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A unified framework for the integration 
of multiple hierarchical clusterings or networks 
from multi‑source data
Audrey Hulot1,2,3*  , Denis Laloë1   and Florence Jaffrézic1 

Background
When integrating data in computational biology, we are often confronted with the prob-
lem of comparing outcomes from different types of data, with various forms of repre-
sentations [1–3]. These representations may either result from a learning algorithm 

Abstract 

Background:  Integrating data from different sources is a recurring question in com-
putational biology. Much effort has been devoted to the integration of data sets of the 
same type, typically multiple numerical data tables. However, data types are generally 
heterogeneous: it is a common place to gather data in the form of trees, networks or 
factorial maps, as these representations all have an appealing visual interpretation that 
helps to study grouping patterns and interactions between entities. The question we 
aim to answer in this paper is that of the integration of such representations.

Results:  To this end, we provide a simple procedure to compare data with various 
types, in particular trees or networks, that relies essentially on two steps: the first step 
projects the representations into a common coordinate system; the second step then 
uses a multi-table integration approach to compare the projected data. We rely on 
efficient and well-known methodologies for each step: the projection step is achieved 
by retrieving a distance matrix for each representation form and then applying multidi-
mensional scaling to provide a new set of coordinates from all the pairwise distances. 
The integration step is then achieved by applying a multiple factor analysis to the 
multiple tables of the new coordinates. This procedure provides tools to integrate and 
compare data available, for instance, as tree or network structures. Our approach is 
complementary to kernel methods, traditionally used to answer the same question.

Conclusion:  Our approach is evaluated on simulation and used to analyze two real-
world data sets: first, we compare several clusterings for different cell-types obtained 
from a transcriptomics single-cell data set in mouse embryos; second, we use our 
procedure to aggregate a multi-table data set from the TCGA breast cancer database, 
in order to compare several protein networks inferred for different breast cancer 
subtypes.
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(e.g. dimension reduction, hierarchical clustering or network inference) or they may be 
extracted from a data base, reflecting our knowledge about a complex biological process.

As a simple example in genomics, several hierarchical clusterings of individuals can 
be obtained based on transcriptomics, proteomics or metagenomics experiments, giv-
ing birth to several tree-like representations which need to be compared and eventually 
aggregated. Such an analysis is essential to better understand the data and to obtain a 
consensus clustering from coherent trees.

A review of omics data integration methods is provided by Ritchie et al. [4] in a pre-
diction perspective, which also applies to exploratory and unsupervised questions like 
clustering. In [4], data integration methods are classified into three categories: concat-
enation-based integration, transformation-based integration and model-based integra-
tion. For the last two categories, different omics and different types of objects can be 
integrated together in theory. However, most methods developed for this purpose and 
described in [4] involve similar objects for integration in practice.

Among them, a majority consider that the original data tables, i.e. data in the form of 
a table with observations and features, from which the objects are derived are available, 
which is not always the case in reality.

Regarding objects provided in the form of trees or networks, the literature is more 
specific, and treats separately the question of comparing such objects or of creating con-
sensus from a collection of them. A detailed review is given in [5] on the question of 
network comparison, which usually involves a representation of those networks by the 
adjacency matrices or using methods for a graph embedding [6]. Comparison of a set of 
trees often relies on distances between trees, for example using Robinson-Foulds metric 
[7, 8] as in phylogenetics. Creating a consensus out of a set of objects is a natural next 
step in the integration process following the comparison of objects, hence it is a recur-
ring question in research area studying data integration.

The procedure that we introduce in this paper answers the comparison and integration 
questions simultaneously, and can be applied to a variety of data representation broader 
than just tree or network structures. In a nutshell, the contribution of this paper is a 
unified and simple way of comparing and integrating data with various representation 
forms (like trees, networks or factorial maps). It relies on a two-step strategy which phi-
losophy is close to unsupervised multiple kernels: the first step consists in finding a way 
to project all these objects into a comparable coordinate system.

This leads to new collection of data tables which are analyzed in a second step by 
means of any multi-table integration method. The specificity of our approach is to 
combine multidimensional scaling (MDS) [9, 10] and Multiple Factor Analysis (MFA) 
[11–13] to perform these two steps: the MDS allows us to calculate coordinates from 
distances or dissimilarities, obtained from trees, networks or factorial maps. Then, MFA 
provides a canonical framework to perform multi-table analysis, bringing powerful tools 
to study the relationships between tables of data, and to quantify the similarities and 
differences between them. In fact, our process fits into the multiple kernel methods 
framework [2, 14, 15]. We define here a procedure where everything is automated for the 
integration process, as the user has very few, if none, parameters to define.

Our procedure is particularly useful in the case where we are given a set of trees or 
networks, or any object set we want to compare, without the original data. For example, 
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networks of protein-protein interaction or ecological networks are available on data-
bases without any indication of the data they have been built on [16–18]. This can also 
be useful to compare different ways to transform the data, e.g. using different distances 
or aggregation criteria to build the trees.

