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Abstract 

Background: Since the onset of the pandemic, only few studies focused on longitudinal immune monitoring in 
critically ill COVID‑19 patients with acute respiratory distress syndrome (ARDS) whereas their hospital stay may last 
for several weeks. Consequently, the question of whether immune parameters may drive or associate with delayed 
unfavorable outcome in these critically ill patients remains unsolved.

Methods: We present a dynamic description of immuno‑inflammatory derangements in 64 critically ill COVID‑19 
patients including plasma IFNα2 levels and IFN‑stimulated genes (ISG) score measurements.

Results: ARDS patients presented with persistently decreased lymphocyte count and mHLA‑DR expression and 
increased cytokine levels. Type‑I IFN response was initially induced with elevation of IFNα2 levels and ISG score 
followed by a rapid decrease over time. Survivors and non‑survivors presented with apparent common immune 
responses over the first 3 weeks after ICU admission mixing gradual return to normal values of cellular markers and 
progressive decrease of cytokines levels including IFNα2. Only plasma TNF‑α presented with a slow increase over time 
and higher values in non‑survivors compared with survivors. This paralleled with an extremely high occurrence of 
secondary infections in COVID‑19 patients with ARDS.

Conclusions: Occurrence of ARDS in response to SARS‑CoV2 infection appears to be strongly associated with the 
intensity of immune alterations upon ICU admission of COVID‑19 patients. In these critically ill patients, immune pro‑
file presents with similarities with the delayed step of immunosuppression described in bacterial sepsis.
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Introduction
The severe acute respiratory coronavirus-2 (SARS‐
CoV‐2) is responsible for coronavirus disease-19 
(COVID‐19) that mostly associates with asymptomatic 
and mild presentations but may progress in worst cases 
to severe pneumonia leading to intensive care unit (ICU) 
admission and acute respiratory distress syndrome 
(ARDS) requiring respiratory support [1]. Since the onset 
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of the pandemic, the number of COVID-19 patients has 
never ceased to rise and has ultimately outstripped hos-
pital/ICU capacity in some areas particularly affected by 
virus spread. COVID-19 mortality, although currently 
decreasing, has remained dramatically high especially in 
patients requiring invasive mechanical ventilation [1].

An enormous research effort has been consented to 
describe and understand the mechanisms sustaining 
altered host immune response to a virus totally unknown 
of human immune surveillance. Many exploratory non-
hypothesis‐driven programs have been deployed in order 
to decipher immune processes at play in COVID‐19. 
Through various flow cytometry approaches, transcrip-
tomic strategies, functional testing and multiplex meas-
urement of soluble mediators, most studies compared 
immune response between groups of COVID-19 patients 
with increasing severity, i.e., mild/severe/critical [2–5]. 
These works provided homogenous results describing 
that, upon hospital arrival, the most severe phenotype 
associated with inflammatory response (e.g., moderate 
plasma IL-6 elevation) and altered cellular immunity, i.e., 
decreased monocyte HLA-DR expression (mHLA-DR) 
and marked lymphopenia [6–11]. In addition, impaired 
type I interferons (IFN-I) activity has emerged as a con-
tributor to the disease severity [12–15]. These latter 
cytokines are crucial components of innate immune 
response against viruses by ringing a “first alarm” bell. 
IFN-I have, by themselves, antiviral properties but they 
also induce the expression of hundreds of IFN-stimulated 
genes (ISG) inducing cellular antiviral activity, therefore, 
limiting virus spread [5].

In contrast, fewer studies focused on longitudinal 
immune monitoring in hospitalized COVID-19 patients, 
whereas their hospital stay may last for several weeks [1]. 
This is especially true in critically ill COVID-19 patients 
with ARDS who also present with the highest mortality 
[1]. To investigate this particular aspect of COVID-19 
immune response, we monitored selected immunologi-
cal parameters, including IFNα2 measurement and IFN-
stimulated genes (ISG) transcriptomic signature, in a 
group of 64 COVID-19 patients requiring ICU care over 
a 3-week period after ICU admission.

