

Increased mortality in HIV/HCV-coinfected compared to HCV-monoinfected patients in the DAA era due to non-liver-related death

Mathieu Chalouni, Stanislas Pol, Philippe Sogni, Hélène Fontaine, Karine Lacombe, Jean Marc-Lacombe, Laure Esterle, Celine Dorival, Marc Bourlière, Firouzé Bani-Sadr, et al.

▶ To cite this version:

Mathieu Chalouni, Stanislas Pol, Philippe Sogni, Hélène Fontaine, Karine Lacombe, et al.. Increased mortality in HIV/HCV-coinfected compared to HCV-monoinfected patients in the DAA era due to non-liver-related death. Journal of Hepatology, 2021, 74 (1), pp.37 - 47. 10.1016/j.jhep.2020.08.008 . inserm-03332406v2

HAL Id: inserm-03332406 https://inserm.hal.science/inserm-03332406v2

Submitted on 30 Aug2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Increased mortality in HIV/HCV-coinfected compared to HCVmonoinfected patients in the DAA era due to non-liver-related death Mathieu Chalouni ¹, Stanislas Pol ², Philippe Sogni ², Hélène Fontaine ², Karine Lacombe ³⁻⁴, Jean-Marc-Lacombe ⁵, Laure Esterle ¹, Celine Dorival ³, Marc Bourlière ⁶, Firouzé Bani-Sadr ⁷, Victor de Ledinghen ⁸⁻⁹, David Zucman ¹⁰, Dominique Larrey ¹¹, Dominique Salmon¹²⁻¹³, Fabrice Carrat * ^{3,14}, Linda Wittkop* ^{1,15} for the ANRS CO13 HEPAVIH and ANRS CO22 HEPATHER cohort study groups†

Affiliations

¹ Univ. Bordeaux, ISPED, Inserm, Bordeaux Population Health Research Center, team MORPH3EUS, UMR 1219, CIC-EC 1401, F-3300 Bordeaux, France

² Université de Paris ; Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Département d'Hépatologie ; INSERM U-1223 et ICD, Institut Pasteur, Paris, France

³ Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, F75012, Paris, France

⁴ APHP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris, F75012, France

⁵ INSERM Transfert, Paris, France

⁶ Department of Hepatology and Gastroenterology, Hôpital Saint Joseph, Marseille, France

⁷ Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Robert Debré Hospital, University Hospital, Reims, France ⁸ Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, Service d'Hépatologie, Bordeaux, France

⁹ INSERM U1053, Université de Bordeaux, Bordeaux, France

¹⁰ Hôpital Foch, service de médecine interne, Suresnes, France

¹¹ Service des maladies de l'appareil digestif, Hôpital Saint Eloi, IBR- Inserm Montpellier, France

¹² Université de Paris, Paris, France

¹³ Service Maladies infectieuses et tropicales, AP-HP, Hôpital Cochin Hôtel Dieu, Paris,

France

¹⁴ AP-HP, Hôpital Saint-Antoine, Unité de Santé Publique, Paris, France

¹⁵ CHU de Bordeaux, Pôle de santé publique, F-33000 Bordeaux, France

* Equal contribution

† The ANRS CO13 HEPAVIH and ANRS CO22 HEPATHER cohort study groups are listed in the Acknowledgements

Corresponding author:

Linda Wittkop

Address: 146 rue Léo Saignat, CS61292, 33076 Bordeaux cedex, France

Telephone number: +33 (0)5 57 57 45 26

Fax number: 33 (0)5 56 24 00 81

Electronic mail address: linda.wittkop@u-bordeaux.fr

Keywords: HIV co-infection – DAA treatment – SVR – death – non-liver-related cancers – liver-related events

Word count: 5982/6000

Number of figures and tables: 6

Financial support: This work was supported by the French national Agency for Research on Aids and Viral Hepatitis (ANRS: France Recherche Nord & Sud Sida-HIV Hépatites)

Conflict of interest statement:

Dr Stanislas Pol has received consulting and lecturing fees from Bristol-Myers Squibb, Janssen, Gilead, Roche, MSD and Abbvie, Biotest, Shinogi, ViiV and grants from Bristol-Myers Squibb, Gilead, Roche and MSD

Dr Philippe Sogni has received consulting and lecturing fees from AbbVie, Genfit, Gilead, Janssen, Mayoly-Spindler, MSD

Dr Hélène Fontaine has received lecturing fees from Abbvie Gilead and MSD

Dr Dominique Salmon has received lecturing fees from Abbvie and Gilead

The other authors report no conflicts of interest.

Authors' contributions

Data collection: Stanislas Pol, Philippe Sogni, Hélène Fontaine, Karine Lacombe, Marc Bourlière, Firouzé Bani-Sadr, Victor de Ledinghen, David Zucman, Dominique Larrey, Dominique Salmon

Data curation: Jean-Marc-Lacombe, Laure Esterle, Celine Dorival

Formal analysis: Mathieu Chalouni, Linda Wittkop

Funding acquisition: Stanislas Pol, Philippe Sogni, Hélène Fontaine, Dominique Salmon, Fabrice Carrat, Linda Wittkop

Methodology: Mathieu Chalouni, Fabrice Carrat, Linda Wittkop

Project Administration: Stanislas Pol, Philippe Sogni, Hélène Fontaine, Laure Esterle, Céline Dorival, Dominique Salmon, Fabrice Carrat, Linda Wittkop

Writing - original draft: Mathieu Chalouni, Fabrice Carrat, Linda Wittkop

Writing – review & editing: Mathieu Chalouni, Stanislas Pol, Philippe Sogni, Hélène Fontaine, Karine Lacombe, Jean-Marc-Lacombe, Laure Esterle, Celine Dorival, Marc Bourlière, Firouzé Bani-Sadr, Victor de Ledinghen, David Zucman, Dominique Larrey, Dominique Salmon, Fabrice Carrat, Linda Wittkop

Clinical trial number:

ANRS CO13 HEPAVIH: NCT03324633

ANRS CO22 HEPATHER: ClinicalTrials.gov Identifier: NCT01953458

Data availability statement:

The ANRS CO13 HEPAVIH cohort is a French nationwide cohort sponsored by the ANRS (France REcherche Nord&sud Sida-hiv Hepatites). Data is owned by ANRS and there are also legal restrictions to share data publicly. Nonetheless, data can be accessed upon demand to the scientific committee and the ANRS which can allow a contractual access for collaboration purposes (laure.esterle@u-bordeaux.fr/secretariat-clinique @anrs.fr). Applicants will be asked to complete a Research Application Form specifying details for their planned study which will then be reviewed by the ANRS CO13 Hepavih Scientific committee. The ANRS CO13 Hepavih cohort is keen to promote collaboration among researchers and to see our unique co-

 infected HIV-HCV patients database and biobank used in studies which meet our ethics and consenting process.

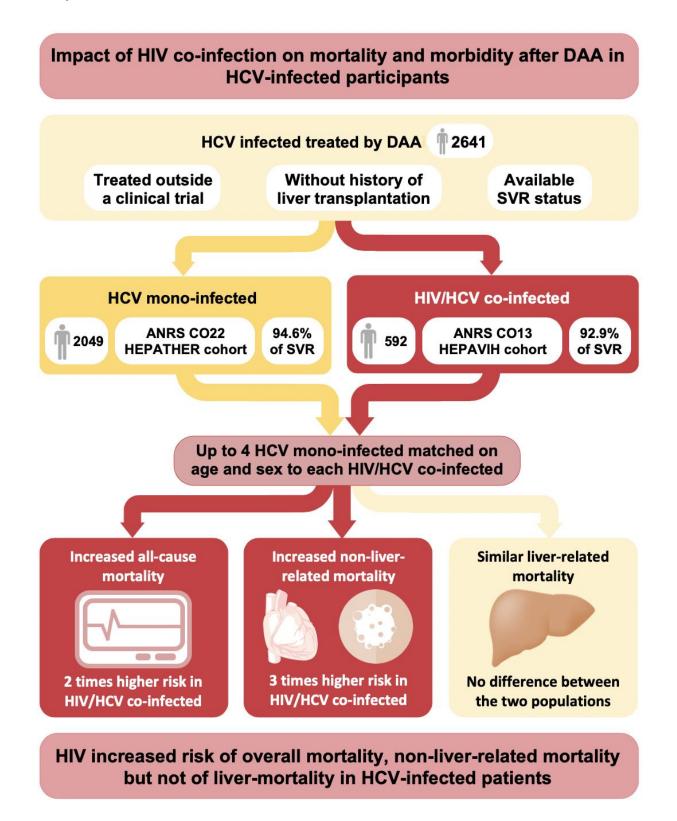
ABSTRACT

Background & Aims: Direct acting antivirals (DAA) lead to high sustained virological response (SVR) rates and decreased the risk of disease progression. We compared SVR rates and all-cause, liver- and non-liver-related deaths, liver-related events and non-liver-related cancers in HIV/HCV co-infected and HCV mono-infected participants from two French cohort studies after initiation of DAA treatment.

Methods: Up to 4 HCV mono-infected participants from the ANRS CO22 HEPATHER cohort were matched on age and sex to each HIV/HCV co-infected from the ANRS CO13 HEPAVIH cohort; both are nationwide, prospective, multicentre and observational. Participants initiated DAA between March 2014 and December 2017. Cox proportional Hazards models adjusted on age, sex, duration since HCV diagnosis, HCV transmission routes, HCV genotypes, cirrhosis, tobacco, alcohol consumption, and SVR (time dependent) were used.

Results: 592 HIV/HCV co-infected and 2049 HCV mono-infected participants were included. Median age was 53.3 years (interquartile range: 49.6-56.9) and 52.9 years (49.6; 56.7), and 1498 (73.1%) and 436 (73.6%) were men, and 159 (28.8%) and 793 (41.2%) were cirrhotic, respectively. SVR was observed in 92.9% and 94.6%, respectively. HIV co-infection was associated with higher risk of all-cause death (hazard ratio [HR] 1.93; 95% confidence interval [CI] 1.01-3.69), non-liver-related death (HR 2.84; 95%CI 1.27-6.36) and non-liver-related cancer (HR 3.26; 95%CI 1.50-7.08), but not with liver-related-death (HR 1.04; 95%CI 0.34-3.15) or liver-related events (HR 0.66; 95% CI 0.31-1.44).

