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Simple Summary: Immunotherapies are promising approaches to curing different acute leukemias.
Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-
cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK
cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class
I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of
patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell
subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor
selection and NK immunotherapy design.

Abstract: Since the mid-1990s, the biology and functions of natural killer (NK) cells have been
deeply investigated in healthy individuals and in people with diseases. These effector cells play a
particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through
their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell
immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we
present how KIRs and HLA class I ligands modulate the structural formation and the functional
education of NK cells. In particular, we decipher the current knowledge about the extent of KIR
and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact
on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition,
we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with
acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with
a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting
(haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of
NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging
NK-cell-based immunotherapies for leukemic patients in addition to HSCT.

Keywords: natural killer cells; killer-cell immunoglobulin-like receptors; HLA class I; polymorphism;
acute leukemia; hematopoietic stem-cell transplantations; NK-cell-based immunotherapy

1. Introduction

Natural killer (NK) cells, which develop from common lymphoid progenitors in
the bone marrow, correspond to large granular lymphocytes and are usually identified as
CD3− CD56+, representing about 5–20% of peripheral blood mononuclear cells (PBMCs) [1].
These innate immune effectors [2] proliferate, produce cytokines, and are cytotoxic against
virus-infected cells or tumor cells. According to the level of CD56 expression, two NK cell
subsets with distinct repertoire signatures have been defined; CD56dim NK cells (90%) are
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mainly cytotoxic, while CD56bright NK cells (10%) produce high levels of cytokines, but have
a low cytotoxicity [3]. NK cells are able to lyse target cells by using antibody-dependent
cellular cytotoxicity (ADCC) driven by the activating CD16 receptor. They express a wide
range of activating receptors including NKG2D, DNAM-1, 2B4, and NCRs such as NKp30,
NKp44, and NKp46 that recognize induced or upregulated molecules on tumor and virus-
infected cells. NK cells recognize healthy cells that express normal levels of HLA class
I molecules and sense the absence of HLA class I molecules on allogeneic cells or their
decreased expression on tumor or virus-infected cells, as demonstrated by the “missing-self”
hypothesis [4,5]. Killer-cell immunoglobulin-like receptors (KIRs) and the CD94/NKG2A
heterodimer represent the two main inhibitory NK receptors that are engaged in this
missing-self recognition. Overall, NK cell functions are regulated by a balance of synergistic
signals from combinations of inhibitory and activating receptors engaged with cognate
ligands on target cells. HLA class I molecules play a central role in the regulation of immune
responses with respect to their interactions with T- or NK-cell-specific receptors [6]. KIRs
and their HLA class I ligands constitute the main polymorphic and polygenic pair in
humans for the regulation of functions and the licensing of NK cells [6,7]. KIRs are clonally
expressed on the surface of mature NK cells [8,9]. Functional KIR/HLA interactions drive
the tremendous diversity of NK cells with a limited number of germline-encoded genes [10].
In addition to KIRs, the CD94/NKG2A heterodimer recognizes the nonclassical HLA-E
molecule. This receptor/ligand is expressed in all individuals and does not present the
broad genetic diversity that characterizes the KIR/HLA pair. The inhibitory CD94/NKG2A
receptor and its activating NKG2C counterpart are involved in missing-self recognition,
and CD94/NKG2A is also involved in NK cell licensing [11]. Moreover, the expression of
inhibitory and activating receptors is strongly associated with NK cell differentiation and
maturation. In particular, NK cell subsets can be defined on the basis of differentiation
markers. During their development, NK cells first acquire NKG2A expression and, at a
later stage, KIR expression, followed by the terminal differentiation CD57 receptor [11].
The cytomegalovirus (CMV) also modulates the NK cell repertoire with an expansion of
KIR2D+ NKG2C+ NK cells [12,13]. The model of NK cell differentiation established by
Björsktrom et al. [11], therefore, permits the investigation of the heterogeneity of NK cells.

