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Objective: To investigate changes in the urine metabolome of very low birth weight preterm
newborns with necrotizing enterocolitis (NEC) and feed intolerance, we conducted a
longitudinal study over the first 2months of life. The metabolome of NEC newborns was
compared with two control groups that did not develop NEC: the first one included preterm
babies with feed intolerance, while the second one preterm babies with good feed tolerance.

Methods: Newborns developing NEC within the 3weeks of life were identified as early onset
NEC, while the remaining as late onset NEC. Case-control matching was done according to
the gestational age (±1week), birth weight (± 200 g), and postnatal age. A total of 96 urine
samples were collected and analyzed. In newborns with NEC, samples were collected before,
during and after the diagnosis over the first 2months of life, while in controls samples were
collected as close as possible to the postnatal age of newborns with NEC. Proton nuclear
magnetic resonance (1H NMR) spectroscopy was used for metabolomic analysis. Data were
analyzed by univariate and multivariate statistical analysis.

Results: In all the preterm newborns, urine levels of betaine, glycine, succinate, and citrate
positively correlated with postnatal age. Suberate and lactate correlated with postnatal age
in preterms with NEC and in controls with food intolerance, while N,N-dimethylglycine
(N,N-DMG) correlated only in controls with good digestive tolerance. Preterm controls with
feed intolerance showed a progressive significant decrease of N-methylnicotinamide and
carnitine. Lactate, betaine, myo-inositol, urea, creatinine, and N,N-dimethylglycine
discriminated late-onset NEC from controls with good feed tolerance.

Conclusion: Our findings are discussed in terms of contributions from nutritional and
clinical managements of patients and gut microbiota.
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Reviewed by:
Simon Eaton,

University College London,
United Kingdom

Sanjay Keshav Patole,
KEM Hospital for Women,

United States

*Correspondence:
Michele Mussap

mumike153@gmail.com

Specialty section:
This article was submitted to

Metabolomics,
a section of the journal

Frontiers in Molecular Biosciences

Received: 13 March 2021
Accepted: 20 May 2021
Published: 15 June 2021

Citation:
Picaud J-C, De Magistris A,

Mussap M, Corbu S, Dessì A, Noto A,
Fanos V and Cesare Marincola F
(2021) Urine NMR Metabolomics

Profile of Preterm Infants With
Necrotizing Enterocolitis Over the First

Two Months of Life: A Pilot
Longitudinal Case-Control Study.

Front. Mol. Biosci. 8:680159.
doi: 10.3389/fmolb.2021.680159

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6801591

ORIGINAL RESEARCH
published: 15 June 2021

doi: 10.3389/fmolb.2021.680159

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.680159&domain=pdf&date_stamp=2021-06-15
https://www.frontiersin.org/articles/10.3389/fmolb.2021.680159/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.680159/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.680159/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.680159/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.680159/full
http://creativecommons.org/licenses/by/4.0/
mailto:mumike153@gmail.com
https://doi.org/10.3389/fmolb.2021.680159
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.680159