Methods
Clinical study design, patient population and approval
Between March and May 2020, critically ill patients 
admitted to three ICUs from academic hospital (Hos-
pices Civils de Lyon, Lyon, France) who presented with 
pulmonary infection with SARS-CoV-2 confirmed by 
RT-PCR testing were prospectively included in the study. 
A flowchart describing the patient datasets used for the 
different analyses is provided in Additional file 1: Figure 
S1. Preliminary results from a subgroup of the cohort 

were published previously [9]. This project was part of an 
ongoing prospective observational clinical study (RICO, 
REA-IMMUNO-COVID). It was approved by ethics 
committee (Comité de Protection des Personnes Ile de 
France 1 - N°IRB/IORG #: IORG0009918) under agree-
ment number 2020-A01079-30. This clinical study was 
registered at ClinicalTrials.gov (NCT04392401). The 
committee waived the need for written informed consent 
because the study was observational, with a low risk to 
patients, and no specific procedure, other than routine 
blood sampling, was required. Oral information and non-
opposition to inclusion in the study were mandatory and 
were systematically obtained before any blood sample 
was drawn. This was recorded in patients’ clinical files. 
If a patient was unable to consent directly, non-opposi-
tion was obtained from the patient’s legally authorized 
representative and reconfirmed from the patient at the 
earliest opportunity. Inclusion criteria were: patients 
aged > 18 years, diagnosis of COVID-19 confirmed by RT-
PCR testing in one respiratory sample. Inclusion criteria 
were (1) man or woman aged 18 or over, (2) hospitaliza-
tion in ICU for SARS-CoV-2 pneumopathy, (3) first hos-
pitalization in ICU, (4) positive diagnosis of SARS-CoV2 
infection carried out by PCR or by another approved 
method in at least one respiratory sample, (5) sampling 
in the first 24 h after admission to ICU (D0) feasible and 
(6) patient or next of kin who has been informed of the 
terms of the study and has not objected to participat-
ing. Exclusion criteria were pregnancy, institutionalized 
patients, inability to obtain informed consent.

Patient characteristics
For each patient, demographics, comorbidities, time from 
onset of COVID-19 symptoms to ICU admission, initial 
presentation of the disease in ICU including the ratio of 
the arterial partial pressure of oxygen to the fractional 
inspired oxygen  (PaO2/FiO2 ratio) at admission, antiviral 
therapy targeting SARS-CoV-2 and organ support were 
documented. Organ dysfunctions according to sequen-
tial organ failure assessment (SOFA) score (range 0–24, 
with higher scores indicating more severe organ failures) 
and simplified acute physiology score II (SAPS II; range 
0–164, with higher scores indicating greater severity of 
illness) were documented. Patients were classified in the 
acute respiratory distress syndrome (ARDS) group if they 
were invasively ventilated and met the Berlin criteria for 
ARDS within the first 3  days after ICU admission [16]. 
Follow-up included ICU length of stay, in-hospital mor-
tality, day-28 (D28) mortality, day-90 (D90) mortality, as 
well as occurrence secondary infection based on recom-
mendation from Comité technique des infections noso-
comiales et des infections liées aux soins [17].
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Blood samples
Ethylene diamine tetraacetic acid (EDTA-)anticoagu-
lated blood was drawn five times during the first month 
after ICU admission: within the first 48 h after admission 
(Day 0: D0), between 72 and 96 h after admission (D3), 
between D7 and D9 (D7), between D12 and D15 (D12) 
and between D20 and D25 (D20). Blood was stored at 
4–8  °C and processed within 4  h after withdrawal. The 
numbers of available values for each immune param-
eter at each time point are presented in Additional file 1: 
Table S4.

Cytokine measurement
Whole blood was sampled on EDTA tubes and plasma 
was frozen at − 20 °C within 4 h following blood collec-
tion. Cytokine measurement was taken by batches after 1 
freeze/thaw cycle using standardized protocols fulfilling 
clinical and diagnostic laboratories accreditation require-
ments from the International Organization for Standard-
ization. Plasma concentrations of IL-6, TNF-α, IFN-γ and 
IL-10 were measured by Simpleplex® technology using 
ELLA instrument (ProteinSimple®, San Jose, CA), fol-
lowing manufacturer’s instructions. Plasma IFNα2 con-
centrations were determined by single-molecule Array 
(SIMOA®) on a HD-1 Analyzer (Quanterix) using a com-
mercial kit for IFN-α2 quantification (Quanterix, Lexing-
ton, Mass).