In cancer immunotherapies, NK cells represent key components especially for patients
with hematological malignancies. In these cases, NK cells can easily access tumor sites
without the barrier represented by the tumor microenvironment, unlike in the case of solid
tumors [14]. Although they are diverse, hematological malignancies include acute myeloid
leukemia (AML) and acute lymphoid leukemia (ALL), which are frequent in adult patients.
For patients with acute leukemia, the relapse of the initial disease remains the major cause
of death. The relapse may be due to a failure of conventional chemotherapies but also due
to the escape of tumor cells from immune responses [15]. The lost or decreased expression
of HLA molecules and/or upregulation of ligands on leukemic cells that are recognized
by activating NK cell receptors can sustain the crucial role of NK cells. For leukemic
patients for whom conventional chemotherapies have failed, allogeneic hematopoietic
stem-cell transplantation (HSCT) is usually suggested in order to replace both the defective
hematopoiesis and the immune system of the patient with healthy HSCs from donors. In
that case, NK cells play a crucial role through their graft-versus-leukemia (GvL) effect, as
they are the first lymphocytes to participate in the reconstitution of the immune system
of the patient even before T cells after HSCT [16,17]. However, the NK cell functions in
leukemic patients can be altered by the tumor microenvironment. The efficiency of NK-
cell-based immunotherapies can be enhanced by cytokines, inhibitory specific monoclonal
antibodies (mAbs), and adoptive transfer of in vitro activated NK cells [18,19]. Promising
recent advances have shown the use of NK cells armed with chimeric antigen receptors
(CARs) to enhance their antileukemic function [20]. The CRISPR technology also permits
the optimization of some cellular pathways to boost the antileukemic efficacy of NK cell
immunotherapies [21]. Numerous approaches to NK cell immunotherapy have been
developed by using mainly autologous or allogeneic NK cells in bulk without considering
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all genetic and allelic KIR and HLA polymorphisms known to govern the structural and
functional heterogeneity of NK cells.

In the present review, we present the characteristics of KIR and HLA class I gene
polymorphisms, their expression, the KIR/HLA interactions that regulate the NK cell
repertoire in healthy individuals, and the relevance of KIR/KIR ligands to NK-cell-based
immunotherapies for adult patients with hematological malignancies, especially in the
context of allogeneic HSCT. The roles of NK cells in physiological, allogeneic, infectious,
and leukemic contexts are summarized in Figure 1.
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Figure 1. The natural cytotoxicity of NK cells is driven by the missing-self recognition. NK cells
recognize healthy cells that express normal levels of HLA class I molecules and sense the absence
of HLA class I molecules on allogeneic cells (non-self) or decreased expression of HLA class I
molecules (missing-self) on tumor cells or virus-infected cells, as reported for the cytomegalovirus
(CMV). Recognition of “self” mainly involves interactions between polymorphic inhibitory killer-cell
immunoglobulin-like receptors (inh KIRs) and classical HLA class I molecules, as well as interactions
between the CD94/NKG2A heterodimer and the nonclassical HLA-E molecule. The lack of interac-
tion of inh KIRs with their HLA class I ligands or CD94-NKG2A with HLA-E induces the activation
of NK cell lysis. In addition to KIR/KIR ligands, interactions of the induced MHC class I-like MICA
ligand, ULBP ligand expressed on tumor cells, or the HLA-E molecule by respectively activating
NKG2D or CD94/NKG2C receptors could activate NK cell lysis.

2. Relevance of the KIR and HLA Class I Genes to the NK Cell Repertoire

In healthy individuals, the formation of the NK cell repertoire is influenced by various
factors including the variability of the KIR and HLA class I genes, the CMV status, and
the frequency of NK cell subsets. KIRs represent a family of receptors belonging to the
immunoglobulin (Ig)-like superfamily. The KIR family is composed of receptors with two
or three (2D, 3D) extracellular domains. The intracytoplasmic tail can be long (L) with two
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ITIMs (immune tyrosine-based inhibitory motifs) or short (S) and coupled with the DAP12
molecule, which bears an ITAM (immune tyrosine-based activating motif) discriminating
inhibitory and activating KIRs, respectively [22].