The rest of the paper is organized as follows: first, we give details about the proposed 
methodology. Then its performance is evaluated on simulated data and compared to a 
multiple kernel integration method, and two real-world data sets are analyzed: the first 
one is a single-cell data set that illustrates the comparison of clusterings for different 
cell-types in mouse embryos. The second one is a -omic data set from the TCGA breast 
cancer database, for which several PPI networks are compared and aggregated for differ-
ent breast cancer subtypes.

Methods
In order to compare and aggregate trees or networks, in the context of multi-source data 
analysis, we adopt the general 2-step approach described in Fig. 1, which can be sum-
marized as follows: 

1	 Projection. This step aims at projecting every source of data that are not available in 
the form of data tables, i.e. in a form with observations and features, into a Euclidean 
space. This is achieved as follows:

(a)	 Represent all data sources other than data tables in the form of distance or dis-
similarity matrices.

(b)	 Place these distances in the same coordinate system.

2	 Integration. In this step, all data tables available are integrated together.

Fig. 1  Workflow description of the process



Page 4 of 20Hulot et al. BMC Bioinformatics          (2021) 22:392 

(a)	 Apply multi-table analysis This integration is achieved through a multitable 
method, e.g MFA, multiple coinertia analysis [19], STATIS [20, 21], multiblock 
PLS [22]…, see [23] for a recent review of multitable integration methods.

(b)	 Use factorial representation for comparing the projected data and creating a 
consensus.

Step 1 is done by retrieving a distance matrix specific to either trees or networks (see 
details below) and then applying multidimensional scaling (MDS), which provides a 
new set of coordinates from all these pairwise distances. These new coordinates can be 
interpreted the same way as original multi-source data and all methods available for the 
analyses of such data sets can be used for Step 2 (integration). We chose Multiple Fac-
tor Analysis (MFA), which allows us to position the different objects on a factorial map. 
These two methods require to chose the number of axes to retain.

Any object that can be summarised in the form of a dissimilarity matrix can be inte-
grated using the two steps. We would like to point out that any data, categorical or quan-
titative (original data, factorial maps, clinical outcome…), as long as it is computed on 
the same individuals, can be integrated in step two.

This provides tools for identifying objects that have similar patterns across vari-
ous conditions, for positioning them on maps and for creating groups of objects that 
are interesting to aggregate together. Once the groups of objects are formed, MFA axes 
allow to create further analyses at the individual level, such as consensus hierarchical 
clustering.

Multidimensional scaling

We will refer here to the classical Multidimensional scaling (MDS), introduced by [9]. 
The goal of the method is to find coordinates X of data given a dissimilarity matrix � 
between individuals.

Consider a matrix of dissimilarities � , and �2 the matrix of squared coefficients of � , 
the double-centered matrix is defined as B = − 1

2 J�
2J  , where J = I − 1

n11
T is the cen-

tering matrix. The classical scaling [10, 24] minimizes the strain: 
∥

∥XXT − B
∥

∥

2 where X 
are the coordinates we search for. The solution can be shown to verify X = Q+�

1/2
+  with 

�+ being the diagonal matrix with the non negative and non-zero eigenvalues of B, and 
Q+ the corresponding eigenvectors. If � is a Euclidean distance matrix, which according 
to [25, 26] is equivalent to − 1

2 J�
2J  being positive semi-definite, the MDS coordinates X 

are actually the original coordinates up to a rotation and a translation if X is not column-
centered (thus equivalent to Principal Component Analysis). In a context of Euclidean 
dissimilarity matrix, MDS is also equivalent to kernel-PCA [27, 28]. Indeed, B is a posi-
tive-definite matrix and hence a kernel.

Several variants of MDS exist to deal with matrices that are not positive semi-definite, 
such as the Cailliez’ method [29], which consists in adding a positive constant to the 
element outside of the diagonal to make the matrix positive definite. [30] proposed a 
similar method by adding a constant to the squared dissimilarities and taking the square 
root as the modified distances. When the dissimilarities are not produced by a distance 
function (metric), solutions for non-metric MDS are also available [31, 32]. In all our 
applications, we chose to take only the positive eigenvalues of B when needed.
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Our process yields the X = Q+�
1/2
+  matrix for each object in the first step, and 

passes them to the second step, the Multiple Factor Analysis, along with additional 
data tables if any are available.

Multiple factor analysis

Multiple Factor Analysis (MFA) is a method to jointly analyze several possibly het-
erogeneous data sets   [11, 12]. Let X1, . . . ,XQ be Q data tables, which can be either 
quantitative or qualitative data, with p1, . . . , pQ features observed for the same n indi-
viduals. In the context of this paper, some if not all of the Xq are provided by the first 
step of the process: the MDS.