IFN‑stimulated genes (ISG) score calculation
Whole blood was collected on PAXgene blood RNA tubes 
(BD, Grenoble, France) for IFN signature and frozen at 
−  80  °C until RNA extraction. IFN score was obtained 
using nCounter® analysis technology (NanoString Tech-
nologies, Seattle, WA) by calculating the median of the 
normalized count of 6 ISGs using standardized protocols 
fulfilling clinical and diagnostic laboratories accreditation 
requirements from the International Organization for 
Standardization. As previously described, six interferon 
responsive genes were monitored: SIGLEC1 (sialic acid 
binding Ig like lectin 1), IFI27 (interferon alpha inducible 
protein27), IFI44L (interferon induced protein 44 like), 
IFIT1 (interferon induced protein with tetratricopeptide 
repeats 1), ISG15 (interferon-stimulated gene 15) and 
RSAD2 (radical S-adenosyl methionine domain-contain-
ing 2). Three references genes were also measured: ACTB 
(Actin beta), HPRT1 (hypoxanthine phosphoribosyl-
transferase 1) and POLR2A (RNA Polymerase II Subunit 
A) [18].

Flow cytometry
T lymphocyte subpopulation immunophenotyp-
ing was performed on an automated volumetric flow 

cytometer from Beckman Coulter (Aquios CL) as previ-
ously described [19]. Monocyte HLA-DR expression and 
B and NK immunophenotyping were performed using 
antibodies from Beckman-Coulter and BD Biosciences. 
The expression of monocyte HLA-DR was determined 
using the Anti-HLA-DR/Anti-Monocyte Quantibrite 
assay (BD Biosciences, San Jose, USA). A total number of 
antibodies bound per cell (AB/C) were quantified using 
calibration with a standard curve determined with BD 
Quantibrite phycoerythrin (PE) beads (BD Biosciences) 
as described elsewhere [20]. B and NK lymphocyte 
immunophenotyping was performed using lyophilized 
antibody panel from Beckman Coulter (Duraclone kit). 
Data were acquired on a Navios flow cytometer (Beck-
man Coulter, Hialeah, FL), and flow data were analyzed 
using Navios software (Beckman Coulter). Enumera-
tion of lymphocyte subpopulations as well as mHLA-DR 
measurement were performed using standardized proto-
cols fulfilling clinical and diagnostic laboratories accredi-
tation requirements from the International Organization 
for Standardization.

SARS‑CoV‑2 detection by semiquantitative PCR
Semiquantitative values of SARS-CoV-2 viral load 
in upper respiratory samples at ICU admission were 
retrieved from clinical files for 40 patients. These results 
were obtained from accredited reference laboratory 
using RT-PCR technique with validated commercial kits 
(COBAS® SARS-CoV-2, Roche Diagnostics or reference 
technique from Pasteur Institute) based on recommen-
dations from the Societé Française de Microbiology after 
evaluation of analytical performances of the techniques 
[21]. Patients were classified into three groups accord-
ing to SARS-CoV-2 PCR Ct values reflecting respiratory 
viral load at admission (1) A significant viral excretion (ct 
value ≤ 33) subsequently divided into two groups: high 
viral load (Reference Ct value < 27, n = 12) and medium 
viral load (Reference Ct value = [27–33], n = 21); (2) a 
nonsignificant viral excretion corresponding to a low 
viral load (Reference Ct value = [33–37], n = 7).

Statistical analysis
Data are presented as numbers and percentage (qualita-
tive variables) and medians and 25th/75th percentiles 
(quantitative variables). Chi square or Fisher’s exact test 
were used for qualitative variables assessment. Quanti-
tative variables were compared with Mann–Whitney U 
test. For all pairs of immune parameters, Spearman’s rho 
correlation coefficients were estimated and summarized 
in a correlation matrix. Kaplan–Meier survival curves 
were calculated in groups of patients with or without 
ARDS. The p-value of the log-rank test is given. The level 
of significance was set at 5%. Data were analyzed using 
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Graphpad Prism version 5.03 (Graphpad Software, La 
Jolla, USA).