2.1. KIR Genes

The genetics of KIRs are complex because KIR genes vary in structure, exon/intron
organization, and relative size. Currently, the KIR gene family consists of 15 different loci
(2DL1, 2DL2/2DL3, 2DL4, 2DL5A, 2DL5B, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1/3DS1,
3DL2, 3DL3, 2DP1, 3DP1) encoded in a 100–200 kb region in the leucocyte region complex
(LRC) located on chromosome 19. The LRC constitutes a dense cluster of immune-related
genes that encode, in addition to KIR, other NK cell receptors [23]. KIR genes have a
head-to-tail organization and are arranged within 2.4 kb of each other, except between
3DP1 and 2DL4, where there is a gap of 14 kb [24]. KIR genes have four to nine exons
with an entire genomic size ranging from 4 kb for 3DP1 to 16 kb for 3DL2 and long
introns [25]. Three KIR exon/intron gene organizations have been described. The first
one corresponds to the genes encoding KIR3DL, such as 3DL1/2. These genes consist
of nine exons: exons 1 and 2 encode the signal peptide; exons 3, 4, and 5 encode each
Ig-like domain (D0, D1, and D2 respectively); exon 6 encodes the stem connecting the D2
domain to the transmembrane part, which is encoded by exon 7; exons 8 and 9 encode the
intracytoplasmic tail. KIR3DL3 has a similar structure, but with the absence of exon 6 and
a stop codon in exon 9. KIR3DS1 has the same exon/intron organization as that of 3DL1,
but a shorter exon 9 encoding for the short tail. Interestingly, KIR3DL1 and KIR3DS1 are
defined as alleles of the same gene, although they have different functions [26]. The second
and third exon/intron gene organization corresponds to KIR2D: type I KIR2D includes
genes that encode 2DL1/2/3/S1/2/3/4/5. These genes consist of eight exons with exons
4 and 5 encoding the D1 and D2 domains respectively, and a region homologous to exon 3
encoding the D0 domain of KIR3D, which is called “pseudo-exon 3” [27,28]. The KIR2DS4
gene is found in two forms, with one common 1D variant that is characterized by a 22 bp
deletion in exon 5, which block transcription of the corresponding receptor [24]; the type II
KIR2D genes include 2DL4/5, which exhibits eight exons and a 22 kb deletion in exon 4.
Exons 3 and 5 of these genes encode the D0 and D2 domains, respectively.

The number and nature of KIR genes differ between individuals, allowing one to
distinguish two major KIR haplotypes (A, B) [29]. The KIR A and B haplotypes both have
four framework genes (3DL3, 3DP1, 2DL4, and 3DL2), and are present in all individuals
with some rare exceptions. KIR3DL3 and 3DL2 are located at the centromeric and telomeric
ends, respectively, and delimit the LRC, while 3DP1 and 2DL4 are located between both.
The KIR A haplotype is defined by a fixed set of nine KIR genes (3DL3, 2DL3, 2DP1, 2DL1,
3DP1, 2DL4, 3DL1, 2DS4, and 3DL2) with only 2DS4 as an activating gene. In contrast, the
B haplotypes are diverse with a variable number of KIR genes and are characterized by
the presence of specific inhibitory KIRs, such as 2DL2, and more than one activating KIR
gene. Based on the combination of the KIR A and B haplotypes, 660 KIR genotypes have
been described worldwide (http://www.allelefrequencies.net/) (accessed on 26 July 2021).
Conventionally, the gene frequencies of KIR are close to 100% for inhibitory 2DL1/2/3,
whereas the frequencies of the activating KIR genes are low, except for 2DS4. Different
commercial or in-house methods including the use of specific KIR primers or probes, permit
the assessment of the presence or absence of KIR genes. Various studies have shown that
frequencies of KIR genes, haplotypes and/or genotypes vary between populations [30–32].
Interestingly, a majority (>50%) of individuals harbors the KIR AA genotype in Asian
populations [30,33], whereas only 35% of Europeans have this genotype [34,35].