The principle of MFA is to divide each data table by its first singular value to ensure 
the contributions of the data sets in the first axis are equal. Data tables are then con-
catenated and a PCA is performed on the concatenation of X1, . . . ,XQ each divided 
by its first singular value. This step is called global PCA in [12]. We will refer to it as 
gPCA in the following.

In the context of Euclidean distances, the first step of the MFA is redundant with 
the MDS and a unique MFA can be performed on the double centered distance matri-
ces B as input. As in this case B is a kernel matrix, using MFA on a set of B matrices 
can also be seen as a kernel-MFA, given the equivalence of kernel-PCA and MDS. The 
combination of MDS and MFA can be considered as an extension of the MFA to the 
non-Euclidean dissimilarities.

A great advantage of the use of MFA in integrating data is that it provides several 
scores to compare the different tables, as well as axis coordinates that allow the visu-
alization of features, individuals and tables on a factorial map. In this study, we will 
use in particular the group coordinates obtained from the MFA analysis.

Group coordinates

The data sets X1, . . . ,XQ can be positioned on each component using their contribu-
tion to the gPCA . Let X̃  be the concatenation of X1, . . . ,XQ each divided by its first 
singular value. The gPCA factorizes X̃  with singular value decomposition into U�VT  , 
where V is the matrix of the loadings. The loadings can be decomposed into subsets 
V = [V(1), . . . ,V(Q)] delimited by the number of variables in each table. With �ℓ the 
ℓ th entry of � , the coordinate of table Xq along axis ℓ is defined by

with pq being the number of variables of table Xq , and ctrbq,ℓ the contribution of table q 
on dimension ℓ of the gPCA.

Using these group coordinates, we propose to create a clustering of the tables. In 
the following, we use hierarchical clustering, but any clustering method can be con-
sidered. The tables are then gathered according to their similarity and can be analyzed 
together within groups.

(1)coordq,ℓ = �ℓ ×
pq
∑

j=1

V 2
(q) ℓ,j = �ℓ × ctrbq,ℓ,
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Creating a consensus from MFA results

In this section we give details about how we intend to build consensus trees and networks 
from MFA results, as it is the multi-table analysis chosen here. As mentioned earlier, other 
multi-table methods could also be used.

To compute a consensus hierarchical clustering given the MFA results, we will refer to 
the clusters made on the group coordinates. Let T1, . . . ,Tk1 be a group of trees defined as 
previously described. The same process of cophenetic distances, MDS and MFA is applied 
on these trees. A consensus clustering is then obtained by performing a hierarchical clus-
tering (or any other clustering method) on the individual coordinates obtained by the MFA.

When creating a network consensus, once the groups of networks are formed using the 
group coordinates of the MFA, a consensus network is created by using a majority rule con-
sensus on the original adjacency matrices, i.e. an edge is kept if it is present in more than 
half of the networks in the identified groups.

A common representation for trees and networks
This section details the different ingredients used in the method presented above: we 
explain how the distance matrices can be retrieved when focusing on network or tree struc-
tures, although any object that can be represented by a distance or dissimilarity matrix can 
be used in our procedure.

Retrieve a distance matrix from a tree

Consider a hierarchical tree obtained with any hierarchical clustering (it can be a non-
binary tree). Recall that the cophenetic distance between two leaves of a tree is the height 
where the two leaves or their cluster are merged. Hierarchical trees can then be summa-
rized by a symmetrical matrix using the cophenetic distance [33]. In the context of MDS, 
it is best to use Euclidean distances to avoid numerical issues while computing the coor-
dinates. It is shown in [34] that the distances extracted from a ultrametric tree can always 
be considered as Euclidean distances. All hierarchical clusterings built on a distance and 
aggregation criterion are ultrametric trees, therefore applying MDS to a cophenetic matrix 
requires no further transformation of the matrix in this particular case.

Retrieve a distance matrix from a network

Consider an undirected binary graph: we suggest to build a distance matrix from this graph 
by means of the shortest path distance between all pairs of nodes, before applying MDS. 
The shortest path distance is defined as the minimum number of edges to cross to go from 
one node to another. The shortest path distance between two unconnected nodes is gen-
erally set to infinity. This method can also be applied to weighted graphs with positive 
weights, where the cost of a path is understood as the sum of weights along the edges of the 
path.

Results
In this section we describe the results obtained on simulated data, in order to evaluate 
the performances of the proposed method, as well as on two real data sets. Analyses 
were performed with R 4.0.2 [35]. All code and data are available at https://​github.​com/​
AudreH/​intTr​eeNet.

https://github.com/AudreH/intTreeNet
https://github.com/AudreH/intTreeNet
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Hierarchical clustering was performed using Euclidean distance and Ward’s aggre-
gation criterion as implemented in the “ward.D2” option of the hclust R function [36]. 
All trees were transformed using the cophenetic base function. Using cmdscale, the new 
data coordinates from the MDS approach were obtained. MFA was performed using the 
MFA function from the factoMineR package [37]. To assess the differences between 
clusterings, we used the Adjusted Rand Index (ARI) [38, 39] from the aricode R-pack-
age [40], which measures the agreement between two classifications. To determine the 
groups in a hierarchical clustering, we used the DynamicTreeCut method as imple-
mented in the R-package of the same name [41]. This method identifies groups based 
on the structure of the tree and the distance matrix used to build the tree. In the graph 
application, the shortest path distance is computed using the distances function of the 
igraph R-package [42] and default parameters.