INTRODUCTION

Cellular metabolism plays a crucial role both in health and
disease, mirroring interactions between the host genome,
environment, and microbiome. Environmental and lifestyle
factors as well as traumatic events or diseases, have the
potential to alter the individual metabolic phenotype both
directly, by inducing perturbations in various metabolic
pathways, and indirectly, by promoting epigenetic changes,
which in turn lead to changes in gene expression, transcripts,
and ultimately in the metabolic profile of a given cell, tissue, or
biological fluid (Eicher et al., 2020). However, the organism’s
rapid response to any exogenous or endogenous factor altering
the cellular and tissue homeostasis (e.g., asphyxia, sepsis, gut
dysbiosis) can be unveiled and monitored overt time NEITHER
by genomics nor by transcriptomics and proteomics. These
“omics” offer specific but tardive information on any
biological change; conversely, metabolomics, the science that
identifies and quantifies endogenous and exogenous
metabolites, represents an “instant omics” capable to provide
information on the current status of a living system (Ashrafian
et al., 2020). Indeed, changes in the individual metabolic profile
occur much earlier than any clinically detectable sign or
symptom, and thus, metabolomics is strategic in the context of
the precision medicine approach (Karczewski and Snyder, 2018).
One of the most important applications of metabolomic studies is
the early identification of critically ill newborns at risk of adverse
clinical outcomes during their stay in the neonatal intensive care
unit (NICU) (Fanos et al., 2018; Bardanzellu et al., 2020; Locci
et al., 2020). Necrotizing enterocolitis (NEC) is a life-threatening
disease affecting almost exclusively preterm newborns, consisting
of abnormal intestinal colonization followed by an immune-
inflammatory response leading to the loss of intestinal barrier
function and possible perforation of the intestine (Neu and
Walker, 2011; Meister et al., 2020; Neu, 2020). The pooled
estimated NEC incidence in very low birth weight (VLBW)
newborns is approximately 7% (Alsaied et al., 2020), while it
is less common in late premature and in full term newborns.
NEC’s pathogenesis is primarily marked by an abnormal
inflammatory response and necrosis of the gut mucosa along
the whole gastrointestinal tract (Niño et al., 2016). Further risk
factors include sepsis, enteral formula feeding, prolonged
antibiotic exposure, and gut dysbiosis (Raba et al., 2021).
Recently, it was demonstrated that NEC is associated with
elevated blood levels of CCR9 + CD4 + T cells as well as
CCR9 + interleukin-17 (IL-17) producing Treg (previously
called regulatory T cells); the histological NEC severity is
positively and negatively correlated with their gut and blood
concentration, respectively (Ma et al., 2019). As a consequence,
the therapeutic modulation of lymphocyte balance may open new
perspectives for improving NEC severity and outcome (Nguyen
and Sangild., 2019). Recommendations on feeding practices, such
as breastfeeding, the proper management of feeding intolerance,
the application of feeding guidelines, and the implementation of
probiotics with diet, can prevent NEC onset in critically ill
newborns admitted in NICU (Bi et al., 2019). Several studies,
recently revised in an elegant review (Agakidou et al., 2020), have

investigated the metabolic profile of blood, plasma, serum, urine,
stools, and intestinal epithelial cells in preterm neonates with
NEC, opening new horizons on the molecular mechanisms
associated with the disease and searching candidate
biomarkers for the early diagnosis and prognosis of NEC. This
pilot study aimed to explore the presence of the urinary metabolic
signature in VLBW preterm newborns by using a proton nuclear
magnetic resonance spectroscopy (1H NMR)-based metabolomic
approach. We investigated the dynamic changes of the urine
metabolome in infants with NEC over the first 2 months of life by
collecting samples at different time points, namely before, during,
and after the diagnosis. Since all babies with NEC were also
affected by feeding intolerance (FI), each of them was matched
with two preterm newborns without NEC, the first one with FI
and the second one with good digestive tolerance.

MATERIALS AND METHODS

Patients
This case-control study was conducted in the NICU, Hospital de
la Croix Rousse (HCR), Hospices Civils de Lyon, Lyon, France.
The study was approved by the local Ethics Committee (Comité
de Protection des Personnes Sud-Est IV, Lyon) and performed
following the approved guidelines. Infant parents signed
informed consent forms before participation. We considered
eligible for the study VLBW preterm babies recruited
prospectively. Eighteen VLBW preterm infants were included:
6 with NEC and feeding intolerance (group 1, NEC); 6 with
feeding intolerance without any sign of NEC (group 2, FI); and 6
with good digestive tolerance without NEC (group 3, GDT). We
considered feeding intolerance the inability of the baby to ingest
and digest enteral nutrition. This condition became clinically
evident with the appearance of (a) gastric residues (more than
50% of the ingested food after 2–3 consecutive meals); (b) biliary
or hemorrhagic color of residues; (c) abdominal distension with
discomfort on palpation and gaseous dilation of the loops of the
small intestine (Lucchini et al., 2011). Good feeding tolerance was
defined as the ability of the preterm infant to safely ingesting and
digesting the prescribed enteral feeding without complications
associated with aspiration, infection, and gastrointestinal
dysfunction (Shulman et al., 1998). In group 1, three babies
developed the disease within the first 3 weeks of life (hereafter
called early-onset NEC), while the remaining three developed
NEC 6–8 weeks after birth (hereafter called late-onsetNEC). Each
baby belonging to group 1 NEC was matched with two babies, the
first one belonging to group 2 FI and the second one to control
group 3 GDT. In order to reduce uninformative variations that
could interfere with the identification of relevant information
encoded in the experimental spectral dataset, controls were
selected according to matched gestational age (± 1 week), birth
weight (± 200 g), and postnatal age at the time of urine sampling
(± 7 days). NEC was defined as the presence of clinical evidence
fulfilling modified Bell’s stage criteria (Bell et al., 1978; Juhl et al.,
2019) and was confirmed by radiological pneumatosis
intestinalis. All NEC cases were Bell stage II. Neonates with
major congenital abnormalities (including those of the
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gastrointestinal tract) were excluded as controls from the study.
Total parenteral nutrition was used for all infants up to 2–3 weeks
of life (Darmaun et al., 2018). As soon as tolerated, enteral feeding
was gradually introduced using a milk bank or expressed breast
milk provided by their mother. According to the European Milk
Bank Association (EMBA) Working Group recommendations
(Arslanoglu et al., 2019), milk was fortified in both cases.
Fortema® (Bledina, Villefranche-sur-Saône, France) for protein
and carbohydrate intakes, Liquigen® (Nutricia, Saint-Ouen,
France) for lipid intakes and the multicomponent fortifier
Nutriprem® (Bledina, Villefranche-sur-Saône, France) were
used. In babies manifesting feeding intolerance, enteral
nutrition was interrupted and then gradually reintroduced
when clinical conditions went back to normal. During the
study period, no change was made in the enteral parenteral
nutritional policy.

