger an immune response that
can contribute to the tumor growth control [43,44]. Usually, damaged cells try to repair the
damage and can even try to go through several mitoses before triggering their death. All
of these process can take some time, and this is why the response to RT can be prolonged
in time. We decided to model this delayed effect by defining a characteristic time in the
death term. The choice of the exponential function for the death term is the simplest way
to introduce a characteristic time. However, it could also be justified in an other way: The
linear quadratic model stipulates that the survival time is an exponential function of the
dose received (for a review on the linear quadratic model, see [45]). However, the efficacy
of a given dose was measured with cell culture in 2D. In a real tumor, it is possible that the
efficacy of a dose depends on the microenvironment. It is a well-known fact that hypoxic
cells (at the center of tumors) are more resistant to RT than normoxic cells [46]. Actually,
this constitutes an important limitation to the use of RT. So, for a given dose that is received,
the radiation could have a smaller effect for cells that are closer to the poorly oxygenated
center than at the well-oxygenated border, leading to a larger survival rate. It is also well
known that radiations kill proliferating cells, which cannot repair the DNA damage when
trying to undergo mitosis. Just after RT, the more damaged cells begin to die, and quiescent
cells are now at the border and turn into proliferating ones; thus, they also die, but with
a death rate that is lower than that in the first layer. Thus, cells would die layer by layer,
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from the outside inwards. This process would justify our death rate that is exponentially
decreasing with time. Biologically, this process is realistic; it has actually been observed
in vitro and modeled with a cellular automaton for spheroids in [47,48].

If we compare our model with the few models of the effects of RT on DLGGs, we
can note that our model is the one that can reproduce the most biological characteristics
of DLGGs without and with RT. First, the model displays a space dependency (and this
is not the case for the model in [17]) that allows one to find that proliferating cells are at
the border of the tumor and that the velocity of the evolution of the tumor radius is linear.
Second, our model also reproduces the most striking feature of the evolution of DLGGs
under RT, which is the fact that the tumor radius continues to decrease even after the end of
the treatment over a few months to almost ten years, depending on the patient, before the
tumor systematically recurs and starts to grow again. This behavior is not accounted for by
the model in [23], where the tumor starts to grow again just after the end of the treatment.
Third, when compared to large amounts of high-quality clinical data (patient follow-ups
with tumor radius measurements for several time points), our time-dependent death rate
model could reproduce the exponential shape that is visible in the experimental data: a
sharp decline in the first period, followed by a slower decay, and an almost linear regrowth.
With simple analytical considerations, we show that with a constant death term, as in the
models in [18,19], the decrease in the radius can only be linear (at best) and cannot lead to
any exponential-like decrease.

We took care not to introduce too many parameters in our model in order to continue
to allow the flexibility to describe all of the data. The tumor evolution with RT is only
described by four parameters, with two being the natural evolution ones (proliferation and
diffusion) and two for the RT effect (death rate and characteristic time). An original aspect
of this work is that we also considered the (unknown) tumor age as a free parameter that
could, therefore, be constrained by the data.

With this five-parameter model, the data of the temporal evolution of the tumor radii
for 43 patients were automatically fitted, and excellent results were given. We selected 20
patients with more than 10 data points (the fits for the other 23 patients are available in
the Supplementary Material), and for each patient of this series, by scanning the possible
ages of the tumor—from 0 to the patient’s age—we could infer the possible age range of
the patient at the onset of the tumor. We found that the age at the onset of the tumor that
was compatible with most of the patients was around 15 years-old. This finding confirms
previous research [16], where, from the data on the velocity and one measure of the tumor
radius at a given time and going back in time with a model, the conclusion was that patients
were most likely to be in their late teenage years at the onset of the tumor.