In addition to the definition of the KIR A and B haplotypes, framework KIR genes al-
low for the delineation of two chromosomic parts: centromeric (cen) (2DS2, 2DL2/3, 2DL5B,
2DS3, 2DP1, 2DL1) and telomeric (tel) KIR genes (3DL1/S1, 2DL5A, 2DS5, 2DS1) [36]. De-
pending on the KIR2DL2/3/S2 genes, the cenAA (2DL3 only), cenAB (2DL3 with 2DS2
and/or 2DL2), and cenBB (2DL2 and/or 2DS2, no 2DL3) motifs are defined. Depending on
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KIR2DS1/S4/3DL1/S1 genes, the telAA (3DL1 and 2DS4 only), telAB (3DL1 and 2DS4 with
3DS1 and/or 2DS1), and telBB (lacking 3DL1 and/or 2DS4) motifs are defined. This subdi-
vision into gene content motifs can increase the diversity of KIR genes. Thus, individuals
with a KIR AB genotype could present different cen and tel motifs, whereas individuals
with the KIR AA genotype exhibit only the cenAA and telAA motifs. Another parameter
of this diversity is linked to the copy number variation (CNV) [37]. The arrangement of
KIR genes in a head-to-tail orientation and their high sequence homology allow for a gain
or loss of KIR genes with the generation of expanded or contracted KIR haplotypes, as well
as the formation of fusion genes [38]. It has been shown that some KIR genes are more
affected by CNV than others [33].

Lastly, KIR genes exhibit an allelic diversity; currently, 1110 KIR alleles have been
referenced (https://www.ebi.ac.uk/ipd/kir/) (accessed on 26 July 2021). The allelic poly-
morphism of KIRs is particularly high for inhibitory KIRs (the strongest being for 3DL3 with
228 alleles) and is limited for activating KIRs (the lowest being for 2DS1 with 33 alleles). To
name KIR alleles, a specific nomenclature [39] has been established, which uses an asterisk
as a separator after the gene name, before a numerical allele designation (2DL1*). The next
three digits are used to name the different alleles of the same gene that differ in coding
sequences (2DL1*003). The following two digits are used to distinguish alleles that only
differ in synonymous (noncoding) substitutions within the coding sequence (2DL1*00302),
and the last two digits are used to distinguish alleles that only differ in substitutions in
noncoding regions (2DL1*0030202). For more than 15 years, specific KIR primers, probes or
sequence-based-typing (SBT) methods have been used to assign KIR alleles of limited KIR
genes [40]. More recently, next-generation sequencing (NGS) technologies have permitted
the assignment of the alleles of all KIR genes [41–43]. As mentioned for KIR genes, KIR
allele frequencies vary among populations. Interestingly, although 68 KIR2DL1 alleles
have been reported worldwide, only five predominant alleles (*001, *002, *003, *004, and
*007) are encountered in Europeans [34,44]. Moreover, the non-expressed KIR3DL1*004
allele [45], which is frequent in Caucasians [46], is absent in the Japanese population [30].
Interestingly, the group of P. Parham was the first to describe that allelic polymorphism of
KIRs synergizes with variable gene content, thus making it possible to individualize KIR
genotypes [47]. Recently, the KIR A haplotype and cenAA motif were reported to be associ-
ated with the 2DL1*001, *002, and *003 alleles, while the B haplotype and cenB+ motif were
associated with the 2DL1*004 and *007 alleles in European populations [34,48–50]. In addi-
tion, different linkage disequilibria (LD) between KIR genes have been described [24,48].
Overall, these population-based genetic studies could help in the prediction of KIR alleles
from KIR gene content, including pseudogenes [51].