Results
Results on admission
Sixty-four patients with confirmed pulmonary SARS-
CoV-2 infection admitted to three ICUs of Lyon Univer-
sity Hospitals (Hospices Civils de Lyon, Lyon, France) 
were included between March 16 and May 15, 2020. 
This period corresponded to the first surge in COVID-
19 cases in France. Clinical characteristics are presented 
in Table  1. Median duration of symptoms before ICU 
admission was 7 [4–11] days. Forty patients (63%) pre-
sented with ARDS requiring mechanical ventilation 
within the first 3 days after ICU admission; 23/24 (96%) 
patients without ARDS needed noninvasive ventilation 
(including high flow nasal oxygenotherapy) for respira-
tory dysfunction/failure. Flowchart and the number of 
samples by time point are provided in Additional file  1: 
Figure S1A. As assessed after 28  days, mortality in this 
cohort was 22% with contrasting results between patients 
without ARDS (no mortality) and with ARDS (35%) 
(Additional file 1: Figure S1B).

On admission, critically ill COVID-19 patients pre-
sented with elevated plasma levels of both pro- and anti-
inflammatory cytokines (Additional file  1: Table  S1). 
Marked lymphopenia (median = 653 cells/µL) affect-
ing all lymphocyte subsets (e.g., median CD4 + T lym-
phocytes = 298 cells/µL, with CD4/CD8 ratio in normal 
range) [10, 11] and moderately decreased mHLA-DR 
(median = 11,125 AB/C, control values > 13,500 AB/C) 
[22] were also hallmarks of initial critically ill COVID-
19 patients’ immune profile. Collectively, these results 
are in agreement with previously published values in 
ICU cohorts [9, 23, 24]. Interestingly, we observed that 
IFN-I response was induced in the majority of these 
patients as we measured elevated levels of plasma IFNα2 
(median = 385 fg/mL, control values < 20 fg/mL) and ISG 
score (median = 40, control values < 2.3). These concen-
trations were consistent with the previously published 
results in cohorts of critically ill patients [12]. To note, 
for these inaugural immune parameters, no differences 
in their concentrations were observed based on delay 
between first symptoms and sampling time (data not 
shown).

When correlating immune parameters at ICU admis-
sion (Fig. 1a), significant correlations were noted between 
increased pro-inflammatory IL-6 concentration and 
increased TNF-α and IL-10 levels (positive correlations), 
and decreased T lymphocyte number (negative correla-
tion). No correlation was observed between IL-6 and 
IFNα2 levels or ISG score. In addition, initial increased 
IL-6 concentration was correlated with initial severity 

as measured by sepsis-related organ failure assessment 
(SOFA) score and with intensity of pulmonary dysfunc-
tion as measured by the ratio between partial pressure of 
oxygen in arterial blood  (PaO2) and fraction of inspired 
oxygen  (FiO2)  (PaO2/FiO2 ratio, Fig.  1b). Finally, when 
classifying patients into three groups according to semi-
quantitative levels of viremia measured in upper respira-
tory samples, the group of patients with the highest viral 
load presented not only with higher plasma IL-6 concen-
trations at admission but also with a higher SOFA score 
and increased mortality (33%, Additional file  1: Figure 
S2). This suggests that the immune response is positively 
associated with viral burden and that failure to resolve 
both aspects may underlie severity [8].