Sample Collection and Preparation
Urine samples were collected over approximately two months
after birth. In babies with NEC (group 1), urine samples were
collected at various intervals: before, during, and after the
disease’s onset. In babies belonging to groups 2 FI and 3
GDT, samples were collected at the day of life as close as
possible to those collected in babies with NEC. Samples
(volume 1–2 ml) were collected using a cotton ball inserted
into the disposable diaper; the urine was aspired by a syringe
and then transferred to a sterile 2 ml vial and immediately frozen
at −80°C until their shipping to the metabolab of the University of
Cagliari. Before analysis, 800 μL of thawed urine were transferred
into a 1.5 ml centrifuge microtube, and then 8 μL of sodium azide
(10% w/w) were added to avoiding any possible bacterial growth.
The sample was then centrifuged at 12,000 g for 10 min at + 4°C.
To stabilize the pH of urine samples, 630 μL of supernatant were
mixed with 70 μL of phosphate buffer solution [1.5M KH2PO4,
1% sodium 3-trimethylsilyl-propionate-2,2,3,3-d4 (TSP, 98 atom
% D), pH 7.4]. Finally, 650 μL were placed into a 5 mm wide
NMR tube.

Proton Nuclear Magnetic Resonance
Spectroscopy Analysis
The analysis was conducted at 300K by using a Varian UNITY
INOVA 500 spectrometer (Agilent Technologies, CA,
United States) operating at 499.839 MHz. A standard 1-D
pulse sequence NOESY was used with water suppression. For
each urine spectrum, a total of 128 scans were collected in 64k
data points over a spectral width of 6,000 Hz using a relaxation
delay of 2 s, an acquisition time of 1.5 s, and mixing of 0.1 s.
Before Fourier transformation, the free induction decay was
multiplied with 0.3 Hz exponential line broadening spectra. All
spectra were phased, and baseline corrected using MestReNova
(Version 8.1, Mestrelab Research SL, Santiago de Compostela,
Spain). The chemical shift scale was set by assigning a value of δ �
0.00 ppm to the internal standard TSP signal. After correction for
misalignments in chemical shift, primarily due to pH-dependent
signals and deleting the regions containing the water and TSP
signals, the NMR spectra were binned into 0.0025 ppm buckets

over a chemical shift range of 0.5–9.5 ppm. Bins were normalized
to the sum of total spectral area to compensate for the overall
concentration differences and used as a dataset (97 x 4,423) for
multivariate analysis. The assignment of the metabolites in the 1H
NMR spectra was performed according to literature data (Diaz
et al., 2016; Scalabre et al., 2017), the Human Metabolome
database, available at http://www.hmdb.ca (Wishart et al.,
2018), and Chenomx NMR suite 8.1 software (evaluation
version, Chenomx, Edmonton, Canada). All the samples were
analyzed simultaneously.