Conclusion: After DAA treatment, HIV co-infected had similar SVR rates and risk of liver-related deaths and events compared to HCV mono-infected but higher risk of all-cause and non-liver-related deaths and non-liver-related cancers.


Abstract (259 words/275 words allowed)

Lay summary: We compared the risk of several clinical events in participants infected by human immunodeficiency virus and hepatitis C virus with those infected with hepatitis C virus alone, matched on age and sex, after treatment with contemporary direct acting antivirals. We found a higher risk of all-cause deaths, non-liver-related deaths and non-liver-related cancers in participants co-infected with the human immunodeficiency virus and hepatitis C virus, and no differences for the risk of liverrelated deaths or events.

Highlights:

- Similar rates of SVR between HIV/HCV co-infected and HCV mono-infected participants
- Higher risk of all-cause deahts, non-liver-related deaths and cancers in HIV/HCV co-infected
- Similar risk of liver-related deaths and liver-related events in both populations

Graphical abstract:

Hepatitis C virus (HCV) infection can lead to several liver-related (e.g liver decompensation, hepatocellular carcinoma [HCC], liver-related deaths)¹ and non-liverrelated (e.g cardiovascular², non-liver cancer³, non-liver-related deaths⁴) events. Owing to similar transmission routes, HCV co-infection is common in patients infected with human immunodeficiency virus (HIV)⁵. Among HIV/HCV co-infected patients, risk factors for HCV-related events included detectable HIV viral load and low levels of CD4 counts^{1,6}. However, in the era of combination antiretroviral therapy risk, HIV- and HCVrelated complications have decreased substantially^{7,8}. Direct-acting antivirals (DAA) lead to a sustained virological response (SVR; corresponding to HCV cure) in more than 90% of treated patients, both in HCV mono-infected patients and in HIV/HCV coinfected patients ^{9,10}. HCV cure positively affects the course of HCV infection, both in HCV mono-infected and in HIV/HCV co-infected patients^{11–17}. Nevertheless, disease evolution after DAA treatment in HIV/HCV co-infected compared with HCV monoinfected patients has rarely been studied. Our main objectives were to compare SVR rates as well as risk of all-cause death, liver-related and non-liver-related deaths, liverrelated events, and non-liver-related cancers, between HIV/HCV co-infected and HCV mono-infected after DAA initiation using data from two large, prospective, nationwide French cohort studies.

POPULATION AND METHODS

Patients

HIV/HCV co-infected participants from the ANRS CO13 HEPAVIH cohort (ClinicalTrials.gov Identifier: NCT03324633) and HCV mono-infected participants from

the ANRS CO22 HEPATHER cohort (ClinicalTrials.gov Identifier: NCT01953458) were included. Both are multicentre, prospective, nationwide French cohort studies.

The ANRS CO13 HEPAVIH cohort started in 2005 and included HIV infected adults with past or present HCV infection (2005-2010). From 2011, patients treated with first-generation protease inhibitor HCV treatments, and from 2014 onwards patients treated by any anti-HCV treatment, were eligible for enrolment. The main objectives of the study are to characterize the natural history of HCV infection, to identify factors associated with the development of liver complications, and to study the interactions between HIV and HCV. From 2011 onwards, one of the main objectives was to study the efficacy and safety of anti-HCV treatments in everyday clinical practice.

The ANRS CO22 HEPATHER cohort started in 2012 and included participants with active or inactive hepatitis B virus or past or present HCV infection. The main objectives of the study are to quantify the clinical efficacy and safety of new hepatitis treatments in everyday clinical practice. The main exclusion criteria are HIV co-infection and ongoing treatment for HCV at inclusion. We included only participants with chronic HCV infection in the current analysis.

Follow-up visits are scheduled annually in both studies with supplementary visits during anti-HCV treatment. Participants with cirrhosis in the ANRS CO13 HEPAVIH cohort attend a supplementary visit every 6 months.

Written informed consent was obtained from all participants. Both studies followed the ethical principles laid out by the World Medical Association (Declaration of Helsinki) and were approved by an Institutional Review board (Comité de Protection des Personnes (CPP) IIe de France III, Paris, France – ANRS CO13 HEPAVIH and ANRS CO22 HEPATHER).

 Participants treated with DAA (with or without ribavirin and/or peg-interferon) between 1st March 2014 and 31st December 2017, who were not enrolled in a clinical trial, with no history of liver transplantation and with an available SVR status were included in the present analysis. Participants with previous liver-related events or non-liver-related cancers were excluded from the analyses that assessed the risk of these events. Baseline was defined as the date of DAA initiation.

For each co-infected participant, up to 4 HCV mono-infected participants were matched on age (\pm 3 years) at treatment initiation and sex.

Outcomes

The primary study outcomes were SVR rates and the time between baseline and the occurrence of a death from any cause, liver-related death, non-liver-related death, liver-related events, and non-liver-related cancers. Participants were classified as having reached SVR if they had undetectable HCV RNA at least 12 weeks after the end of DAA treatment. Participants with detectable HCV RNA at any time after the end of DAA treatment were classified as not having reached SVR. Cause of death was validated by an adjudication committee. Liver-related death was defined as that due to a liver-decompensation (liver encephalopathy, hepatorenal syndrome, oesophageal varices bleeding, oedemato-ascites decompensation, icterus), HCC or liver transplantation. Non-liver-related death was defined as death from any other cause. Liver-related events were defined as the occurrence of a liver decompensation, liver cancer (HCC or cholangiocarcinoma), liver transplantation or liver-related death. Non-liver-related cancer was defined as the occurrence of any non-liver-related cancer. Participants were followed until death (or a non-liver-related cancer or a liver-related event) or last follow-up visit, whichever came first.

Statistical analysis

SVR rates were compared between HIV/HCV co-infected and HCV mono-infected patients according to DAA treatment (with/without ribavirin) overall, and stratified by sex, cirrhosis, HCV genotype and prescribed HCV treatment duration (12 or 24 weeks). Risk of all-cause death, liver-related death, non-liver-related death, liver-related events and non-liver-related cancers between HIV/HCV co-infected and HCV mono-infected patients was compared using cause-specific Cox proportional hazard models adjusted on age at treatment initiation, sex, alcohol and tobacco consumption (both defined as never, past or current), time since first HCV seropositivity, HCV transmission route (drug use, sexual, transfusion, unknown, other), HCV genotype, SVR (as a timedependent variable) and cirrhosis. Cirrhosis was defined by cohort-specific algorithms. For HIV/HCV co-infected participants, cirrhosis was defined as: an F4 classification on the Metavir Score by liver biopsy at any time before DAA treatment; or liver-stiffness \geq 12.5 kPa (assessed by FibroScan) in a 3-month window before the initiation of DAA; or a fibrosis-4 index value ≥ 3.25 in a 3-month window before DAA initiation for participants without an available liver-stiffness value. For HCV mono-infected participants, cirrhosis was defined as a platelet count ≤ 150,000/ml or a prothrombin time \leq 70%. These criteria were validated in patients who had been classified as having cirrhosis using other techniques ≤ 1 year before, and up to 3 months after, the time of evaluation¹⁵. Participants who died from a cause other than that studied were censured at time of death.

Confounding factors were identified using directed acyclic graph (DAG) methodology. We estimated predicted event probabilities over time for each event according to parameters estimated by the Cox models described above for HIV/HCV co-infected and HCV mono-infected participants. Therefore, we set all co-variables used in the model as follows: mean observed age and time since first seropositivity, male sex,

infected by HCV genotype 1 due to drug use, non-consumers of alcohol and tobacco and without cirrhosis. We compared participants with at least 1 missing datum for variables included in the analysis to participants without missing data. Assuming data were missing at random, missing data for explanatory variables included in the models were imputed by multiple imputation methods using chained equations in R 3.6.2 software using mice package ¹⁸. Ten tables were generated by 10 iterations. Quantitative variables were imputed using linear models and qualitative variables by logistic regression or multinomial regression, as appropriate. Imputation models included history of each event and of anti-HCV treatment, class and duration of DAA treatment, platelets and albumin values, body mass index (BMI), and diabetes, in addition to variables listed above and included in the multivariable models for the main analyses. Normality of quantitative variables included in the imputation model was checked graphically. As a sensitivity analysis, we studied the effect of HIV co-infection on the risk of all-cause, liver-related and non-liver-related death, liver-related events and non-liver-related cancer in complete case analysis. Cumulative incidences of each event were estimated using the Fine and Gray methodology ¹⁹ in a sensitivity analysis.

RESULTS

Baseline characteristics

We included 592 HIV/HCV co-infected and 2049 HCV mono-infected participants. Median age at treatment initiation was 52.9 (interquartile range [IQR]: 49.6-56.7) and 53.3 [IQR 49.6-56.9] years; and 73.6% and 73.1% were men (Table 1). Compared with HCV mono-infected participants, HIV/HCV co-infected less frequently had cirrhosis (28.8% vs 41.2%), had lower BMI (22.7 [IQR 20.2-25.3] vs 24.7 [IQR 22.3-27.5] kg/m²), a higher proportion of current alcohol (53.4% vs 2.1%) and tobacco (60.6% vs 48.5%) use, had HCV seropositivity for a longer time (18.0 [IQR 12.4-22.2] vs 14.5 [IQR 6.4-

20.8] years), were less frequently infected by HCV genotype 1 (53.7% *vs* 63.6%) and more frequently infected by HCV genotype 4 (27.4% *vs* 15.0%).