Comparison between ARDS and non‑ARDS patients
Considering the significant difference between ARDS and 
non-ARDS groups regarding D28 mortality (Additional 
file  1: Figure S1B), we then compared immune profiles 
between these 2 groups of patients (Fig.  2, Additional 
file 1: Table S2). As most non-ARDS patients presented 
with a short ICU stay of less than 1  week, we focused 
on the first three time points after ICU admission. Non-
ARDS patients presented with a different immune profile 
than patients with ARDS, including higher lymphocytes 
count and mHLA-DR expression and lower cytokine 
levels and severity scores. Except for IL-6 and TNF-α, 
these differences persisted over the first week of follow-
up (Fig.  2). We observed no difference between ARDS 
and non-ARDS patients regarding plasma IFNα2 meas-
urements or ISG score (Fig. 2). The correlation between 
these two parameters was statistically significant (r = 0.7, 
p < 0.0001). In addition, we observed a rapid decrease 
of IFN-I markers after ICU admission in both groups. 
This shows that IFN-I response was induced in critically 
ill COVID-19 patients and efficient in activating down-
stream genes. However, the intensity of this response was 
not impacted by the development of pulmonary dysfunc-
tion or disease severity upon ICU admission.

Comparison between survivors and non‑survivors 
among ARDS patients
We next focused on ARDS patients who presented with 
a prolonged ICU length of stay to evaluate immune 
profiles in regard with D28 mortality during a 3-week 
follow-up (Fig.  3, Additional file  1: Table  S3). Clinical 
characteristics of survivors and non-survivors are pre-
sented in Table 2. Surprisingly, we did not observe any 
difference between survivors and non-survivors regard-
ing the majority of immune parameters. In this cohort, 
survivors and non-survivors presented with apparent 
common immune responses mixing gradual return 
to normal ranges of cellular markers (mHLA-DR, 
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lymphocyte count) and progressive decrease of 
cytokines levels including IFNα2 (and related ISG 

score). Only plasma TNF-α presented with a specific 
kinetic as it was the only cytokine to slowly rise during 

Table 1 Clinical characteristics of critically ill patients with COVID‑19 at ICU admission

The results are shown as medians and interquartile ranges [Q1–Q3] for continuous variables or numbers and percentage for categorical variables. Patients were 
separated into two groups based on presence of acute respiratory distress syndrome (ARDS) according to Berlin definition during the first 72 h after admission. Sepsis-
related organ failure assessment (SOFA) and simplified acute physiology score II (SAPS II) scores were calculated during the first 24 h after intensive care unit (ICU) 
admission. Data were compared using nonparametric Mann–Whitney test for continuous variables or Fisher’s exact test for categorical variables

p values inferior to 0.05 are highlighted in bold

All patients (n = 64) ARDS (n = 40) No ARDS (n = 24) p value

Demographics

 Age 65 [52–72] 66 [57–72] 55 [43–72] 0.0738

 Gender 51 (80%) 36 (90%) 15 (63%) 0.0116
 Body mass index (kg/m2) 28 [26–32] 29 [26–34] 28 [25–30] 0.2124

 Body mass index > 30 kg/m2 23 (36%) 17 (43%) 6 (25%) 0.1874

Comorbidities

 Diabetes 16 (25%) 11 (25%) 5 (21%) 0.7693

 Comorbidities 0.2979

  0 36 (56%) 20 (50%) 16 (67%)

  ≥ 1 28 (44%) 20 (50%) 8 (33%)

 Charlson score 0 [0–2] 1 [0–2] 0 [0–1] 0.0002
Admission symptoms

 Delay between first symptoms (Days) 7 [4–11] 7 [4–10] 8.5 [7–11] 0.2055

 Fever 52 (81%) 34 (85%) 18 (75%) 0.3414

 Cough 42 (66%) 24 (60%) 18 (75%) 0.2814

 Dyspnea 40 (63%) 28 (70%) 12 (50%) 0.1208

 Diarrhea 18 (28%) 10 (25%) 8 (33%) 0.5691

 Diffuse pain 13 (20%) 7 (18%) 6 (25%) 0.5300

 Altered general status 44 (69%) 24 (60%) 20 (83%) 0.0584

 Other 28 (44%) 16 (40%) 12 (50%)

Severity scores

 SOFA score 4 [2–8] 8 [4–9] 2 [2, 3] < 0.0001
 SAPS II score 34 [26–45] 40 [32–54] 27 [21–33] < 0.0001
  PaO2/FiO2 at admission 145 [92–191] 132 [95–166] 230 [83–298] 0.0152