Data Processing and Statistical Analysis
For multivariate statistical analysis, data were Pareto scaled (Misra,
2020). Multivariate statistical analysis of the NMR dataset consisted of
principal component analysis (PCA), orthogonal projection to latent
structures (OPLS) regression, and orthogonal projection to latent
structures discriminant analysis (OPLS-DA) supported by the SIMCA
software (version 16.0, Umetrics, Umeå, Sweden). OPLS was used in
the case of a continuous Y-matrix (i.e., multiple time points) and
OPLS-DA for identifying discriminant metabolites in a pairwise
comparison between case and control groups. The quality of OPLS
and OPLS-DA models were evaluated through the following
parameters: the cumulative values of total Y explained variance,
i.e., goodness of fit (R2Y), and the Y predictable variation, i.e., the
goodness of predictability (Q2). The latter was extracted by the default
method of 7-fold internal cross-validation of SIMCA. Additionally,
the models were tested for overfitting using permutation testing (n �
400). The models’ significance was further assessed by an ANOVA
based on the cross-validated predictive residuals (CV-ANOVA) with
a p-value ≤ 0.05 (Eriksson et al., 2008). The models were considered
valid if the permutation test and the CV-ANOVA test were
significant. The variables with the most significant contributions to
OPLS and OPLS-DA models were identified by exploring the
correlation coefficients line plots by following two criteria: absolute
p and p(corr) values were set to be greater than 0.05 and 0.5,
respectively. p-value represents each variable’s importance and
p(corr) its reliability (Cloarec et al., 2005). The univariate statistical
analysis was performed by the GraphPad Prism Statistics software
package, version 8.1.2 (GraphPad Prism Software Inc., SanDiego, CA,
United States), to measure the Pearson’s correlation coefficient
between metabolites and postnatal time and compare the variation
in the abundance of discriminant metabolites between groups. The
magnitude of variationwas evaluated by calculating the effect size (ES)
adjusted for small sample number (Berben et al., 2012). Effect sizes
were classified small between 0.2 and 0.5, medium between 0.5 and
0.8, and large when greater than 0.8. The non-parametric Mann-
Whitney U test was used for the univariate statistical approach; a p-
value ≤ 0.05 was considered statistically significant.

RESULTS

The main characteristics of the study population are reported
in Table 1. Group 1 NEC does not significantly differ from
group 2 FI and 3 GDT for gestational age, birth weight, mean
Apgar scores at 5 min (p > 0.05). The male:female ratio was 1:1
for each group. A total of 97 urine samples were collected
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during the first 2 months of life: 38 in group 1 NEC (18 early-
onset NEC, 20 late-onset NEC), 27 in group 2 FI, and 32 in
control group 3 GDT. A preliminary PCA analysis was
performed for searching any inherent separation among
samples and the presence of outliers. The total amount of
variance explained by the first two principal components (PCs)
was 40%. The PC1 vs. PC2 scores plot clearly indicates the
absence of any cluster (Figure 1A). Conversely, the scores plot
unveils a similar, unidirectional temporal trend for groups 2 FI
and 3 GDT, scores shifting from the left to the right side of the
PC1 axis as age increases (Figure 1B). The temporal shift of the
urine metabolome of the early-onsetNEC subgroup follows the
same trajectory along the PC1 axis as those exhibited by groups
2 and 3 (Figures 2A–C). On the other hand, the time course of
the late-onset NEC subgroup is similar to that of the other
groups, but only until the diagnosis of the disease; soon after,
the trajectory inverts the direction, approaching the metabolic
profile of the first days of life (Figures 2D–F). The PCA
loadings plot revealed that this behavior was mainly related
to the urinary gluconate concentration (Supplementary
Figure S1). Indeed, in the urine sample of the late-onset
NEC subgroup, rigorously collected after the diagnosis, the
content of gluconate was much higher than that found in the
urine of the same babies collected just before the diagnosis;
moreover, gluconate concentration was comparable with that
observed in the urine collected during the first day of life in all
the neonates. Gluconate is a nutrient degraded by
gluconokinase to generate 6-phosphogluconate, playing a
crucial physiological role (Ramachandran et al., 2006;
Riganti et al., 2012); however, during the total parenteral
nutrition (TPN) at birth and after the clinical diagnosis of
NEC, the intravenous calcium administration was a source of
exogenous gluconate in babies with NEC. The subgroup of
early-onset NEC babies developed the disease during TPN,
while in the late-onset subgroup, NEC was diagnosed during
enteral nutrition (EN). In detail, the latter received two cycles
of TPN, namely at birth and after the onset of NEC, alternated
by an EN cycle. Based on these findings, the analysis of the
temporal trajectories of late-onset NEC scores in the PCA
model showed that the inversion of the trend observed after the
diagnosis was associated with the introduction of the second