Overall, 914 participants had at least one missing datum for variables included in the analysis models (145 in HIV/HCV co-infected and 769 in HCV mono-infected participants; Supplementary Table 1). Participants with missing data appeared to differ from participants without missing data for some characteristics in both populations (Supplementary Table 2).

SVR rates

Overall, 550 (92.9%) HIV/HCV co-infected and 1939 (94.6%) of HCV mono-infected reached SVR. In participants treated without ribavirin, SVR rates were 93.5% in HIV/HCV co-infected and 95.8% in HCV mono-infected participants whereas in participants treated with DAA and ribavirin, SVR rates were 91.0% in HIV/HCV co-infected and of 92.0% in HCV mono-infected participants (Table 2). HCV mono-infected cirrhotic participants appeared to have lower SVR rates than non-cirrhotic participants (respectively, 91.5% vs 97.7% in participants treated without ribavirin and 89.4% vs 95.8% in participants treated with DAA and ribavirin). Cirrhotic status did not seem to affect SVR rates in HIV/HCV co-infected participants (respectively, 93.0% vs 93.5% in participants treated without ribavirin and 91.1% and 92.0% in participants treated with DAA and ribavirin (83.3% in HIV/HCV co-infected by HCV genotype 2 treated with DAA and ribavirin (83.3% in HIV/HCV co-infected and 80.0% in HCV mono-infected respectively).

Risk of death

All-cause death

 After a median follow-up of 1.8 years [1.1 ; 2.5] in HIV/HCV co-infected and 2.3 years [1.6 ; 3.1] in HCV mono-infected participants, 82 participants died. Cumulative incidence of death is shown in Supplementary Fig. 1A. Twenty-six deaths were observed in HIV/HCV co-infected participants (8 liver-related, 6 non-liver-related cancer, 3 cardiovascular, 1 HIV and 8 other) and 56 in HCV mono-infected participants (28 liver-related, 3 non-liver-related cancer, 4 cardiovascular and 21 other) (Supplementary Table 3). Among the 26 HIV/HCV co-infected participants who died, 23 (88.5%) had reached SVR. Of the 56 HCV mono-infected participants who died, 46 (82.1%) had reached SVR.

After adjusting on confounding factors, HIV co-infection was associated with a higher risk of all-cause death (HR 1.93, confidence interval at 95% (CI) 1.01-3.69) in HCV infected participants after DAA treatment was observed (Table 3 and Fig. 1A). The association between HIV co-infection and risk of all-cause death was similar in complete case analysis (HR 1.99, 95% CI 1.04-3.83) (Supplementary Table 4).

Liver-related death

In HIV/HCV co-infected participants, 8 liver-related-deaths (5 due to an HCC, 2 liver decompensation, 1 liver transplantation) occurred after initiation of DAA therapy, of which 6 were observed in cirrhotic participants, one in a non-cirrhotic participant and one in a participant without available data on cirrhosis at initiation of DAA treatment. Among HCV mono-infected participants, 28 liver-related deaths were observed (15 due to an HCC, 9 liver decompensation, 2 liver transplantation, 2 cholangiocarcinoma), of which 26 were observed in cirrhotic participants (Supplementary Table 3 and Supplementary Fig. 1B). Among the 8 liver-related deaths observed in HIV/HCV co-infected, 6 occurred in those who reached SVR; 21 HCV mono-infected participants died after reaching SVR.

After adjusting on confounding factors, no association between HIV co-infection and the risk of liver-related death was found (HR 1.04; 95% CI 0.34-3.15) in HCV infected participants treated with DAA (Table 3 and Fig. 1B). In complete case analysis, there was also no effect of HIV co-infection on the risk of liver-related death after DAA treatment (HR 1.09; 95% CI 0.35-3.35) (Supplementary Table 4).

Non-liver-related death

Forty-six participants died from non-liver-related causes. In HIV/HCV co-infected participants, 18 died from a non-liver-related cause (6 non-liver-related cancer, 3 cardiovascular, 1 HIV, 8 other) and 28 in HCV mono-infected participants (3 non-liver-related cancer, 4 cardiovascular, 21 other) (Supplementary Table 3 and Supplementary Fig. 1C). Seventeen HIV/HCV co-infected participants and 25 HCV mono-infected participants died after reaching SVR.

After adjustment, HIV co-infection was associated with a higher risk of non-liver-related death (HR 2.84 95% CI 1.27-6.36) compared with HCV infected participants treated with DAA (Table 5 and Fig. 1C). In complete case analysis HIV co-infection was also associated with an higher risk of non-liver-related death (HR: 2.92 [1.29 ; 6.60]) (Supplementary Table 4).

Risk of liver-related events and non-liver-related cancers

Liver-related events

Eighty-three participants developed at least one liver-related event after the initiation of DAA therapy: 17 HIV/HCV co-infected participants (8 liver-decompensation, 5 HCC, 4 liver-related deaths) and 66 HCV mono-infected (55 HCC, 10 liver decompensation, 1 liver-related death) (Supplementary Table 3 and Supplementary Fig. 2A). In

HIV/HCV co-infected participants, 11 participants developed a first liver-related event after reaching SVR, 4 developed a liver-related event then reached SVR, and 2 liver-related events occurred in participants who did not reach SVR. In HCV mono-infected participants, 41 participants developed a liver-related event after reaching SVR, 11 before reaching SVR, and 14 participants developed a liver-related event and did not reach SVR.

In adjusted analysis, HIV infection was not associated with risk of liver-related events (HR 0.66; 95% CI 0.31-1.44) in HCV infected participants treated with DAA (Table 4 and Fig. 2A). Similar results were found in complete case analysis (HR = 0.40 [0.20; 0.81]).

Non-liver-related cancers

Non-liver-related cancers occurred in 50 participants; 22 in HIV/HCV co-infected participants and 28 in HCV mono-infected participants. Among the non-liver-related cancers observed in HIV/HCV co-infected participants, 2 were acquired immune deficiency syndrome (AIDS) defining events (1 cervical cancer, 1 non-Hodgkin's lymphoma) (Supplementary Table 3 and Supplementary Fig. 2B). Among HIV/HCV co-infected participants, 15 developed a non-liver-related cancer after reaching SVR, 6 developed a non-liver-related cancer and then reached SVR, and 1 who did not reach SVR developed a non-liver-related cancer. In HCV mono-infected participants, 26 developed a non-liver-related cancer after reaching SVR, 1 reached SVR after developing a non-liver-related cancer, and 1 did not reach SVR and developed a non-liver-related cancer, and 1 did not reach SVR and developed a non-liver-related cancer, and 1 did not reach SVR and developed a non-liver-related cancer.

After adjustment, HIV co-infection was significantly associated with a higher risk of non-liver-related cancer (HR 3.26; 95% CI 1.50-7.08) compared with HCV infected participants treated by DAA (Table 5 and Fig. 2B). In complete case analysis, HIV co-

infection was also associated with an higher risk of non-liver-related cancer (HR 3.26 [1.49; 7.10]) (Supplementary Table 5).

DISCUSSION

In a population of HCV infected participants treated with DAA, we observed similar SVR rates between HIV/HCV co-infected and HCV mono-infected participants. After adjustment on confounding factors, HIV co-infection was associated with an increased risk of all-cause death after DAA initiation compared with HCV mono-infected participants. This increased risk of all-cause death appears due to a higher risk of non-liver-related death. Indeed, after adjustment on confounding factors, HIV co-infection was strongly associated with the risk of non-liver-related death and was not associated with the risk of liver-related death in participants infected by HCV. HIV/HCV co-infected also had a higher risk than HCV mono-infected participants of developing non-liver-related cancers after DAA initiation. Finally, we did not observe an association between HIV co-infection and the risk of liver-related events, after DAA initiation in HCV infected participants.

In this study, the SVR rates were high and were similar between HIV/HCV co-infected and HCV mono-infected participants, overall and by subgroup. These results are in agreement with previous report ^{20–22}. Neukam et al. reported a lower rate of SVR in an HIV/HCV co-infected cohort compared to an HCV mono-infected cohort ²³. Nevertheless, in their study, HIV co-infected were more frequently cirrhotic, infected by HCV genotype 4 and had been exposed to anti-HCV therapy, which may explain the difference in SVR rates observed between the two populations.

We compared the risk of all-cause death between HIV/HCV co-infected and HCV mono-infected participants treated by DAA. Similar to the study by Salmon et al. ²⁴,

which included cirrhotic participants from the ANRS CO13 HEPAVIH cohort (the same cohort as in the present study) and the ANRS CO12 CirVir cohort (a cohort including Child A biopsy-proven cirrhosis), we observed a higher risk of all-cause death, linked to a higher risk of non-liver-related death, in HIV co-infected compared to HCV mono-infected participants.

In our study, the higher risk of all-cause death in HIV/HCV co-infected was essentially due to a higher risk of non-liver-related death, whereas the risk of liver-related death was similar between the two populations. To our knowledge, no other study has compared the risk of non-liver-related death between HIV/HCV co-infected and HCV mono-infected participants after DAA therapy. Salmon et al. also identified an higher risk of non-liver-related death in HIV co-infected participants compared to HCV monoinfected participants in a cirrhotic population that included both DAA-treated and untreated participants ²⁴. From the 18 non-liver-related deaths observed in HIV/HCV co-infected participants, only 1 was related to HIV. Several studies in HIV populations highlight a high risk of non-AIDS defining cancers ^{25,26}. The higher risk of non-AIDS death in HIV infected patients can be explained by chronic inflammation and immune system dysregulation due to the HIV infection ^{25,27–29}, but also to high-risk behaviours such as tobacco smoking and alcohol consumption ^{30,31}. High-risk behaviours were observed in our study in HIV/HCV co-infected participants, with high rates of tobacco (60.6%) and alcohol (53.4%) consumption. The higher risk of non-liver-related cancers observed in HIV/HCV co-infected participants treated with DAA compared to HCV mono-infected participants could not be explained by a higher incidence of AIDS defining malignancies. Indeed, among the 22 non-liver-related cancers observed in HIV/HCV co-infected participants, only 2 (non-Hodgkin's lymphoma and cervical cancer) were AIDS-defining. As for non-liver-related death, the higher risk of non-liverrelated cancers in HIV/HCV co-infected participants could be partly explained by the immunodepression induced by HIV. HIV induced immunodeficiency appears to increase the risk of non-AIDS-defining cancers through the reduced control of oncogenic virus infection and the reduced surveillance of malignant cells ³². The chronic inflammation and coagulation defects induced by HIV could also explained the higher risk of non-AIDS-defining cancers ³³. Finally, the higher risk of non-liver-related cancers in HIV co-infected participants may also be explained by the higher consumption of alcohol and tobacco in this population ^{30,31}.