2.2. HLA Class I Genes

The main characteristics of the HLA system correspond to an exhaustive polymor-
phism and the inheritance of HLA genes from the parental haplotypes in blocks. The HLA
system represents the most polymorphic gene locus in humans [52], with 28,938 HLA alle-
les reported so far [53]. The HLA locus contains more than 200 genes, many of which have
immune-related functions [54]. HLA class I genes encode both classical and nonclassical
HLA class I molecules. Classical HLA class I genes (HLA-A, -B, -C) are located on the
short arm of chromosome 6 (6p21.3) and are composed of eight exons and seven introns.
Most polymorphic exons correspond to exons 2 and 3, which respectively, encode the α1
and α2 domains which form the peptide-binding groove of HLA class I molecules that are
ubiquitously expressed on nucleated cells. The length of the HLA-A, -B, and -C genes is
closed to 3 kb. In terms of allelic polymorphism, HLA-A, -B, and -C are divergent genes
with numerous alleles, and all positions in the α1 and α2 domains exhibit variations [55].
The polymorphism of HLA-C genes, although extremely diverse, is more limited in terms
of the alleles described in comparison with the polymorphism of HLA-B genes. The allele
frequencies of HLA-C and the LD of HLA-C/HLA-B are frequently updated through
genetic population studies [56–58]. From its phylogeny, HLA-C appears to be more recent
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compared to the HLA-A and -B loci, and regulatory elements of transcription differ between
the HLA-C and HLA-A/B genes [59]. Today, HLA class I alleles are assigned by using NGS
methods [57,60–63], which allow detailed mapping of all polymorphic bases encountered
in the exons, introns, and untranslated regions (UTR). Identification of regulatory variants
located in UTRs is important because they can influence the expression of HLA class I
molecules, as detailed later. In addition to the classical HLA class I genes, the HLA-E and
MICA genes, despite their limited polymorphism are of interest in NK cell studies, as they
encode for the CD94/NKG2C and NKG2D ligands, respectively [64,65].

2.3. KIR/HLA Interactions and the KIR+ NK Cell Repertoire

The distribution of KIRs on the surface of NK cells is clonal due to the stochastic
expression of KIRs [66,67]. Therefore, a heterogeneous repertoire of NK cell subpopula-
tions expressing different combinations of KIRs or a lack thereof is observed. Usually, the
expression of KIRs on NK cells is assessed by using commercial (which is limited to some
KIRs) and/or in-house anti-KIR mAbs, which make it possible to distinguish the main
inhibitory and activating KIR2D [68]. The KIR gene content influences the KIR+ NK cell
repertoire. Thus, KIR AA genotyped individuals show a less diverse NK cell repertoire
with higher frequencies of the corresponding KIR+ NK subpopulations compared to KIR
B+ genotyped individuals, who have a broader KIR gene content and lower frequencies of
KIR+ NK subpopulations [69]. In addition to KIR gene content, the expression of KIR allele
encoded products (allotypes) on NK cells may differ depending on the allelic polymor-
phism, as deeply documented for 3DL1 by P. Parham’s group [70,71]. We also reported high
(3DL1*001, *002, *015, *008), low (*005, *007), or no (*004, *019) expression of KIR3DL1 on
NK cells depending on the 3DL1 alleles or the 3DL1/S1 allele combinations [46]. The differ-
ential expression of KIR3DL1 allotypes could be partially explained by the polymorphisms
encountered in the KIR3DL1 promoter [72]. Similarly, three single-nucleotide polymor-
phisms (SNPs) located in the recruiting sites of transcriptional factors in the KIR2DL1
promoter induce a higher transcriptional activity of 2DL1 compared to 2DL3 [73]. Similarly
to KIR3DL1, the expression level of KIR2DL1 is variable depending on the 2DL1 alleles. In
particular, the KIR2DL1*004 allotype, which carries a cysteine in the intracytoplasmic tail at
position 245 (Cys245), is poorly expressed on NK cells, with a low frequency of KIR2DL1+