Antiviral therapy

 Hydroxychloroquine 35 (55%) 20 (50%) 15 (63%) 0.4381

 Lopinavir/ritonavir 5 (8%) 3 (8%) 2 (8%) > 0.9999

 Lopinavir/ritonavir + interferonβ 5 (8%) 4 (10%) 1 (4%) > 0.9999

 Remdesivir 1 (2%) 1 (3%) 0 (0%) 0.5238

Organ support

 Mechanical ventilation 63 (98%) 40 (100%) 23 (96%) 0.3750

 Noninvasive ventilation 23 (36%) 0 (0%) 23 (100%)  < 0.0001
 Invasive ventilation 40 (63%) 40 (100%) 0 (0%)  < 0.0001
 Vasoactive drugs 24 (38%) 24 (60%) 0 (0%)  < 0.0001
 Renal replacement therapy 15 (23%) 15 (38%) 0 (0%) 0.0004

Follow‑up

 Days in ICU 10 [4–30] 21 [11–58] 4 [2–7] 0.003
 Days in hospital 21 [11–56] 33 [19–71] 13 [8–21] < 0.0001
 Hospital mortality 19 (30%) 19 (48%) 0 (0%) < 0.0001
 Day‑28 mortality 14 (22%) 14 (35%) 0 (0%) < 0.0001
 Day‑90 mortality 19 (30%) 19 (48%) 0 (0%) < 0.0001
 Secondary infections 32 (50%) 30 (75%) 2 (8%) < 0.0001
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the follow-up. Moreover, its levels were significantly 
higher in non-surviving patients compared with survi-
vors at all time points. This may reflect the high rates 
of secondary infections occurring in ARDS COVID-
19 patients [25–27]. For example, in this cohort, 81% 
of survivors and 64% of non-survivors ARDS patients 
developed a secondary infection during their ICU 

stay. The constant elevation of neutrophil count dur-
ing the whole monitoring in ARDS patients probably 
also reflect such re-stimulation of the immune system 
in response to secondary infectious challenges (Addi-
tional file  1: Table  S3). Last, we observed that non-
survivors exhibited a significant rise in CD4/CD8 ratio 
compared with survivors (Fig. 3). This was mainly due 
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Fig. 1 Correlation matrix of immune parameters at ICU admission. Immune parameters were measured at inclusion in 64 critically ill patients with 
COVID‑19, and correlations were calculated using Spearman correlation tests. a Results are presented as a correlation matrix. Spearman correlation 
coefficients are plotted. Cells were colored according to the strength and trend of correlations (shades of red = positive, shades of green = negative 
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Correlation results for non‑independent parameters (i.e., lymphocyte subpopulations) are not presented. b Correlations between plasma 
interleukin‑6 concentration at inclusion and sepsis‑related organ failure (SOFA) score or  PaO2/FiO2 ratio measured during first 24 h after admission 
are shown (n = 58). Corresponding logarithmic trendlines are shown
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to the slower recovery of CD8+T cell numbers in this 
group (Additional file 1: Table S3).

Discussion
Collectively, the present results provide an unbiased 
description of COVID-19 immuno-inflammatory 
derangements in critically ill COVID-19 patients focus-
ing on ARDS patients who exhibit the highest mortality. 
We noted that, upon ICU admission, immune response 

to SARS-CoV-2 infection presents with similarities with 
bacterial sepsis [28, 29]. These include (1) severe lym-
phopenia affecting all lymphocyte subsets, (2) moder-
ately decreased mHLA-DR and (3) moderately increased 
plasma cytokine levels showing at the same time both 
inflammatory (IL-6) and immunosuppressive (IL-10) 
responses. In addition, we noticed increased plasma 
IFNα2 levels and ISG score indicating the occurrence 
of an IFN-I response. This agrees with increased CD169 
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expression on monocytes (aka siglec-1, one of the six 
genes of ISG) in COVID-19 patients upon ICU admission 
[30]. Thus, the present results do not support a poten-
tially altered IFN-I response in the majority of COVID-
19 patients upon ICU admission. However, as IFNα2 
concentrations reported elsewhere were higher in less 
severe/moderate patients (between 1000 and 5000  fg/
mL) [12]; we cannot exclude that the incapacity to mount 

a full type-I IFN response immediately following SARS-
CoV2 infection in some patients may have led to their 
worsening and ultimately to ICU admission.