Finally, we observed similar risks of liver-related death and liver-related events between HIV/HCV co-infected and HCV mono-infected participants after DAA treatment. In two previous studies, no differences were found between these populations. Salmon et al. did not observe any difference in risk of liver decompensation and HCC between HIV/HCV co-infected and HCV mono-infected cirrhotic participants ²⁴. In another study comparing participants with advanced fibrosis, co-infection by HIV was not associated with the risk of liver complications in HCV participants who achieved SVR with DAA therapy ³⁴. Several reasons may explain these results. First, owing to French recommendations, HCV mono-infected appeared to be more frequently cirrhotic (41.2%) than HIV/HCV co-infected (28.8%). Second, in this study, co-infected patients had an optimal immune virological status, demonstrated by the median CD4 value was of 614.0 cells/mm³, 97.5% were treated by antiretroviral therapy and 86.8% had an undetectable HIV viral load at DAA therapy initiation. These factors are protective factors against the development of a liver-related event ^{1,6}. Third, potentially better follow-up of HIV co-infected participants before the emergence of DAA therapies, due to their HIV infection could have led to better control of HCV infection and a decreased risk of liver-related events.

This study has several limitations. First, owing to recommendations for initiation of DAA treatment, HCV mono-infected were more frequently cirrhotic than HIV/HCV coinfected at treatment start-up. This may explain why we did not observe differences between HIV/HCV co-infected and HCV mono-infected participants in the risk of liverrelated events and liver-related death. Even if all analysis were adjusted for cirrhosis, residual confounding could persist. Second, as we included participants from two different cohorts, data on events, specifically non-liver-related events, were not necessarily collected in the same way, which may have led to misclassification. In addition, a supplementary semiannual visit was scheduled for cirrhotic HIV/HCV coinfected participants but not for cirrhotic HCV mono-infected participants. This difference in follow-up could have led to earlier diagnosis of liver-related events and non-liver-related cancers in cirrhotic HIV/HCV co-infected participants, and thus to an overestimation of the effect of HIV co-infection on the risk of these events. Nevertheless, the recommendation of semiannual hepatic ultrasonography in cirrhotic HCV mono-infected participants was highly respected. In addition, event collection was independent of follow-up. Thus, it seems unlikely that this supplementary semiannual follow-up in HIV/HCV co-infected affected the estimated association between HIV coinfection and the risk of events in HCV infected participants. Furthermore, we cannot exclude closer follow-up of events in HIV/HCV co-infected compared to HCV monoinfected participants due to their HIV infection, leading to overestimation of the risk of non-liver-related cancers induced by HIV infection. However, both cohorts used similar procedures to report all serious adverse events that occurred during the follow-up, with extensive data-quality controls and monitoring. Third, participants with missing data for SVR were excluded from the analysis. It can be expected that missing data for SVR was related to higher risks of liver-related and non-liver-related events, potentially

leading to an underestimation of events in both cohorts. Fourth, to study the risk of non-liver-related events in HIV/HCV co-infected participants treated with DAA a comparison with HIV infected participants who were never infected by HCV, or with the general population, may be more suitable. Finally, we matched on age and sex, which led to the exclusion of 76 HIV/HCV co-infected participants (12.8% of the total population). The reduced sample size could have led to a loss of statistical power.

This study also had several strengths. First, this study included more participants than similar previous studies ^{24,34}. Second, the main confounding factors identified using DAG methodology were included in our models, limiting the risk of confusion bias. Third, both cohorts are prospective, nationwide French cohorts, underlying strict data quality and monitoring rules, allowing for high-quality data. Finally, to our knowledge, this is the first study comparing the risk of non-liver-related cancers between HIV/HCV co-infected and HCV mono-infected participants after DAA therapy.

In conclusion, in a population of HIV/HCV co-infected participants with a controlled HIV infection, no difference of SVR rates after DAA therapy was observed compared with HCV mono-infected participants. After DAA therapy, we observed an almost twofold higher risk of all-cause death, due to a higher risk of non-liver-related deaths in HIV/HCV co-infected compared to HCV mono-infected participants. We also observed a threefold higher risk of non-liver-related cancer in HIV/HCV co-infected compared to HCV mono-infected participants, whereas no differences were observed in risk of liver-related death or events after DAA therapy.

ACKNOWLEDGMENTS

Sophie K. Rushton-Smith (MedLink Healthcare Communications, London) provided editorial assistance for the final version of the manuscript (limited to editing for style, as well as figure and table editing) and was funded by the authors.

For the ANRS CO13 HEPAVIH cohort study group

Patients of ANRS CO13 HEPAVIH Cohort the Scientific Committee of the ANRS CO13 HEPAVIH Study Group: D. Salmon (co-Principal investigator), L. Wittkop (co-Principal Investigator & Methodologist), P. Sogni (co-Principal Investigator), L. Esterle (project manager), P. Trimoulet, J. Izopet, L. Serfaty, V. Paradis, B. Spire, P. Carrieri, M.A. Valantin, G. Pialoux, J. Chas, I. Poizot-Martin, K. Barange, A. Nagvi, E. Rosenthal, A. Bicart-See, O. Bouchaud, A. Gervais, C. Lascoux-Combe, C. Goujard, K. Lacombe, C. Duvivier, , D. Neau, P. Morlat, F. Bani-Sadr, L. Meyer, F. Boufassa, , B. Autran, A.M. Roque, C. Solas, H. Fontaine, D. Costagliola, L. Piroth, A. Simon, D. Zucman, F. Boué, P. Miailhes, E. Billaud, H. Aumaître, D. Rey, G. Peytavin, V. Petrov-Sanchez, D. Lebrasseur-Longuet.

Clinical Centres (ward / participating physicians): APHP, Hôpitaux Universitaires Paris Centre, Paris (Médecine Interne et Maladies Infectieuses : D. Salmon, R. Usubillaga; Hépato-gastro-entérologie : P. Sogni ; Anatomo-pathologie : B. Terris ; Virologie : P. Tremeaux) ; APHP Pitié-Salpétrière, Paris (Maladies Infectieuses et Tropicales : C. Katlama, M.A. Valantin, H. Stitou ; Médecine Interne : A. Simon, P. Cacoub, S. Nafissa ; Hépato-gastro-entérologie : Y. Benhamou ; Anatomo-pathologie : F. Charlotte ; Virologie : S. Fourati) ; APHM Sainte- Marguerite, Marseille (Service d'Immuno-Hématologie Clinique : I. Poizot-Martin, O. Zaegel, H. Laroche ; Virologie : C. Tamalet) ; APHP Tenon, Paris (Maladies Infectieuses et Tropicales : G. Pialoux, J. Chas;

Anatomo-pathologie : P. Callard, F. Bendjaballah ; Virologie : C. Amiel, C. Le Pendeven); CHU Purpan, Toulouse (Maladies Infectieuses et Tropicales : B. Marchou ; Médeicne interne : L. Alric ; Hépato-gastro-entérologie : K. Barange, S. Metivier ; Anatomo-pathologie : J. Selves ; Virologie : F. Larroquette) ; CHU Archet, Nice (Médecine Interne : E. Rosenthal ; Infectiologie : A. Nagvi, V. Rio ; Anatomo-pathologie : J. Haudebourg, M.C. Saint-Paul ; Virologie : A. De Monte, V. Giordanengo, C. Partouche); APHP Avicenne, Bobigny (Médecine Interne – Unité VIH : O. Bouchaud; Anatomo-pathologie : A. Martin, M. Ziol ; Virologie : Y. Baazia, V. Iwaka-Bande, A. Gerber) ; Hôpital Joseph Ducuing, Toulouse (Médecine Interne : M. Uzan, A. Bicart-See, D. Garipuy, M.J. Ferro-Collados ; Anatomo-pathologie : J. Selves ; Virologie : F. Nicot) ; APHP Bichat – Claude-Bernard, Paris (Maladies Infectieuses : A. Gervais, Y. Yazdanpanah; Anatomo-pathologie : H. Adle-Biassette ; Virologie : G. Alexandre, Pharmacologie : G. Peytavin) ; APHP Saint-Louis, Paris (Maladies infectieuses : C. Lascoux-Combe, J.M. Molina; Anatomo-pathologie : P. Bertheau; Virologie :M.L. Chaix, C. Delaugerre, S. Maylin) ; APHP Saint-Antoine (Maladies Infectieuses et Tropicales : K. Lacombe,; J. Krause, P.M. Girard, Anatomo-pathologie : D. Wendum, P. Cervera, J. Adam ; Virologie : C. Viala) ; APHP, Hôpitaux Paris Sud, Bicêtre, Paris (Maladies Infectieurses et Tropicales : D. Vittecocg ; Médecine Interne : C. Goujard, Y. Quertainmont, E. Teicher; Virologie : C. Pallier) ; APHP Necker, Paris (Maladies Infectieuses et Tropicales : O. Lortholary, C. Duvivier, C. Rouzaud, J. Lourenco, F. Touam, C. Louisin : Virologie : V. Avettand-Fenoel, E. Gardiennet, A. Mélard) ; CHU Bordeaux Hôpital Pellegrin, Bordeaux (Maladies Infectieuses et Tropicales : D. Neau, A. Ochoa, E. Blanchard, S. Castet-Lafarie, C. Cazanave, D. Malvy, M. Dupon, H. Dutronc, F. Dauchy, L. Lacaze-Buzy, A. Desclaux; Anatomo-pathologie : P. Bioulac-Sage ; Virologie : P. Trimoulet, S. Reigadas) ; CHU Bordeaux Hôpital Saint-André,