We compare the results of our process to the ones obtained by combining kernels. 
When needed, distance or dissimilarity matrices � are transformed into similari-
ties using the double-centering formula: B = − 1

2 J�
2J  . To ensure that matrix B can be 

considered a kernel, it is reconstructed using only positive eigenvalues. For the inverse 
transformation, from a similarity (kernel) matrix S to a distance/dissimilarity one, we 
use the formula: ∀(i, i′), �ii′ =

√
Sii + Si′i′ − 2Sii′ .

To compare the kernels between them, we use the similarity coefficient computed 
as the cosine of the Frobenius norm between kernel matrices, as described in [2]. The 
matrix of these coefficients is then transformed into dissimilarity, and hierarchical clus-
tering is performed using complete-linkage.

We use the mixKernels R-package [2] with the option “full-UMKL” (full Unsuper-
vised Multiple Kernel Learning) and default parameters to find a consensus kernel after 
we identify the kernel clusters.

Simulation study in the case of clusterings

In this first set of simulations, Q = 9 tables with p = 1000 variables and n = 100 individ-
uals were generated according to three different patterns of classification with K = 4, 3 
and 5 groups for each pattern, respectively. The chosen patterns of classifications are 
very different, with an ARI close to 0 between them. Observation j for individual i of 
table q when i is in group k follows a Gaussian distribution, i.e.,

Each observation is generated according to Eq.  (2), with the mean depending on the 
group of the individual and the variance depending on the table number. A total of 9 
trees of 100 individuals were built from these tables and MDS was performed on each 
cophenetic distance matrix.

Figure  2 presents the hierarchical clustering obtained on the coordinates of the 
trees and the factorial maps of the data set. Tables with the same classification are 
grouped together in the hierarchical clustering, as well as on the first two axes of the 
MFA. The first axis differentiates the tables from the first classification from the oth-
ers, the second axis differentiates the tables from classification 3 from the rest. These 

(2)
i ∈ {1, . . . , n}, j ∈ {1, . . . , p}, k ∈ {1, . . . ,Kq}, q ∈ {1, . . . ,Q},

i ∈ k , Y
q
i,j = N (µk , q

2)
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observations made on the group coordinates are visible in the hierarchical clustering 
as the level of division between elements reflects the axis on which the separation is 
found (e.g. third division in the tree separates Tree 6 from its group, and is found on 
axis 3 of the MFA).

The hierarchical clustering performed on the group coordinates and the classifica-
tion of the tables made by DynamicTreeCut can help identify the trees that are close 
in terms of underlying information. The three groups of trees that we identify using 
DynamicTreeCut are the three groups of tables we simulated.

This approach allowed to visualize and compare the different clusterings before cal-
culating a consensus tree. In this example, it would not make sense to try to aggregate 
all the trees, as they have very different structures, given that the ARI between the 
classifications used to generate the data is close to 0, as mentioned above.

The consensus trees can be obtained by performing a hierarchical clustering on the 
individual coordinates of the MFA axes (see Additional file  1). Results of the three 
consensus trees based on the identified sub-groups of data are presented in Fig.  3. 
As expected, inside a group of tables we retrieved the original classification, and did 
not find any information on the other classifications. On the other hand, in the con-
sensus tree obtained with all the tables, none of the simulated classification patterns 
were recovered, with a maximum ARI of 0.51 obtained for classification 1 as shown in 
Table 1.

Comparison with kernel combination method

We transformed the cophenetic distances into similarities using the double center-
ing formula. These new matrices are considered kernels as they are Gram matrices. 
The similarities between kernels are represented in Fig. 4. As for the previous results, 
there was a clear separation of the three groups of trees. The DynamicTreeCut 
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Fig. 2  Results for the simulation study on hierarchical clustering data. 3 classifications with K = 4, 3 and 5 
groups respectively were simulated following Eq. 2 (A) represents the hierarchical clustering obtained with 
the MFA group coordinates, performed with Euclidean distance and ward.D2 aggregation criterion. (B) 
represents the factorial map for axes 1 to 5 of the MFA, these group coordinates were used to compute the 
hierarchical clustering on (A)



Page 9 of 20Hulot et al. BMC Bioinformatics          (2021) 22:392 	

0
5

10
15

20
25

Consensus Tree 
 global MFA

Class.1Class.2Class.3

0
5

10
15

20
25

Consensus Tree 
 Group 1

Class.1Class.2Class.3

0
5

10
15

20

Consensus Tree  
 Group 2

Class.1Class.2Class.3

0
5

10
15

20

Consensus Tree  
 Group 3

Class.1Class.2Class.3
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Table 1  ARI results for the simulation study on hierarchical clustering 