cycle of TPN therapy, leading to the reasonable conclusion that
the nutritional intervention may be the main source of this
dynamic modification. Since the urine NMR spectra of all
infants under TPN showed very intense signals due to
exogenous gluconate, we removed these signals before
statistical analysis to avoid any TPN contribution to the
spectral profile. A more detailed insight into the time
dependence of urine metabolome of group 1 NEC and
groups 2 and 3 was undertaken by OPLS regression by
using the 1H NMR urine spectral data as an independent
variable and the postnatal sampling days as Y-variable. An
OPLS model was built separately for each group. Model
performances are summarised in Table 2, while Figure 3
depicts the corresponding scores and loading plots. The
models built for group 2 FI and 3 GDT demonstrated good
modeling and predictive abilities, while a lower but acceptable
predictivity characterized the model for group 1 NEC. The
robustness of the models was validated by the permutation test
(n � 400) and CV-ANOVA. The corresponding loadings plots
(Figures 3D–F) allow identifying the most significant
metabolic signature associated with postnatal age.
Metabolites positively correlating with postnatal age were:
betaine, glycine, citrate, and succinate in all the groups;
N,N-dimethylglycine (DMG) in control group 3 GDT;
suberate and lactate in group 1 NEC and group 2 FI;
creatinine in control group 3 GDT only. Besides,
unassigned resonances at δ � 3.95 and δ � 3.74 were
inversely correlated with postnatal age in all the groups,
while carnitine and N-methylnicotinammide (N-MNA) only
in group 2 FI. These time-dependent changes were also
investigated by the univariate statistical analysis; in
particular, the Pearson’s correlation coefficient (r) was
computed. Results confirmed the statistical significance of
the findings mentioned above- (p < 0.05) (Supplementary
Table S1). To identify the metabolic signature(s) associated
with NEC, the two subgroups of early-and late-onsetNEC were
compared with the corresponding matched groups 2 and 3 by
using the OPLS-DA approach. We included only spectra of
urine collected either immediately before or at the diagnosis
time, based on the assumption that they may provide more
information on the presence of metabolic perturbations

TABLE 1 | Characteristics of study population.

Variable, description NEC (n = 6) Controls (n = 12)

FI-PT (n = 6) GDT-PT (n = 6)

Gestational age (weeks, mean ± SD) 27.1 ± 1.6 27.2 ± 1.3 27.7 ± 1.6
Male/Female, n 3/3 3/3 3/3
Birth weight (g, means ± SD) 1,016 ± 104 920 ± 104 950 ± 65
Cesarean section delivery, n 2 5 3
IUGR, n 1 4 1
Apgar score: ≤5 at 5 min, n 1 2 2
Early-onset of NEC (< 25 days), n 3 / /
Late-onset of NEC (> 40 days), n 3 / /
Antibiotics, n 6 6 6

Abbreviation: FI-PT, preterm with feed intolerance; GDT-PT, preterm with good digestive tolerance; IUGR, intrauterine growth restriction; NEC, necrotizing enterocolitis; SD, standard
deviation.
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associated with the disease. In Table 3, we reported the quality
parameters of the pairwise OPLS-DA models. No model
comparing the early-onset NEC subgroup with groups 2 and 3
was found significant; conversely, the model comparing the late-
onset NEC subgroup with control group 3 GDT showed a
significant group separation (p � 0.02) as reported in
Figure 4A. The analysis of the OPLS-DA loadings plot
(Figure 4B) showed the leading metabolites responsible for
sample discrimination, providing an assessment of the main
statistically significant differences between the two groups:
lactate was more abundant in the late-onset NEC subgroup,
while N,N-DMG, betaine, creatinine, myo-inositol, and urea
were more abundant in group 3. These findings were further

supported by the univariate statistical analysis for assessing
significant differences in the relative content of these
metabolites between the two groups (Figure 5).