These abnormalities (along with decreased plasmacy-
toid cells [12, 14, 31]) are reminiscent of the process of 
age-acquired immunosuppression (also called immu-
nosenescence) observed in elderly people who are, by far, 
the primary victims of COVID-19. We may hypothesize 
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that evolution of COVID-19 toward increasing severity 
in this population of old patients is mainly a consequence 
of this altered immune status [32–35]. For example, pre-
vious studies showed the negative correlation between 
lymphocytes count and pulmonary viral load [36, 37] 
while, elsewhere, the magnitude of pulmonary viral 
load was repeatedly associated with increased mortal-
ity [8, 38–43]. In the present work, this is also illustrated 
by the association between nasopharyngeal viral load 
and increased mortality, SOFA and IL-6 levels upon 
admission.

Our results emphasize that ARDS occurrence 
appears to be an important driver of mortality dur-
ing COVID-19 progression in ICU patients [1]. In the 
present cohort, mortality occurred only in the group 
of patients with ARDS while all ICU patients without 
ARDS were released alive from the ICU. This observa-
tion makes a strong priority for avoiding progression 
toward ARDS in COVID-19 patients. After ICU admis-
sion, inflammatory response as well as IFN-I activity 
progressively normalized while immunological cellular 
parameters remained below references ranges. Thus, as 

seen in bacterial sepsis, ARDS occurrence in COVID-
19 patients may secondarily amplify COVID-19-in-
duced immune alterations either by direct cytotoxic 
effect and/or by negative anti-inflammatory feedbacks 
[28, 29, 32]. This leads to the development of a torpid 
immunosuppressed status in ARDS patients which may 
last several weeks [44].

In such critically ill patients with prolonged ICU stays, 
this immunosuppressed status presents with deleteri-
ous consequences. First, it probably participates in the 
long duration necessary to eradicate SARS-CoV-2 from 
the lung in invasively ventilated patients as described 
elsewhere [43]. For example, it was shown that the viral 
shedding in lower respiratory tract lasted almost 30 days 
in median in critically ill COVID-19 patients [38, 42]. 
Second, it most likely contributes to the very high rates 
of nosocomial infections reported not only in the pre-
sent study (50%) but also in many others [26, 27, 45]. In 
particular, COVID-19 is characterized by astonishing 
elevated rates of secondary aspergillosis [46–48], a fun-
gal disease usually seen in the most immunosuppressed 
patients. Such secondary infectious events may explain 

Table 2 Clinical characteristics of patients with COVID‑19 with ARDS according to status at D28

The results are shown as medians and interquartile ranges [Q1–Q3] for continuous variables or numbers and percentage for categorical variables. COVID-19 patients 
with ARDS were separated in two groups based on status at D28 after admission. Sepsis-related organ failure assessment (SOFA) and simplified acute physiology score 
II (SAPS II) scores were calculated during the first 24 h after admission. Patients were classified in ARDS severity groups according to Berlin criteria. ICU: intensive care 
unit. Data were compared using nonparametric Mann–Whitney test for continuous variables or Fisher’s exact test for categorical variables

p values inferior to 0.05 are highlighted in bold

Survivors (n = 26) Non‑survivors (n = 14) p value

Demographics

 Age 65 [55–70] 67 [58–78] 0.3076

 Gender 23 (88%) 13 (93%) > 0.9999

 Body mass index (kg/m2) 30 [27–35] 28 [24–30] 0.0960

 Body mass index > 30 kg/m2 14 (54%) 3 (21%) 0.0921

 Delay between first symptoms (Days) 7 [4–12] 5 [4–9] 0.1909

Comorbidities

 Comorbidities 0.3202

  0 15 (58%) 5 (36%)

  ≥ 1 11 (42%) 9 (64%)