Bordeaux (Médecine Interne et Maladies Infectieuses : Médecine Interne et Maladies Infectieuses : P. Morlat, D. Lacoste, F. Bonnet, N. Bernard, M. Hessamfar, J, F. Paccalin, C. Martell, M. C. Pertusa, M. Vandenhende, P. Mercié, D. Malvy, T. Pistone, M.C. Receveur, M. Méchain, P. Duffau, C Rivoisy, I. Faure, S. Caldato ; Anatomopathologie : P. Bioulac-Sage ; Virologie : P. Trimoulet, S. Reigadas, P. Bellecave, C. Tumiotto) ; CHU Bordeaux Hôpital du Haut-Levêgue, Bordeaux (Médecine Interne : J.L. Pellegrin, J.F. Viallard, E. Lazzaro, C. Greib; Anatomo-pathologie : P. Bioulac-Sage ; Virologie : P. Trimoulet, S. Reigadas) ; Hôpital FOCH, Suresnes (Médecine Interne : D. Zucman, C. Majerholc ; Virologie : M. Brollo, E. Farfour) ; APHP Antoine Béclère, Clamart (Médecine Interne : F. Boué, J. Polo Devoto, I. Kansau, V. Chambrin, C. Pignon, L. Berroukeche, R. Fior, V. Martinez, S. Abgrall, M. Favier ; Virologie : C. Deback); CHU Henri Mondor, Créteil (Immunologie Clinique : Y. Lévy, S. Dominguez, J.D. Lelièvre, A.S. Lascaux, G. Melica) ; CHU Nantes Hôpital Hôtel Dieu, Nantes (Maladies Infectieuses et Tropicales : E. Billaud, F. Raffi, C. Allavena, V. Reliquet, D. Boutoille, C. Biron; M. Lefebvre, N. Hall, S. Bouchez ; Virologie : A. Rodallec, L. Le Guen, C. Hemon); Hôpital de la Croix Rousse, Lyon (Maladies Infectieuses et Tropicales : P. Miailhes, D. Peyramond, C. Chidiac, F. Ader, F. Biron, A. Boibieux, L. Cotte, T. Ferry, T. Perpoint, J. Koffi, F. Zoulim, F. Bailly, P. Lack, M. Maynard, S. Radenne, M. Amiri, F Valour ; Hépato-gastro-entérologie : J. Koffi, F. Zoulim, F. Bailly, P. Lack, M. Maynard, S. Radenne, C. Augustin-Normand ; Virologie : C. Scholtes, T.T. Le-Thi); CHU Dijon, Dijon (Département d'infectiologie :, L. Piroth, P. Chavanet M. Duong Van Huyen, M. Buisson, A. Waldner-Combernoux, S. Mahy, R. Binois, A.L. Simonet-Lann, D. Croisier-Bertin, A. Salmon Rousseau, C. Martins); CH Perpignan, Perpignan (Maladies infectieuses et tropicales : H. Aumaître, Virologie : S. Galim) ; CHU Robert Debré, Reims (Médecine interne, maladies infectieuses et immunologie

clinique : F. Bani-Sadr, D. Lambert, Y Nguyen, J.L. Berger, M. Hentzien, Virologie : V. Brodard) ; CHRU Strasbourg (Le Trait d'Union : D Rey, M Partisani, ML Batard, C Cheneau, M Priester, C Bernard-Henry, E de Mautort, Virologie : P Gantner et S Fafi-Kremer)

Data collection: F. Roustant, P. Platterier, I. Kmiec, L. Traore, M-K. Youssouf, A. Benmammar, M-G. Tateo, S. Lepuil, Pomes ChloéV. Sicart-Payssan, , S. Anriamiandrisoa, C. Pomes, F. Touam, C. Louisin, M. Mole, P Catalan, M. Mebarki, A. Adda-Lievin, P. Thilbaut, Y. Ousidhoum, F.Z. Makhoukhi, O. Braik, R. Bayoud, C. Gatey, M.P. Pietri, V. Le Baut, R. Ben Rayana, F. Barret, C. Chesnel, D. Beniken, M. Pauchard, S. Akel, S. Caldato, T. Rojas-Rojas, C. Debreux, L. Chalal, J.Zelie, A. Soria, M. Cavellec, S. Breau, P. Fisher, C. Charles, D. Croisier-Bertin, S. Ogoudjobi, C. Brochier, V. Thoirain-Galvan, M. Le Cam.

Management, statistical analyses: P. Carrieri, M. Chalouni, V. Conte, L. Dequae-Merchadou, M. Desvallees, L. Esterle, C. Gilbert, S. Gillet, R. Knight, T. Lemboub, F. Marcellin, L. Michel, M. Mora, C. Protopopescu, P. Roux, B. Spire, S. Tezkratt, T. Barré, T. Rojas, M. Baudoin, M. Santos V. Di Beo, M.Nishimwe, , L Wittkop.

Funding: ANRS (France Recherche Nord & sud Sida-hiv Hépatites)

For the ANRS CO22 HEPATHER cohort study group

Funding

INSERM-ANRS (France REcherche Nord&sud Sida-vih Hepatites), ANR (Agence Nationale de la Recherche), DGS (Direction Générale de la Santé) and MSD, Janssen, Gilead, Abbvie, BMS, Roche.

ANRS-AFEF Hepather Study group

Laurent Alric, Delphine Bonnet, Virginie Payssan-Sicart, Chloe Pomes (CHU Purpan, Toulouse, France), Fabien Zoulim, François Bailly, Marjolaine Beaudoin, Dominique Giboz, Kerstin Hartig-Lavie, Marianne Maynard (Hospices Civils de Lyon, Lyon, France), François Raffi, Eric Billaud, David Boutoille, Morane Cavellec, Marjorie Cheraud-Carpentier (Hôpital Hôtel-Dieu, Nantes, France), Paul Cales, Isabelle Hubert, Pierre Goepfert, Adrien Lannes, Francoise Lunel, Jérôme Boursier (CHU Angers, Angers, France), Tarik Asselah, Nathalie Boyer, Nathalie Giuily, Corinne Castelnau, Giovanna Scoazec (Hôpital Beaujon, Clichy, France), Stanislas Pol, Hélène Fontaine, Aziza Chibah, Sylvie Keser, Karim Bonardi, Anaïs Vallet-Pichard, Philippe Sogni (Hôpital Cochin, Paris, France), Victor De Ledinghen, Juliette Foucher, Jean-Baptiste Hiriart, Amandine Legendre, Faiza Chermak, Marie Irlès-Depé (Hôpital Haut-Lévêque, Pessac, Bordeaux, France), Marc Bourlière, Si Nafa Si Ahmed, Christelle Ansaldi, Nisserine Ben Amara, , Valérie Oules, Jacqueline Dunette (Hôpital Saint Joseph, Marseille, France), Albert Tran, Rodolphe Anty, Eve Gelsi, Régine Truchi (CHU de Nice, Nice, France), Dominique Thabut, Elena Luckina, Nadia Messaoudi, Joseph Moussali (Hôpital de la Pitié Salptétrière, Paris, France), Xavier Causse, Barbara De Dieuleveult, Héloïse Goin, Damien Labarrière, Pascal Potier, Si Nafa Si Ahmed (CHR La Source, Orléans, France), Nathalie Ganne, Véronique Grando-Lemaire, Pierre Nahon, Séverine Brulé, Rym Monard (Hôpital Jean Verdier, Bondy, France), Dominique Guyader, Caroline Jezequel, Audrey Brener, Anne Laligant, Aline Rabot, Isabelle Renard (CHU Rennes, Rennes, France), François Habersetzer, Thomas F. Baumert, Michel Doffoel, Catherine Mutter, Pauline Simo-Noumbissie, Esma Razi (Hôpitaux Universitaires de Strasbourg, Strasbourg, France), Jean-Pierre Bronowicki, Hélène Barraud, Mouni Bensenane, Abdelbasset Nani, Sarah Hassani-Nani, Marie-Albertine Bernard (CHU de Nancy, Nancy, France), Dominique Larrey, Georges-

Philippe Pageaux, Michael Bismuth, Ludovic Caillo, Stéphanie Faure, Marie Pierre Ripault (Hôpital Saint Eloi, Montpellier, France), Sophie Métivier, Christophe Bureau, Sarah Launay, Jean Marie Peron, Marie Angèle Robic, Léa Tarallo (CHU Purpan, Toulouse, France), Thomas Decaens, Marine Faure, Bruno Froissart, Marie-Noelle Hilleret, Jean-Pierre Zarski (CHU de Grenoble, Grenoble, France), Ghassan Riachi, Odile Goria, Victorien Grard, Hélène Montialoux (CHU Charles Nicolle, Rouen, France), Vincent Leroy, Muriel François, Christian Ouedraogo, Christelle Pauleau, Anne Varault (Hôpital Henri Mondor, Créteil, France), Olivier Chazouillières, Tony Andreani, Bénédicte Angoulevant, Azeline Chevance, Lawrence Serfaty (Hôpital Saint-Antoine, Paris, France), Didier Samuel, Teresa Antonini, Audrey Coilly, Jean-Charles Duclos Vallée, Mariagrazia Tateo (Hôpital Paul Brousse, Villejuif, France), Armand Abergel, Corinne Bonny, Chanteranne Brigitte, Géraldine Lamblin, Léon Muti (Hôpital Estaing, Clermont-Ferrand, France), Claire Geist, Abdenour Babouri, Virginie Filipe (Centre Hospitalier Régional, Metz, France), Isabelle Rosa, Camille Barrault, Laurent Costes, Hervé Hagège, Soraya Merbah (Centre Hospitalier Intercommunal, Créteil, France), Véronique Loustaud-Ratti, Paul Carrier, Maryline Debette-Gratien, Jérémie Jacques (CHU Limoges, Limoges, France), Philippe Mathurin, Guillaume Lassailly, Florent Artu, Valérie Canva, Sébastien Dharancy, Alexandre Louvet (CHRU Claude Huriez, Lille, France), Anne Minello, Marianne Latournerie, Marc Bardou, Thomas Mouillot (Dijon University Hospital, Dijon, France), Louis D'Alteroche, Yannick Bacq, Didier Barbereau, Charlotte Nicolas (CHU Trousseau, 37044 Tours, France), Jérôme Gournay, Caroline Chevalier, Isabelle Archambeaud, Sarah Habes (CHU de Nantes, Nantes, France), Isabelle Portal, Nisserine Ben Amara, Danièle Botta-Fridlund, (CHU Timone, Marseille, France), Moana Gellu-Simeon, Eric Saillard, Marie-Josée Lafrance, (CHU de Pointe-à-Pitre, Pointe-à-Pitre, Guadeloupe).