Maximum ARI (Adjusted Rand Index) between each tree and simulated classification, for the MFA combination and kernel 
combination consensus trees. Bold font indicates the maximum ARI compared to the simulated classification, for each 
consensus tree

Global Consensus Consensus Group 1 Consensus Group 2 Consensus 
Group 3

MFA combination

Class. 1 0.51 1 0.01 0.04

Class. 2 0.34 0.02 1 0.03

Class. 3 0.22 0.01 0.02 1
Kernel combination

Class. 1 0.24 0.98 0.01 0.04

Class. 2 0.25 0.01 1 0.01

Class. 3 0.61 0.01 0.01 1

Tree_3

Tree_1

Tree_2

Tree_6

Tree_4

Tree_5

Tree_8

Tree_7

Tree_9

−0.50.00.51.01.5
Height

Hierarchical clustering of simulated treesA)

0.01

0.11

0.21

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ee

_3

Tr
ee

_1

Tr
ee

_2

Tr
ee

_6

Tr
ee

_4

Tr
ee

_5

Tr
ee

_8

Tr
ee

_7

Tr
ee

_9

Tree_3

Tree_1

Tree_2

Tree_6

Tree_4

Tree_5

Tree_8

Tree_7

Tree_9

0.96

0.96

0.96

1

0.96

1

0.75

0.73

0.75

1

0.73

1

0.67

0.58

0.67

0.99

0.58

0.99

B)

Fig. 4  Results for the simulation study on hierarchical clustering data for kernel combination. 3 classifications 
with K = 4, 3 and 5 groups respectively were simulated following Eq. 2 (A) represents the hierarchical 
clustering obtained with the distance matrix derived from the consensus kernel, performed with complete 
linkage. B represents the C-coefficient between the cophenetic kernel tables, on which (A) was built and 
ordered according to the hierarchical clustering of (A)



Page 10 of 20Hulot et al. BMC Bioinformatics          (2021) 22:392 

package gave us 3 groups. The kernels corresponding to these groups were combined 
into 3 consensus kernels, then transformed into dissimilarity matrices. Hierarchical 
clustering with complete linkage was performed to retrieve the three corresponding 
consensus trees, as represented in Fig. 5, with the global consensus tree built on the 
global consensus kernel.

The three consensus trees, made on the three groups of trees, retrieve the simulated 
classification without difficulty in this situation. It is interesting to note that the two 
approaches give a tree with a similar grouping pattern, although the overall structures 
of these trees are slightly different. The consensus trees obtained on the global results 
for each method are also slightly different, as seen in Table 1: the global consensus made 
on MFA results is closer to the first classification while the global consensus of the ker-
nel combination is closer to the third classification. This highlights the main difference 
between these approaches, i.e. the way of building the consensus either from the indi-
vidual coordinates given by the MFA or with a combined kernel.

Simulation study on network data

A similar simulation setup was used for the network data: Q = 9 adjacency matrices with 
n = 100 were simulated according to three different classification patterns, with an ARI 
close to 0 between them, of K = 4, 3 and 5 groups respectively. The presence or absence 
of an edge between two nodes was generated according to Eq. 3, with connection prob-
abilities depending on the group the nodes are in. We chose πkl = 0.05 for k  = l and 
πkk = 0.8.

The shortest path was then computed, and transformed into new data using the MDS. 
Results of the MFA are shown in Fig. 6, presenting the factorial maps for the objects, as 
well as a clustering obtained from the MFA coordinates.

Figure  7 shows the majority-vote consensus obtained with the groups formed by 
the hierarchical clustering. The original classifications were recovered very well in the 
networks, as the nodes are grouped in the network according to their simulated clas-
sification. The connection probability inside a cluster is far superior to the one between 

(3)
i, j ∈ {1, . . . , n}, k , l ∈ {1, . . . ,Kq}, q ∈ {1, . . . ,Q},

i ∈ k , j ∈ l A
q
i,j = B(πkl)
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Fig. 5  Results for the simulation study on hierarchical clustering data kernel combination. Consensus trees 
obtained on 4 configurations, with colored bars representing the simulated classifications



Page 11 of 20Hulot et al. BMC Bioinformatics          (2021) 22:392 	

groups, which is exactly what we simulated. To provide a quantitative measure of the 
resemblance between the simulated networks and consensus obtained, we computed the 
true positive rate, false positive rate and the true discovery rate between the estimated 
and simulated networks, using the compareGraphs function of the pcalg R-package. 
The results are shown in Table 2. There is little difference between the consensus within 
each group and the simulated graphs, the true discovery rates are always greater than 0.8 
between these networks.

Comparison with kernel combination method.