This age at the onset of the tumor depends on the initial conditions; if the simulation
starts from a small clump of cells, the time needed to form that clump is not counted, and
the age of the tumor is underestimated. Moreover, the choice of the size of the clump would
have been subjective. We chose to start the simulations from one cell. We also assumed that
the proliferation and diffusion coefficients were constant all along the tumor’s evolution.
This is a strong assumption that may not be correct. It is indeed possible that the first cell
only proliferates and forms a small clump of cells before diffusion takes place. On the
other hand, since we do not have any clue about what happened at the beginning of the
evolution, and since even when discovered early, DLGGs seem to grow the in same way as
larger tumors (associating proliferation and diffusion), we decided that the simplest way
to choose the initial conditions was to start with one unique cell and the same proliferation
and diffusion coefficient.

For the population of 20 selected patients, we also measured a characteristic RT time τd
of around 1 year and a ratio of the maximal death coefficient to the proliferation coefficient
κd/κ that was always larger than 5. The fact that this ratio has a value larger than 1 is an
important biological result; it means that just after RT, a large quantity of cells is killed just
after RT, and does not have time to go through mitosis. In these cells, the damage due to
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RT may have been so important that the cells triggered the apoptosis program immediately
without even trying to perform mitosis.

With the group of the 20 selected patients, we could also highlight good correlations
between the velocity before RT, V−, and both the gain of lifetime ∆T and ∆R (the maximum
decrease in the radius). A simple analysis allowed us to understand these correlations.

Now that we have shown that our model is the most efficient model for describing
the effects of RT on DLGGs, in our future work, we plan to use the results of this study
to predict whether patients have an early or late regrowing tumor with only one or two
data points after RT. This prediction could be used to improve follow-ups with patients by
adapting the frequency of MRI scans.
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Appendix A

In this appendix, we compare the evolution of the tumor radius obtained with our
model with that of a constant death rate model with two populations, which was inspired
by Perez’ and Ribba’s work [17,19]. In this model, RT damages a fraction of the cell
population, and this damaged population evolves differently from the undamaged one; the
undamaged cells continue to proliferate and diffuse at the same rate as before, whereas the
damaged population stops proliferating and dies progressively (but still diffuses normally).
A model of this type is interesting because it is biologically realistic and it accounts for the
delay in the regrowth of the radius after RT. All of the parameters are constant and, aside
from the two parameters κ and D, which describe the natural evolution of the tumor, two
parameters are needed for RT: the fraction of the cell population that has been damaged, x,
and the death rate of this population, κd.

For t < tr, the equation describing the evolution of the cell population is the same as
Equation (1):

∂ρ

∂t
= D∆ρ + κρ(1− ρ)

For t = tr, two populations are created: the damaged one, ρd(tr) = xρ(tr), and the
undamaged one, ρnd(tr) = (1− x)ρnd(tr). After RT (t > tr):

∂ρnd
∂t

= D∆ρnd + κρnd(1− ρ)

for the undamaged population, and:

∂ρd
∂t

= D∆ρd − κDρd(1− ρ)

with ρ = ρd + ρnd.
This model can reproduce the delay in the regrowth after RT. However, as shown in

Section 3.1, the decrease in the radius is, at best, linear, which is clear in Figure 2, which
is not in agreement with the clinical data, where a steep decrease is generally observed

https://www.mdpi.com/article/10.3390/jpm11080818/s1
https://www.mdpi.com/article/10.3390/jpm11080818/s1
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first, followed by some milder phases. In Figure A1, the time of RT was set to 0, and the RT
parameters of the two models were chosen so that the minimum of the evolution of the
radius was the same. The linear decrease obtained with a two-population model after RT
can be compared to the exponential decay obtained with our one-population model. In the
regrowth phase, the evolution of the radius with the two-population model displays a
strong curvature that is reminiscent of the beginning of the visible evolution of the radius.
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Figure A1. Temporal evolution of the tumor radius versus time for two models: one with a constant
death rate (black line) and a fraction of the cell density damaged at the time of RT and a model
with a time-dependent death rate (red line). The origin of the time was set to the time of RT.
The parameters for the constant death rate model: κ = 1 yr−1, D = 1 mm2 yr−1, κd = 3.3 yr−1,
x = 0.0053. The parameters for the time-dependent death rate model: κ = 1 yr−1, D = 1 mm2 yr−1,
κD = 8.5 yr−1,τd = 0.9 yr.
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