Scientific Committee:

- Voting members :

Marc Bourlière (Hôpital St Joseph, Marseille), Jérôme Boursier (CHU Angers, Angers, France), Fabrice Carrat (Scientific Coordinator, Hôpital Saint-Antoine, Paris, France), Patrizia Carrieri (INSERM U912, Marseille, France), Elisabeth Delarocque-Astagneau (Inserm UMR1181, Paris), Victor De Ledinghen (Hôpital Haut-Lévêque, Pessac, Bordeaux, France), Céline Dorival (UPMC & INSERM U1136, Paris, France), Hélène Fontaine (Hôpital Cochin, Paris, France), Slim Fourati (Hôpital Henri Mondor, Créteil, France), Chantal Housset (Inserm UMR-S938 1 IFR65, Paris), Dominique Larrey (Hôpital Saint Eloi, Montpellier, France), Pierre Nahon (Hôpital Jean Verdier, Bondy, France), Georges-Philippe Pageaux (Hôpital Saint Eloi, Montpellier, France), Ventzislava Petrov-Sanchez (ANRS, Paris, France), Stanislas Pol (Principal Investigator, Hôpital Cochin, Paris, France), Sophie Vaux (Agence Nationale de Santé Publique, Saint Maurice, France), Linda Wittkop (ISPED-INSERM U1219, Bordeaux, France), Fabien Zoulim (Hospices Civils de Lyon, Lyon, France), Jessica Zucman-Rossi (Inserm U674/1162, Paris).

- Non voting members:

Marianne L'hennaff (ARCAT-TRT-5-CHV, France), Michèle Sizorn (SOS hépatites, France); one representative of INSERM-ANRS Pharmacovigilance team, Paris, France (Lena Wadouachi, Alpha Diallo), Carole Cagnot (INSERM-ANRS, Paris, France), one member of Inserm Transfert, Paris, France (Alice Bousselet, Mireille Caralp), and one representative of each pharmaceutical company (MSD, Gilead, Abbvie).

Sponsor: Alpha Diallo, Carole Cagnot, Lena Wadouachi (INSERM-ANRS, Paris, France), Ventzi Petrov-Sanchez (coordinator).

Methodology and Coordinating Centre: Douae Ammour, Loubna Ayour, Jaouad Benhida, Fabrice Carrat (coordinator), Frederic Chau, Céline Dorival, Isabelle Goderel, Warda Hadi, Clovis Lusivika-Nzinga, Grégory Pannetier, François Pinot, Odile Stahl, François Téloulé (Sorbonne Université & INSERM U1136, Paris, France).

REFERENCES

1. Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol. 2014 Nov;61(1 Suppl):S58-68.

2. Petta S, Di Marco V, Bruno S, Enea M, Calvaruso V, Boccaccio V, et al. Impact of virus eradication in patients with compensated hepatitis C virus-related cirrhosis: competing risks and multistate model. Liver Int Off J Int Assoc Study Liver. 2016 Dec;36(12):1765–73.

3. Allison RD, Tong X, Moorman AC, Ly KN, Rupp L, Xu F, et al. Incidence of Cancer and Cancer-related Mortality Among Persons with Chronic Hepatitis C Infection, 2006–2010. J Hepatol. 2015 Oct;63(4):822–8.

4. Lee M-H, Yang H-I, Lu S-N, Jen C-L, You S-L, Wang L-Y, et al. Chronic hepatitis C virus infection increases mortality from hepatic and extrahepatic diseases: a community-based long-term prospective study. J Infect Dis. 2012 Aug 15;206(4):469–77.

5. Platt L, Easterbrook P, Gower E, McDonald B, Sabin K, McGowan C, et al. Prevalence and burden of HCV co-infection in people living with HIV: a global systematic review and meta-analysis. Lancet Infect Dis. 2016 Jul;16(7):797–808.

6. Gjærde LI, Shepherd L, Jablonowska E, Lazzarin A, Rougemont M, Darling K, et al. Trends in Incidences and Risk Factors for Hepatocellular Carcinoma and Other Liver Events in HIV and Hepatitis C Virus-coinfected Individuals From 2001 to 2014: A Multicohort Study. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016 Sep 15;63(6):821–9.

7. Qurishi N, Kreuzberg C, Lüchters G, Effenberger W, Kupfer B, Sauerbruch T, et al. Effect of antiretroviral therapy on liver-related mortality in patients with HIV and hepatitis C virus coinfection. Lancet Lond Engl. 2003 Nov 22;362(9397):1708–13.

8. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998 Mar 26;338(13):853–60.

9. Naggie S, Cooper C, Saag M, Workowski K, Ruane P, Towner WJ, et al. Ledipasvir and Sofosbuvir for HCV in Patients Coinfected with HIV-1. N Engl J Med. 2015 Aug 20;373(8):705–13.

10. Nelson DR, Cooper JN, Lalezari JP, Lawitz E, Pockros PJ, Gitlin N, et al. All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study. Hepatology. 2015 Apr 1;61(4):1127–35.

11. Bang CS, Song IH. Impact of antiviral therapy on hepatocellular carcinoma and mortality in patients with chronic hepatitis C: systematic review and meta-analysis. BMC Gastroenterol. 2017 Apr 4;17(1):46.

12. Nahon P, Bourcier V, Layese R, Audureau E, Cagnot C, Marcellin P, et al. Eradication of Hepatitis C Virus Infection in Patients With Cirrhosis Reduces Risk of Liver and Non-Liver Complications. Gastroenterology. 2017 Jan;152(1):142-156.e2.

13. Tada T, Kumada T, Toyoda H, Kiriyama S, Tanikawa M, Hisanaga Y, et al. Viral eradication reduces all-cause mortality, including non-liver-related disease, in patients with progressive hepatitis C virus-related fibrosis. J Gastroenterol Hepatol. 2017 Mar;32(3):687–94.

14. Bruno S, Di Marco V, Iavarone M, Roffi L, Crosignani A, Calvaruso V, et al. Survival of patients with HCV cirrhosis and sustained virologic response is similar to the general population. J

Hepatol. 2016 Jun;64(6):1217–23.

15. Carrat F, Fontaine H, Dorival C, Simony M, Diallo A, Hezode C, et al. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: a prospective cohort study. Lancet Lond Engl. 2019 Apr 6;393(10179):1453–64.

16. Loko M-A, Bani-Sadr F, Valantin M-A, Lascoux-Combe C, Fontaine H, Bonnard P, et al. Antiretroviral therapy and sustained virological response to HCV therapy are associated with slower liver fibrosis progression in HIV-HCV-coinfected patients: study from the ANRS CO 13 HEPAVIH cohort. Antivir Ther. 2012;17(7):1335–43.

17. ANRS CO13 HEPAVIH Cohort. Regression of liver stiffness after sustained hepatitis C virus (HCV) virological responses among HIV/HCV-coinfected patients. AIDS Lond Engl. 2015 Sep 10;29(14):1821–30.

18. Buuren S van, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011 Dec 12;45(1):1–67.

19. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Stat Assoc. 1999 Jun 1;94(446):496–509.

20. Bruno G, Saracino A, Scudeller L, Fabrizio C, Dell'Acqua R, Milano E, et al. HCV monoinfected and HIV/HCV co-infected individuals treated with direct-acting antivirals: to what extent do they differ? Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2017 Sep;62:64–71.

21. Bischoff J, Mauss S, Cordes C, Lutz T, Scholten S, Moll A, et al. Rates of sustained virological response 12 weeks after the scheduled end of direct-acting antiviral (DAA)-based hepatitis C virus (HCV) therapy from the National German HCV registry: does HIV coinfection impair the response to DAA combination therapy? HIV Med. 2018;19(4):299–307.

22. Milazzo L, Lai A, Calvi E, Ronzi P, Micheli V, Binda F, et al. Direct-acting antivirals in hepatitis C virus (HCV)-infected and HCV/HIV-coinfected patients: real-life safety and efficacy. HIV Med. 2017;18(4):284–91.

23. Neukam K, Morano-Amado LE, Rivero-Juárez A, Mancebo M, Granados R, Téllez F, et al. HIV-coinfected patients respond worse to direct-acting antiviral-based therapy against chronic hepatitis C in real life than HCV-monoinfected individuals: a prospective cohort study. HIV Clin Trials. 2017;18(3):126–34.

24. Salmon-Ceron D, Nahon P, Layese R, Bourcier V, Sogni P, Bani-Sadr F, et al. Human Immunodeficiency Virus/Hepatitis C Virus (HCV) Co-infected Patients With Cirrhosis Are No Longer at Higher Risk for Hepatocellular Carcinoma or End-Stage Liver Disease as Compared to HCV Mono-infected Patients. Hepatol Baltim Md. 2019 Sep;70(3):939–54.