Using the same transformation on the shortest path distance matrices to find dissimilari-
ties, we performed a kernel combination using mixKernels, and built a hierarchical 
clustering with complete linkage to find the tree and the similarities between kernels 
represented in Fig.  8. The tree gave us the same three groups as for the MFA results 
with a different junction structure, as already noticed in the tree simulations. The way of 
creating a consensus network for each of these groups does not change here: a majority 
vote applied on the adjacency matrices gave us the same results as the ones presented in 
Fig. 7.
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MFA. Nodes are colored according to their group used for simulating the data



Page 12 of 20Hulot et al. BMC Bioinformatics          (2021) 22:392 

Application to single‑cell data

In this application, we created hierarchical clusterings of genes given a set of data 
tables, and considered the trees as the only available source of data. We applied our 
procedure as well as the kernel approach to help group the trees together.

The data we used in this section are presented in [43]. They come from 411 mouse 
embryos, collected at different time points, from day 6.5 to day 8.5. Transcriptome 
expression is available for 116,312 cells. The authors divided these cells into 37 groups 
that we will call cell-types. For this application we only used the samples from the 
first stage (E6.5), deleted all genes that had a mean count of less than 10−3 , as well as 
genes on the Y chromosome and the Xist gene, as the authors did in their analysis—
the original code, and particularly the block of code that removes the Y chromosome 

Table 2  Results on network simulations—comparison between consensus networks by 
groups found with MFA hierarchical clustering of networks 

The consensus networks found with Kernels combination results are identical

Net_1 Net_2 Net_3 Net_4 Net_5 Net_6 Net_7 Net_8 Net_9

Consensus 1

tpr 0.85 0.84 0.84 0.27 0.27 0.26 0.30 0.29 0.29

fpr 0.05 0.05 0.05 0.24 0.24 0.24 0.24 0.24 0.24

tdr 0.85 0.86 0.86 0.33 0.33 0.32 0.24 0.24 0.23

Consensus 2

tpr 0.32 0.33 0.32 0.87 0.87 0.87 0.33 0.32 0.33

fpr 0.30 0.30 0.30 0.06 0.06 0.06 0.30 0.30 0.30

tdr 0.26 0.27 0.26 0.85 0.86 0.86 0.21 0.21 0.21

Consensus 3

tpr 0.22 0.23 0.22 0.20 0.21 0.20 0.79 0.80 0.81

fpr 0.18 0.17 0.18 0.18 0.18 0.18 0.04 0.03 0.03

tdr 0.29 0.31 0.30 0.33 0.34 0.33 0.84 0.86 0.85
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Fig. 8  Results for the simulation study on network data with kernels combination. 3 classifications with 
K = 4, 3 and 5 groups respectively were simulated following Eq 3. A Represents the hierarchical clustering 
obtained with the distance matrix derived from the consensus kernel, performed with complete linkage. B 
Presents the C-coefficients of the network kernels, on which (A) was made
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and the Xist gene, can be found at https://​github.​com/​Mario​niLab/​Embry​oTime​cours​
e2018/​blob/​master/​analy​sis_​scrip​ts/​atlas/​core_​funct​ions.R. These two steps led to 
the analysis of 15,086 genes and 3520 samples.

Following the procedure explained by [43], we selected the most variable genes using 
the scran R-package and the function modelGeneVar. In total, 318 genes were selected 
by taking a threshold of 0.1 for the adjusted p-values.

Samples were then divided according to their cell-type. Cell-types with only one sam-
ple were discarded. The cell-types and the number of samples for each one are presented 
in Table 3. This pre-processing of the data resulted in a set of 7 tables with transcrip-
tome expression available for the same genes. One tree per table was then built, con-
sidering the genes as the leaves. We applied the method presented above on these trees 
in order to compare them, using the group coordinates of the MFA, and aggregate the 
most coherent ones. First, the MDS was applied to the trees from which 317 axes were 
obtained for each cell-type tree and used for the MFA analysis.

The cell-types were then grouped in clusters using a hierarchical clustering on their 
coordinates. Figure  9 shows this hierarchical clustering, as well as the factorial maps 
obtained with the MFA. Using the DynamicTreeCut function with minimal cluster size 
of 1, we defined three groups of cell-types.