 Charlson score 0 [0–2] 2 [0–2] 0.1281

Severity scores

 SOFA score 8 [3–10] 8 [4–8] 0.7937

 SAPS II score 41 [31–52] 40 [33–59] 0.5893

  PaO2/FiO2 at admission 150 [94–169] 116 [94–162] 0.2993

 ARDS severity mild 1 (4%) 1 (7%) > 0.9999

 Moderate 18 (69%) 9 (64%) > 0.9999

 Severe 7 (27%) 4 (29%) > 0.9999

Follow‑up

 Days in ICU 40 [16–76] 11 [6–20] 0.0008
 Days in hospital 64 [38–77] 15 [7–20] < 0.0001
 Secondary infections 21 (81%) 9 (64%) 0.2777
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the persistently elevated TNF-α levels accompanied by 
increased neutrophil count in COVID-19 patients with 
ARDS and in non-survivors [25]. This suggests that in 
this second step of the disease, i.e., once ARDS occurred, 
immunostimulation could represent a sound approach to 
try to promote immune recovery and prevent secondary 
bacterial and fungal infections.

The most striking result of the present study was to 
observe similar altered immune response in both sur-
viving and non-surviving ARDS patients over a 3-week 
follow-up. Thus, the duration of this COVID-19 induced 
immunosuppressed status remains to be defined. While 
a recent study observed that the onset of T cell recovery 
in COVID-19 ICU patients with ARDS started on day 35 
[49], the 3-week ICU follow-up performed in this study 
may have been too short to distinguish immune trajecto-
ries according to outcomes in COVID-19 ARDS patients. 
Of note, in this latter work [49], patients with unfavora-
ble outcome presented with increased CD4/CD8 ratio as 
observed in the present study. We may thus hypothesize 
that, in ARDS patients, the lack of CD8+T lymphocyte 
recovery could be a poor prognosis factor [35, 50].

Being exploratory, our work presents with limitations. 
First, SARS-CoV2 viral load could not be regularly moni-
tored. Further studies should include strict quantitative 
evaluation of viral load with standardized tools through-
out the monitoring to decipher the duration of viral 
persistence in the lung and its correlation with immune 
response and outcomes. Second, functional testing of 
immune cells was not performed. If available, this should 
be incorporated in addition with phenotypic markers of 
immune response [51–53]. This is especially true regard-
ing CD8+T cell functionality in response to SARS-CoV-2 
peptides that may help to understand which comes first: 
CD8 efficiency (and recovery) or virus disappearance. 
Three, we did not include less severe COVID-19 cohorts 
in order to explore (with single-molecule array—SIMOA-
technology) the magnitude of IFN-I response in patients 
who correctly eradicated the virus. Last, at the time of 
first COVID-19 surge in France (corresponding to the 
patients reported here), optimized care protocols (oxy-
gen, heparin, dexamethasone) were not applied. There-
fore, some observations need to be confirmed under the 
angle of current clinical practice.

Conclusions
In sum, upon patients’ admission to the ICU, pulmo-
nary virus spread is accompanied by an inflamma-
tory response characterized by moderately increased 
circulating levels of typical inflammatory cytokines 
(e.g., IL-6 levels usually < 100  pg/mL) [54–57]. At this 
stage, no obvious observation of altered IFN-I response 
could be reported. If not appropriately controlled by 

the immune system [33], virus replication in lungs and 
related inflammation may progressively lead to ARDS 
which appears to be one driver of mortality. Following 
this acute response leading to pulmonary dysfunction, 
inflammatory response rapidly declined. As observed in 
bacterial sepsis [28, 29], patients subsequently present 
with a marked delayed immunosuppression. This state 
of immunosuppression likely prevents efficient virus 
eradication from the lung, facilitates virus spread out-
side lungs as illustrated by the deleterious association 
of persistent viremia and mortality [58–62]. This also 
probably favors the occurrence of frequent secondary 
infections with opportunistic pathogens [26, 27, 47]. All 
these elements explain the long ICU stay of invasively 
ventilated COVID-19 patients. In the current 3-week 
monitoring of ARDS patients, we did not identify any 
immunological parameter that significantly associated 
with mortality. Thus, the better understanding of the 
mechanisms which finally permit survival after several 
weeks in ICU is a crucial issue for next studies.
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