DISCUSSION

Despite the impressive body size of literature on clinical
metabolomics-based studies in human disease, the number of
metabolomics-based studies on NEC is small, and the
identification of reliable candidate omics-based biomarkers for
the prediction and the early diagnosis of NEC is still far from
being definitive. After the exclusion of metabolomics-based

FIGURE 1 | PCA scores plot from the model built with the 1H-NMR spectra of infant urine samples: (A) +, group 1 NEC; ■, group 2 FI (feed intolerance without
NEC); ▲, control group 3 GDT (good digestive tolerance without NEC); (B) Scores are coloured according to the postnatal age. Samples in the dotted circle were
collected during total parenteral nutrition (TPN).
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studies enrolling babies with sepsis (both early-onset and late-
onset sepsis), approximately ten studies have utilized
metabolomics alone or combined with other omics in preterm
newborns with NEC; five were based only on metabolomics in
various biological fluids, including serum (Wilcock et al., 2016;
Wang et al., 2019), stools (Rusconi et al., 2018), urine
(Thomaidou et al., 2019), and dry blood spots (Sinclair et al.,
2020). A study combined metabolomics with proteomics in
serum samples (Stewart et al., 2016a), and four studies

integrated metagenomics with metabolomics in urine (Morrow
et al., 2013) and stools (Stewart et al., 2016b; Wandro et al., 2018;
Brehin et al., 2020). The heterogeneity of patient cohorts, patients
and samples size, samples type, analytical methods, length of
patient monitoring, diagnostic criteria of NEC, nutrition, and the
presence of potentially confounding factors such as comorbidities
(sepsis, bronchopulmonary dysplasia) hampers an adequate
comparison between our results and those previously
published. Overall, the time-dependent shift of scores observed

FIGURE 2 | Temporal trajectories (obtained from the model built with the 1H-NMR spectra) of each individual early-onset (A–C) and late-onset (D–F) NEC baby in
the PC1 vs PC2 scores plot. FI and GDT (o); NEC (+). Scores are colored according to the postnatal age. Numbers denotes the post-natal age of NEC at the time of
sampling and the asterisk marks the day of the disease onset.
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TABLE 2 | Statistical parameters of the OPLS models derived from the 1H-NMR spectra of urine samples from group 1 NEC, group 2 FI, and group 3 GDT cases.a

Data set R2Y Q2Y Permutation testb p-valuec

R2Y intercept Q2Y intercept

Group 1 NEC 0.743 0.398 0.509 −0.463 2.01 . 10−3

Group 2 FI 0.813 0.567 0.531 −0.545 7.26 . 10−3

Group 3 GDT 0.880 0.638 0.461 −0.430 1.05 . 10−5

aGluconate signals were removed from the dataset.
bn � 400.
cp-value obtained from cross validation ANOVA (CV-ANOVA). NEC, necrotizing enterocolitis; FI, food intolerance; GDT, good digestive tolerance.

FIGURE 3 |OPLS scores (A–C) and loadings line (D–F) plots of the 1H-NMR urine spectra from control group 3 GDT (top), group 2 FI (middle), and group 1 NEC
(bottom). The scores are coloured according to the postnatal age. Abbreviations: Bet, betaine; Car, carnitine; Cre, creatinine; Cit, citrate; N,N-DMG, N,N-
dimethylglycine; N-MNA, N-methylnicotinamide; Gly, glycine; Lac, lactate; Sub, suberate; Suc, succinate.
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in all the babies enrolled in our study confirms the dynamic
postnatal metabolic change due to the influence of age, height,
and weight progression, with the concomitant development and
maturation of organs and tissues, as previously found elsewhere
(Cesare Marincola et al., 2016; Scalabre et al., 2017).

Betaine, a trimethylated glycine derived either from diet or the
oxidation of choline, increased over time in all the three groups of
infants, while N,N-dimethylglycine (N,N-DMG), derived from the
loss of a methyl group from betaine, increased only in control group
3, GDT. Betaine and N,N-DMG are methyl donors in several
metabolic pathways, including the homocysteine and the DNA
methylation. Betaine is involved in osmotic homeostasis,
protecting cells from dehydration and kidneys from injuries;
betaine is also an anti-oxidant and is involved in
neurodevelopment and immune functions. In the urine of healthy
adults, betaine is almost completely absent; conversely, in healthy
newborns’ urine, high betaine levels are usually present, reflecting
dietary choline disposal (Davies et al., 1988). Breast milk is an
important dietary source of choline which is essential during
infant growth and development. Interestingly, urine betaine and
N,N-DMG levels were significantly reduced in the subgroup of
babies with late-onset NEC (20 samples) compared with control
group 3 GDT (32 samples), confirming previous findings that
associated the reduction of urine betaine with NEC (Thomaidou
et al., 2019). Data from the literature evidence that urine betaine was
found decreased over the first 48-h of life in various groups of full-
term infants with impaired growth and this trend was followed