Table 3  Number of samples per cell-type for the single cell application 

Group Nb Samples

Epiblast 2276

ExE ectoderm 633

ExE endoderm 126

Nascent mesoderm 4

Parietal endoderm 10

Primitive Streak 381

Visceral endoderm 52
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Fig. 9  Visualization of groups given by MFA for the single-cell data application. (A) Dendrogram of the 
cell-types obtained on group coordinates of the MFA results using Euclidean distance and Ward’s aggregation 
criterion. Clusters were chosen using function DynamicTreeCut and colored accordingly. (B) Factorial maps 
for axes 1 to 5 of the MFA, these group coordinates were used to compute the hierarchical clustering on (A). 
Objects are colored according to their group in the tree

https://github.com/MarioniLab/EmbryoTimecourse2018/blob/master/analysis_scripts/atlas/core_functions.R
https://github.com/MarioniLab/EmbryoTimecourse2018/blob/master/analysis_scripts/atlas/core_functions.R
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In the supplementary data of [43], the authors presented a map of the cell-types for 
every timepoint. The map of E6.5 shows roughly three groups of cell-types: the first one 
consisting in Epiblast, Rostral neurectoderm, Primitive Streak, Surface ectoderm and 
Nascent mesoderm, the second one in ExE endoderm and Visceral endoderm and the 
third one of Parietal endoderm and ExE ectoderm. The samples from Rostral neurec-
toderm and Surface ectoderm were discarded here as there was only one sample for 
each cell-type. In the clustering we obtained, the map is well reflected as the three main 
groups are retrieved, and the first and second groups are closer to each other than the 
third group. The kernel combination method yields a result similar in terms of groups, 
however the tree presents a different branching pattern. The kernel tree is presented in 
the supplementary figure of Additional file 2.

Using the gene coordinates obtained with the MFA, we created a global consensus 
hierarchical clustering and three consensus trees corresponding to each group of identi-
fied cell-types. These trees are presented in Fig. 10 and the obtained groups of genes can 
be used for further functional analyses.

Application to breast cancer data

The data used in this section are downloaded from the TCGA website using the curat-
edTCGAData [44]R-package.

Network integration

In this application, we will work at the protein level, this time building networks and 
considering them as the only source of data. The goal is once again to study how these 
objects can be grouped. We did not perform here further analyses of the individual coor-
dinates, but it would also be possible.

Data are protein expression from 777 patients with breast cancer, divided into 4 sub-
types: Basal-like ( n = 151 ), HER2-enriched ( n = 85 ), Luminal A ( n = 283 ), Luminal B 
( n = 258 ). In this data set, p = 173 proteins were expressed in at least one sample of any 
subtype.

Using the limma R-package [45] to perform a differential analysis, we selected the 5 
first proteins by order of adjusted p-value, for each contrast between subtypes, which 
provided 15 unique proteins. Networks associated with each subtype were inferred using 
glasso [46, 47] on centered data, and the Bayesian information criterion (BIC) [48] was 

Fig. 10  Consensus clusterings given by MFA for the single-cell data application. Hierarchical clustering 
obtained by using Euclidean distance and Ward’s aggregation criterion on the global MFA individuals (in this 
context, genes) coordinates and on the sub-groups MFA
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used to select the adequate level of penalty, as implemented in the huge R-package [49]. 
All non-zero coefficients were set to 1 in the adjacency matrices. Using these networks 
as the set of objects we want to study, and the shortest path distance, we obtained new 
coordinates by MDS, that were then used in the MFA analysis. The hierarchical clus-
tering based on the objects coordinates provided two groups, consisting in the Luminal 
A and B subtypes in one group and the HER2-enriched and Basal-like subtypes in the 
other.

The clustering of the subtype networks, obtained on the MFA group coordinates, as 
well as for the consensus networks obtained by majority-rule are shown in Fig. 11. The 
results obtained for the kernel combination were exactly the same in this case in terms 
of network groups and therefore consensus networks.

Tree integration

In this part, we work on four omics data tables, which correspond to measures of meth-
ylation, mirna, protein and gene expression (RNA-seq data) for 113 patients with breast 
cancer. As before, the patients are classified into four subtypes: Basal(n = 25 ), HER2-
enriched ( n = 19) , Luminal A ( n = 35 ), Luminal B ( n = 34 ). Features with null variance 
were removed prior to creating the trees. For the RNA-seq data, we also removed the 
genes having a mean count lower than 1 per sample, and transformed the data using 
x  → log2(x + 1) transformation. These filters provided 222 proteins, 810 mirnas, 17,756 
genes and 22,569 methylation sites.

Results of the MDS and MFA combination, retaining 10 axes for the MDS and 5 axes 
for the MFA, are presented in Fig. 12. Figure 12C shows that the mirna table does not 
reflect the same information as the other tables, which is confirmed by the clustering 
of the tables presented in Fig. 12A. Indeed, the DynamicTreeCut procedure chose two 
groups: RNA-seq, protein and methylation data tables in the first one, and mirna alone 
in the second one.

We compared each individual tree and the consensus tree with the subtype classifica-
tion using the Adjusted Rand Index (ARI). The mirna tree was found to have a lower ARI 
than all the other tables. The consensus tree made from the MFA axes is represented in 
Fig. 12B, with subtype indicated in the color bars. The consensus has a better ARI than 
all of the tables, demonstrating that the classification of the patients was improved by 
using this process. It was also robust to the low ARI value from mirna data table.
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from the adjacency matrices from the subtype groups found in (A)
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Discussion
In this paper we proposed a procedure to compare multiple objects built on the same 
entities, with a focus on trees and networks, in order to define coherent groups of these 
kind of structures to be further integrated.