25. Franzetti M, Ricci E, Bonfanti P. The Pattern of Non-AIDS-defining Cancers in the HIV Population: Epidemiology, Risk Factors and Prognosis. A Review. Curr HIV Res. 2019;17(1):1–12.

26. Billa O, Chalouni M, Salmon D, Poizot-Martin I, Gilbert C, Katlama C, et al. Factors associated with non-AIDS-defining cancers and non HCV-liver related cancers in HIV/HCV-coinfected patients- ANRS-CO13 HEPAVIH cohort. PloS One. 2018;13(12):e0208657.

27. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet Lond Engl. 2007 Jul 7;370(9581):59–67.

28. Franzetti M, Adorni F, Parravicini C, Vergani B, Antinori S, Milazzo L, et al. Trends and predictors of non-AIDS-defining cancers in men and women with HIV infection: a single-institution

retrospective study before and after the introduction of HAART. J Acquir Immune Defic Syndr 1999. 2013 Apr 1;62(4):414–20.

29. Tien PC, Choi AI, Zolopa AR, Benson C, Tracy R, Scherzer R, et al. Inflammation and mortality in HIV-infected adults: analysis of the FRAM study cohort. J Acquir Immune Defic Syndr 1999. 2010 Nov;55(3):316–22.

30. Silverberg MJ, Chao C, Leyden WA, Xu L, Tang B, Horberg MA, et al. HIV infection and the risk of cancers with and without a known infectious cause. AIDS Lond Engl. 2009 Nov 13;23(17):2337–45.

31. Santos ME, Protopopescu C, Sogni P, Yaya I, Piroth L, Bailly F, et al. HCV-Related Mortality Among HIV/HCV Co-infected Patients: The Importance of Behaviors in the HCV Cure Era (ANRS CO13 HEPAVIH Cohort). AIDS Behav. 2020 Apr;24(4):1069–84.

32. Borges AH, Dubrow R, Silverberg MJ. Factors contributing to risk for cancer among HIV-infected individuals, and evidence that earlier combination antiretroviral therapy will alter this risk. Curr Opin HIV AIDS. 2014 Jan;9(1):34–40.

33. Borges ÁH, Silverberg MJ, Wentworth D, Grulich AE, Fätkenheuer G, Mitsuyasu R, et al. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. AIDS Lond Engl. 2013 Jun 1;27(9):1433–41.

34. Corma-Gómez A, Morano L, Téllez F, Rivero-Juárez A, Real LM, Alados JC, et al. HIV infection does not increase the risk of liver complications in hepatitis C virus-infected patient with advanced fibrosis, after sustained virological response with direct-acting antivirals. AIDS Lond Engl. 2019 01;33(7):1167–74.

35. Ioannou GN, Green PK, Berry K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J Hepatol. 2017 Sep 5;

36. Butt AA, Yan P, Simon TG, Abou-Samra A-B. Effect of

Paritaprevir/Ritonavir/Ombitasvir/Dasabuvir and Ledipasvir/Sofosbuvir Regimens on Survival Compared With Untreated Hepatitis C Virus-Infected Persons: Results From ERCHIVES. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017 Sep 15;65(6):1006–11.
 Table 1. Characteristics at time of DAA initiation according to HIV co-infection in HCV
 infected participants from the ANRS CO13 HEPAVIH and ANRS CO22 HEPATHER cohorts.

5 COHORS. 6							
7 8 9	HIV[‡]/HCV [*] co-infected ($n = 592$)			HCV* mono-infected (n = 2049)			
Characteristics	Ν	Median [IQR [¥]] or n (%)	Ν	Median [IQR [*]] or n (%)			
Age ₃ (years)	592	52.9 [49.6 ; 56.7]	2049	53.3 [49.6 ; 56.9]			
14 Mers	592	436 (73.6%)	2049	1498 (73.1%)			
16 BMI ^A (<i>kg/m</i> ²) 18	586	22.7 [20.2 ; 25.3]	2042	24.7 [22.3 ; 27.5]			
10 1 2 18.5 20		61 (10.4%)		53 (2.6%)			
21 21 22 21 8.5 ; 25.0[370 (63.1%)		1043 (51.1%)			
23 27 27 25.0 ; 30.0[122 (20.8%)		693 (33.9%)			
25 ⋧30		33 (5.6%)		253 (12.4%)			
27 Algehol consumption	581		1375				
29 Wever		134 (23.1%)		832 (60.5%)			
31 3 Past 33		137 (23.6%)		514 (37.4%)			
33 36 35		310 (53.4%)		29 (2.1%)			
Topacco consumption	578		2045				
38 3 Never		98 (17.0%)		504 (24.6%)			
40 4₽ast		130 (22.5%)		550 (26.9%)			
42 4Current		350 (60.6%)		991 (48.5%)			
⁴⁴ Diabetes	592	56 (9.5%)	2049	228 (11.1%)			
⁴⁰ Ting since first HCV* seropositivity (years)	566	18.0 [12.4. ; 22.2]	2049	14.5 [6.4 ; 20.8]			
49 HGV* contamination routes	520		2037				
51 5 2 rug use		325 (62.5%)		765 (37.6%)			
53 5 9exual		92 (17.7%)		21 (1.0%)			
55 5 Fransfusion 57		40 (7.7%)		476 (23.4%)			
57 5 <mark>8</mark> nknown		57 (11.0%)		465 (22.8%)			
59 60 61		· · · ·		· · /			
62 63							
64		33					

3

Other		6 (1.2%)		310 (15.2%)
L L HCV * genotype	583	0 (11270)	2034	010 (10.270)
3		313 (53.7%)	2001	1293 (63.6%)
₽ 5 27 8 39		22 (3.8%)		80 (3.9%)
8 3		85 (14.6%)		334 (16.4%)
10 1 4		160 (27.4%)		306 (15.0%)
12 1 5/6/7		3 (0.5%)		21 (1.0%)
14 14 Hiştory of anti-HCV* treatment	592	343 (57.9%)	1927	1072 (55.7%)
	553	159 (28.8%)	1927	793 (41.2%)
Platelets (10 ³ cells/mm ³)	574	179.0 [138.0 ; 222.0]	2029	185.0 [138.0 ; 233.0]
21 Albumin (g/L)	469	42.0 [39.0 ; 44.2]	1905	42.0 [38.8 ; 44.7]
²³ Time since first HIV [‡] seropositivity (years)	590	24.7 [18.8 ; 28.2]	1900	42.0 [00.0 , 44.7]
25	587	614.0 [411.0 ; 861.0]	-	-
CD4 count (cells/mm ³)	507		-	-
²⁸ 500 ³⁰ J200 ; 500]		375 (63.9%)		-
32 3≤3200		175 (29.8%)		-
34	500	37 (6.3%)		-
Undetectable HIV [‡] viral load	562	488 (86.8%)	-	-
	592	577 (97.5%)	-	-
Time since ARV ^Ψ initiation (years)4041* Hepatitis C virus, [‡] Human Immunodefic	577	17.6 [10.9 ; 20.3]	-	-
42	ciency virus,	* Interquartile range, ^A Body mas	ss index, * A	ntiretroviral
43 44				
45 46				
47 48				
49				
50 51				
52 53				
54				
55 56				
57				
58 59				
60				
61 62				
63		34		
64 65				

Table 2. Sustained virological response according to HIV co-infection and use of ribavirin in HCV infected participants from the ANRS CO13 HEPAVIH and ANRS CO22 **HEPATHER** cohorts

8 9	Н	IV [‡] /HCV* co-ir	nfecte	d (n = 482)	HCV* mono-infected (n = 1736)				
10 11	DAA**		DAA** + RBV ^Ψ			DAA**	DAA** + RBV ^Ψ		
Characteristics	Ν	n (%)	Ν	n (%)	Ν	n (%)	Ν	n (%)	
Overall	447	418 (93.5%)	145	132 (91.0%)	1411	1352 (95.8%)	638	587 (92.0%)	
16 Meh	324	314 (93.8%)	112	102 (91.1%)	988	945 (95.6%)	510	468 (91.8%)	
18 Women 20	123	114 (92.7%)	33	30 (90.9%)	423	407 (96.2%)	128	119 (93.0%)	
	114	106 (93.0%)	45	41 (91.1%)	434	397 (91.5%)	359	321 (89.4%)	
Non-cirrhotic	306	286 (93.5%)	88	81 (92.0%)	897	876 (97.7%)	237	227 (95.8%)	
25 Treatment naïve	213	198 (93.0%)	36	32 (88.9%)	645	630 (97.7%)	209	196 (93.8%)	
27 Tæatment experienced	234	220 (94.0%)	109	100 (91.7%)	691	650 (94.1%)	381	348 (91.3%)	
29 Genotype 1	258	243 (94.2%)	55	51 (92.7%)	1001	971 (97.0%)	292	274 (93.8%)	
31 Genotype 2	10	10 (100.0%)	12	10 (83.3%) [§]	25	25 (100.0%)	55	44 (80.0%) [∆]	
Genotype 3	43	41 (95.3%)	42	39 (92.9%)	168	150 (89.3%)	166	152 (91.6%)	
Genotype 4	126	115 (91.3%)	34	30 (88.1%)	186	176 (94.6%)	120	112 (93.3%)	
38 Genotype 5/6/7	3	3 (100.0%)	0	-	17	17 (100.0%)	4	4 (100.0%)	
40 Treated for 12 weeks	338	312 (92.3%)	82	74 (90.2%)	1181	1138 (96.4%)	437	401 (91.8%)	
42 Treated for 24 weeks	109	106 (97.2%)	63	58 (92.1%)	230	214 (93.0%)	201	186 (92.5%)	
44 Undetectable HIV [‡] viral load	362	342 (94.5%)	126	115 (91.3%)	-	-	-	-	
46 \mathbf{D}_{48}^{47} ectable HIV [‡] viral load	62	55 (88.7%)	12	11 (91.7%)	-	-	-	-	

(11) or Sofosbuvir + Daclatasvir (1)

б

Sofosbuvir + interferon (1), or Sofosbuvir (53) or Sofosbuvir + Simeprevir (1), ^Δ Participants treated by Sofosbuvir

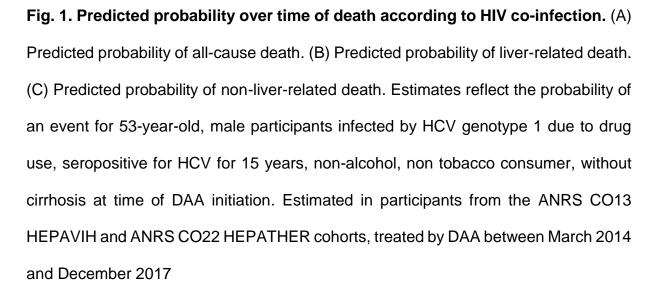
Table 3. Association between HIV co-infection and risk of all-cause, liver-related and non-liver-related death in HCV infected participants from the ANRS CO13 HEPAVIH and ANRS CO22 HEPATHER cohorts.