by the increase of betaine at the end of the first week of life
(Marincola et al., 2015). Conversely, high urine levels of
betaine were observed in full-term infants with congenital
cytomegalovirus infection (Fanos et al., 2013) and hypoxic-
ischemic encephalopathy (Locci et al., 2018). Thus, the
decrease of urine betaine in babies with late-onset NEC may
be associated with prematurity and kidney dysfunction rather
than with sepsis and inflammation. In our preterms, the
influence of infant growth and maturation over time is
reflected by the positive correlation between postnatal age
and glycine, succinate, and citrate. However, in the group of
babies with early- and late-onset NEC (38 samples), urinary
succinate and citrate were significantly reduced (fold change
−0.161 and −0.163, respectively) compared to control group 3
GDT. On the other hand, they were closely comparable
between group 2 FI (27 samples) and group 3 GDT (32
samples). Conversely, urine glycine abundance was almost
equal between group 1 NEC and control group 3 GDT and
significantly increased in group 2 FI (fold change 0.161). The
reduction in succinate and citrate in group 1 NEC may be
related to the impairment of the tricarboxylic acid (TCA or
Krebs) cycle in babies with NEC, leading to decreased
carbohydrates, amino acids, and lipids availability. Indeed,
as newborns gain weight during the early postnatal age, the
increase of urine succinate and citrate may reflect the high
metabolic turnover due to the increasing energy demand
(Moltu et al., 2014; Scalabre et al., 2017).

TABLE 3 | Statistical parameters for the OPLS-DA models built for the pairwise comparison between cases and controls.a

Pairwise comparison Permutation test

R2X R2Y Q2Y R2Y intercept Q2Y intercept p-value

Early-onset NEC vs FI 0.325 0.906 0.263 0.860 0.114 1
Early-onset NEC vs GDT 0.395 0.811 0.023 0.740 −0.034 0.99
Late-onset NEC vs FI 0.434 0.844 0.461 0.624 −0.554 0.07
Late-onset NEC vs GDT 0.273 0.805 0.624 0.627 −0.606 0.02

aThe models were considered valid only if the permutation test and p-value obtained from the cross validation ANOVA (CV-ANOVA) test (p < 0.05) were satisfied at the same time. NEC,
necrotizing enterocolitis; FI, food intolerance; GDT, good digestive tolerance.

FIGURE 4 | OPLS-DA scores (A) and correlation loading (B) plots for the pair-wise comparison between the late-onset NEC subgroup (+) and control group 3
GDT (▲). 1H NMR spectra of urine samples collected just prior to and at the days of NEC diagnosis were analyzed.
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A positive correlation between urine creatinine and postnatal age
was observed in control group 3 GDT but not in group 1 NEC; a
weak correlationwas also found in group 2 FI. Creatinine abundance
was significantly lower in group 1NEC comparedwith group 3GDT
(fold change −0.74) and with group 2 FI (fold change −0.68),
confirming similar results (fold change −0.35) previously
published elsewhere (Thomaidou et al., 2019). Based on our
results and data from the literature, we could argue that in
preterm babies with good digestive tolerance (group 3 GDT), the
positive correlation between creatinine and postnatal age is due at
least to two factors: the progressive maturation of the kidney leading
to the increase in glomerular filtration rate (GFR), even though
slower than in full-term infants (Gubhaju et al., 2014), and the
progressive increase of muscle mass. The latter is closely related to
the rate of protein synthesis, which depends on feeding (Davis and
Fiorotto, 2009). In groups 1 NEC and 2 FI, the replicated
interruptions overtime of the enteral feeding, in response to
clinical symptoms of food digestive intolerance, slows down the
synthesis of proteins, with a negative consequence on the growth of
organs and tissues, such as the kidney and muscle mass, and
ultimately with the decrease of urine creatinine excretion. In the
urine samples of the subgroup of babies with late-onset NEC (20
samples), we observed high lactate levels compared with those of the
control group 3 GDT, especially close to the onset of the disease. A
possible explanationmay be the impaired TCAproduction of energy
associated with NEC. In babies with early-onset NEC and in those
with food intolerance (group 2 FI), the predominance of
hyperlactatemia over the first 48–72 h of life in preterm