Because its computation only relies on a singular value decomposition (SVD), and 
since we may have recourse to a truncated version of SVD, the procedure is very fast and 
appropriate to analyze a great number of objects. Our procedure was applied to simu-
lated data, both in the context of trees and networks. In both cases, three very different 
grouping information were generated. The method was able to retrieve these three dif-
ferent structures. Consensus trees and networks were then obtained based on the MFA 
results and were consistent with the simulated data for both the tree and network exam-
ples. We also analyzed two real data sets. A single-cell data set on mouse embryos was 
used to illustrate the performance of the methods on trees. Comparison with a cluster-
ing obtained in a previous study on these data [43] showed that the proposed methodol-
ogy can integrate several trees while preserving the biological meaning of the data. A 
TCGA breast cancer data set was also used to illustrate the process on network data. It 
emphasized two groups of breast cancer subtypes that are consistent with the literature. 
It also allowed to create two consensus networks that highlight differences in the pro-
tein interactions in these two groups. In both simulations and real data application, the 
procedure was shown to be an efficient and useful tool for the user to identify groups of 
data that are relevant to integrate. This procedure was compared to a kernel integration 
method for each of the simulations, as well as the real data examples. The results were 
found to be quite similar. For further analyses following the creation of groups of tables 
we chose to use an unsupervised method (hierarchical clustering). It is possible to create 
the groups with other methods.
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Fig. 12  TCGA breast cancer multi-omics application. (A) Shows the hierarchical clustering of the breast 
cancer subtypes obtained with MFA group coordinates. (B) Shows the consensus tree obtained using the 
MFA individual coordinates. C Shows the adjusted rand index obtained for the individual trees and the 
consensus tree for 1 to 20 groups, with the maximum ARI highlighted
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The kernel approach and the procedure we present here are closely related. They give 
similar results in terms of grouping objects together, but rely on a different manner to 
build a compromise (i.e. coordinates that are used to create a consensus), as seen in the 
tree integration simulation.

We studied here the integration of data of the same types (trees or networks), but our 
procedure can integrate them together, along with other types of representations. An 
interesting point to be further investigated would be the integration of additional infor-
mation such as clinical data. This would indeed be possible thanks to the use of MFA 
that can deal with data of various types (continuous and categorical).

Any metric or transformation of the objects can be used as long as it yields a dissimi-
larity matrix usable in the MDS step. In this paper, we used binary adjacency matrices 
with shortest path distance for the networks, and cophenetic distances for the trees, and 
computed kernels derivated from these metrics. Any dissimilarity or distance measure, 
as well as adapted kernels, can be used in the process.

In the results presented here, we sticked to simple choices of methods to build the 
trees and networks, namely hierarchical agglomerative clustering and glasso. The use 
of different methods like self-organising maps [50] or bayesian hierarchical clustering 
[51] might lead to different results, especially as the MFA is an exploratory method. 
The unsupervised and exploratory aspects are particularly visible in the TCGA-tree 
application, where the consensus ARI was still quite low despite being an improvment 
compared to each individual tree. MFA is an unsupervised descriptive and exploratory 
method, and is therefore not dedicated to supervised analyses implicitly searching for 
differences among factors. However, such supervised analyses may be done in the frame-
work of MFA using for example the multiblock redundancy analysis [52], extending the 
redundancy analysis, which is a supervised version of PCA [53] to a multiblock context.

The process was applied here on real-life datasets where the separation between 
objects was clear, and where there was an informative signal in the omics datasets. It 
might be more difficult in the case of multifactorial diseases with less information in the 
multi-omics measurements.

The rationale of the method lies in the possibility of visualizing the data in a Euclid-
ean space, whatever their original form (network, dendrogram, etc.) We stayed in a 
Euclidean setting in our simulations and applications. In some cases, the use of Euclid-
ean representation might not be suitable or wanted by the user as it might distort the 
information. In this particular setting, the use of the kernel combination is needed, but 
will not allow representation of the results as factorial maps and will therefore be less 
interpretable.

We have illustrated our method with the shortest path distance and metric MDS, but 
this is not a requisite, and our method can be easily extended to any combination of dis-
tance and dimensional scaling (metric or not metric), provided it leads to such a Euclid-
ean representation.

Conclusion
In this paper we proposed a procedure to compare multiple objects built on the same 
entities, with a focus on trees and networks, in order to define coherent groups of these 
kind of structures to be further integrated.
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The procedure relies on two well-known methodologies, namely multidimensional 
scaling (MDS) and Multiple Factor Analysis (MFA), that offer a unified framework to 
analyze both tree or network structures. The proposed approach provides tools to com-
pare the structures and to easily obtain consensus trees or networks.

The use of MFA allows the users to access a great number of libraries to help visualize 
the results, as well as to perform further analyses on individual coordinates.
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