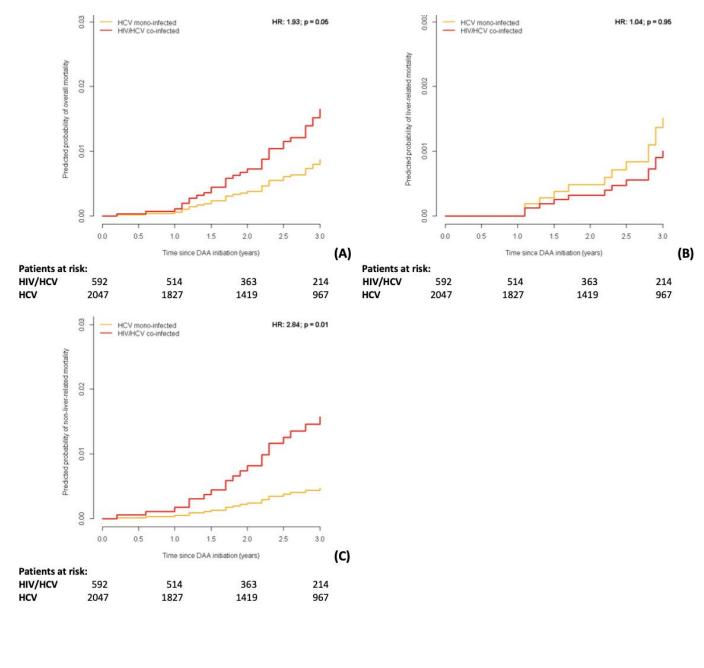
8	All-cause death		Liver-related of	death	Non-liver-related death		
9 0 1			HR* [CI95%**]			p-value	
² 3 HCV [‡] mono-infected	Ref	0.05	ref	0.95	ref	0.01	
⁴ 5 ΗΙV^Ψ/HCV[‡] co-infected	1.93 [1.01 ; 3.69]		1.04 [0.34 ; 3.15]		2.84 [1.27 ; 6.36]		

* Hazard ratio, ** Confidence interval at 95%, [‡]Hepatitis C virus, $^{\Psi}$ Human immunodeficiency virus

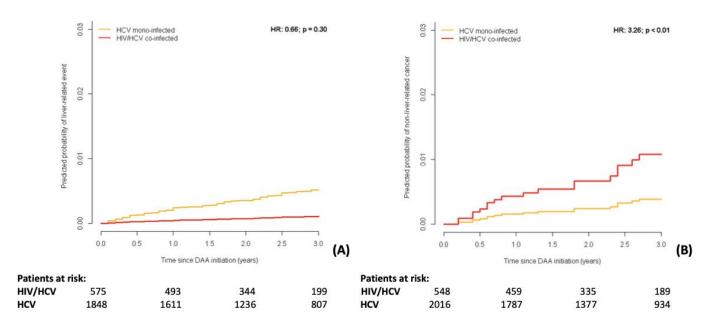
Adjusted on age, sex, time since first HCV seropositivity, HCV transmission routes, HCV genotype, cirrhosis, time

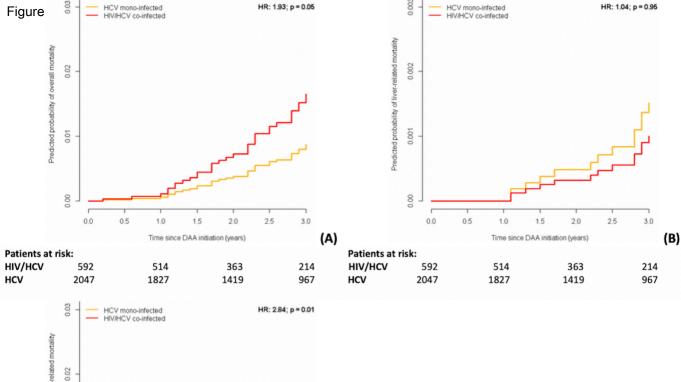
dependent SVR, alcohol consumption and tobacco consumption

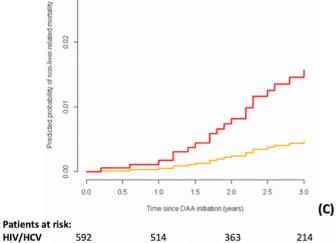

Table 4. Association between HIV co-infection and risk of liver-related events and nonliver-related cancers in HCV infected participants from the ANRS CO13 HEPAVIH and ANRS CO22 HEPATHER cohorts.

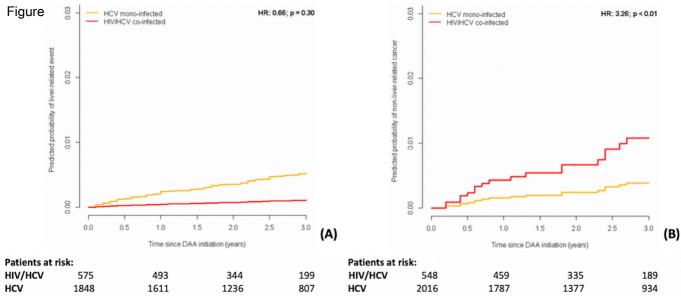

	L	iver-related ev	ents	Non-liver-related cancer			
	HR*	CI95%**	p-value	HR*	Cl95%**	p-value	
HCV [‡] mono-infected	ref	-	0.30	ref	-	< 0.01	
HIV ^Ψ /HCV [‡] co-infected	0.66	[0.31 ; 1.44]		3.26	[1.50 ; 7.08]		

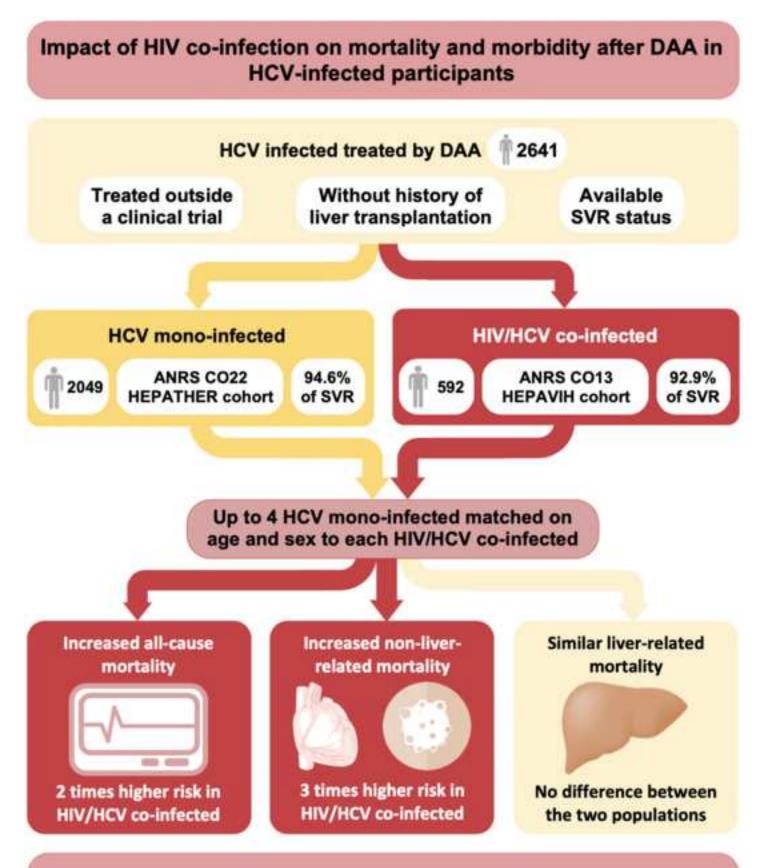
* Hazard ratio, confidence interval at 95%, [‡]Hepatitis C virus, ^ΨHuman Immunodeficiency virus


Adjusted on age, sex, time since first HCV seropositivity, HCV transmission routes, HCV genotype,


cirrhosis, time dependent SVR, alcohol consumption and tobacco consumption




Fig. 2. Predicted probability over time of events according to HIV co-infection. (A) Predicted probability over-time of liver-related-events. (B) Predicted probability over-time of non-liver-related cancers. Estimates reflect the probability of an event for 53-year-old, male participants infected by HCV genotype 1 due to drug use, seropositive for HCV for 15 years, non-alcohol, non tobacco consumer, without cirrhosis at time of DAA initiation. Estimated in participants from the ANRS CO13 HEPAVIH and ANRS CO22 HEPATHER cohorts treated by DAA between March 2014 and December 2017.



HCV

HIV increased risk of overall mortality, non-liver-related mortality but not of liver-mortality in HCV-infected patients

Highlights:

- Similar rates of SVR between HIV/HCV co-infected and HCV mono-infected participants
- Higher risk of all-cause deaths, non-liver-related deaths and cancers in HIV/HCV co-infected
- Similar risk of liver-related deaths and liver-related events in both populations

Supplementary material

Click here to access/download Supplementary material SUPLEMENTARY MATERIALS_2.0.docx