infants may reduce differences between groups (Junior et al.,
2021); later, lactate levels may better discriminate critically ill
preterm infants with NEC or other acute diseases, from preterm
infants with non-severe acute disease. Increased levels of lactate
may also originate from different sources. Lactate produced by
human metabolism is primarily the levorotatory isomer
L-lactate; conversely, D-lactate is prevalently produced by
bacterial fermentation of undigested carbohydrates in the
gastrointestinal tract, and only a small fraction of this isomer
is endogenously formed from methylglyoxal through the
glyoxalase system (Adeva-Andany et al., 2014). High levels of
D-lactate have been found in the urine and plasma of preterm
babies with NEC (Garcia et al., 1984; Lei et al., 2016); this
finding suggests that D-lactate may be considered an index of
increased enteric bacterial activity (Grishin et al., 2013).
Although 1H NMR is unable to distinguish the lactate
enantiomers, we cannot rule out that the high abundance of
lactate in the urine of infants with late-onset NEC may derive at
least in part from the accumulation of D-lactate. The positive
correlation between lactate and postnatal age in group 2 FI and
in the subgroup late-onset NEC, together with the concomitant
decrease in N-methylnicotinamide, seem to confirm an
imbalance of the host−microbial metabolism in these infants.
Indeed, N-methylnicotinamide has been utilized as an index of
the suppression of the gut microbiome in an experimental study
in an animal model on NEC (Jiang et al., 2017).

Myo-inositol, an inositol stereoisomer mediating cell signal
transduction in response to a variety of hormones,

FIGURE 5 | Selected metabolites discriminating control group 3 GDT and late-onset NEC subgroup the day before the onset of the disease and at the disease
onset. Values in the box plots are shown as the normalized peak areas of the metabolites.
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neurotransmitters, and growth factors, was decreased in the urine of
babies with late-onset (fold change −0.20), but not early-onset NEC,
and in the urine of babies with FI (group 2, fold change −0.17),
compared with control group 3 GDT. Factors such as kidney
impairment and perturbances in the metabolism of glucose and
lung surfactant influence the urinary level ofmyo-inositol in preterm
infants; however, myo-inositol is a natural constituent of breast milk
and is commonly added to formula milk (Brion et al., 2021).
Therefore, the nutritional intake strongly influences the myo-
inositol concentration. It is reasonable to argue that the dietary
restriction, applied after multiple episodes of feeding intolerance
prior to the onset of the NEC and their management during the
disease, contributes to decreasing urine myo-inositol in late-onset
NEC and FI groups. Our result confirms similar results previously
reported elsewhere (Thomaidou et al., 2019); it is also supported by
the simultaneous decrease of urea, a nutritional index reflecting the
protein intake, in babies with NEC and FI.

Our study is affected by several limitations. First, the small
number of preterm infants limits the strength of results;
however, this is a pilot study. Second, the lack of any
taxonomic characterization of the gut microbiota hampers
to elucidate the significance of metabolic alterations
originating from dysbiosis and abnormal gut microbiota
fermentation. Third, this single-center study hampers the
recruitment of a large number of patients and the
comparison of the effects of the therapeutic management on
the urine metabolome between different centers. Fourth, this
study adopted a single analytical platform. Combining the
highly quantitative and reproducible nature of 1H NMR
spectroscopy with the high sensitivity and specificity of MS
may improve the panels of detectable metabolites, and
potentially the reliability and accuracy of statistical models.
A further limitation is the lack of ANOVA for repeated
measurements (RM ANOVA); however, this limitation does
not hamper the identification of candidate biomarkers for
NEC, derivable by the OPLS-DA model. The strengths of
this study are the analysis of longitudinal data and the
classification of infants with NEC in early-onset (sample
size � 18) and late-onset NEC (sample size � 20). In a
previous study, babies with NEC were divided based on the
gut microbiota composition (Morrow et al., 2013);
unfortunately, a specific bacterial fingerprint associated with
NEC was never identified unambiguously. Thus, even that
study reported no definitive metabolic data. Overall, previous
metabolomics-based studies on preterm infants with NEC are
often inconclusive, even when metabolomics was combined
with proteomics or microbiomics; (Stewart et al., 2016a;
Wilcock et al., 2016; Brehin et al., 2020). Our study

confirms that the urine metabolome of infants with NEC is
significantly different from that of preterms infants with food
intolerance but without NEC and from that of preterm infants
with good digestive tolerance. However, the identification of
robust candidate biomarkers of NEC requires the system
biology approach based, at least, on metabolomics and
microbiomics for defining an early accurate diagnosis of the
disease and predicting the risk of an adverse clinical outcome
much earlier than the clinical onset of the disease.
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