NK cells compared to the 2DL1*002 and *003 (Arg245) allotypes [34,74,75].
KIRs interact with HLA class I molecules. Inhibitory KIR2DL1/2/3 all have HLA-Cw

molecules as ligands, which are initially divided into two groups as a function of the
77 and 80 amino acids located in the α2 domain. KIR2DL1 specifically recognizes the
HLA-Cw molecules of group 2 (C2) with Lys80 [76]. The peptide presented by the HLA-Cw
molecule seems to play a role in the binding affinity of KIR2DL1/C2 because a substitu-
tion at the P8 position with an acidic residue results in a loss of ligand binding [77,78].
KIR2DL2/3 recognize the HLA-Cw molecules of group C1 (C1) with Asp80 [79]. However,
the recognition of KIR2DL2/3 for C1 is less stringent than the recognition of 2DL1 for C2
because some C2 ligands, such as HLA-Cw4, are also recognized by KIR2DL2/3 [34,80,81].
In addition, the avidity of KIR2DL2 for the C1 ligands is stronger than for 2DL3 [80,82].
Interestingly, the peptide could increase the affinity of KIR2DL2/3 for the C1 ligands, as
reported in the context of HCV [83]. KIR2DL4, which is an activating receptor, has the
HLA-G molecule as a ligand, which is a nonclassical HLA class I molecule expressed on
trophoblast cells during pregnancy [84]. KIR2DS1 recognizes C2 ligands as its inhibitory
2DL1 counterpart, but with a lower affinity [85,86]. KIR2DS2 recognizes C1 ligands and
the HLA-A11 molecule [87,88]. As reported for KIR2DL2/3, the recognition of KIR2DS2
of HLA-C molecules is peptide-dependent [88,89]. KIR2DS4 recognizes some HLA-C
molecules and the HLA-A11 molecule [90]. To date, the ligands of KIR2DL5 and 2DS3
remain unknown. KIR3DL1 recognizes HLA-B and some HLA-A molecules that bear Bw4
motifs [91,92], while its activating 3DS1 counterpart probably interact with the nonclassical
HLA-F molecule [93], although a Bw4 specificity was reported in the context of HIV [94].
KIR3DL2 interacts with HLA-A3/A11 molecules, and this interaction is peptide-dependent,
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which allows a modulation of receptor ligand interactions [95,96]. In addition to HLA
class I ligands, the HERV-H LTR-associating 2 (HHLA2) molecule, a member of the B7
family that is highly expressed in several solid and hematological cancers, was recently
identified as a ligand for KIR3DL3 [97]. HLA class I molecules also play a predominant
role in NK cell education or licensing. Four models of NK cell education, which allow for
the functional development and tolerance to self in NK cells, have been described [98].
Among them, the “arming” or “licensing” model, which was initially described in mice,
involves the engagement of an inhibitory NK receptor with a self-MHC class I molecule,
and this engagement educates NK cells to become functionally competent. Conversely,
the absence of engagement of the inhibitory NK receptor with its ligand induces so-called
“unlicensed” NK cells [99]. The education of KIR+ NK cells allows these cells to distinguish
healthy cells with normal expression levels of HLA class I molecules from those with no
or decreased expression of HLA class I molecules, thus referring to the “missing self” the-
ory [7]. Different studies demonstrated the importance of KIR2DL1/2 [7] and 3DL1 [100] in
NK cell education. KIR–HLA interactions could also occur in cis on NK cells [100]. Overall,
NK cell education models are based on inhibitory KIRs, but activating KIRs could also
play a role. Indeed, KIR2DS1+ NK cells are alloreactive toward C2 targets, but only in C2-
individuals [85]. In C2 individuals, KIR2DS1+ NK cells become anergic due to the strong
and prolonged exposure of 2DS1 to its autologous C2 ligand, which limits the autoreactive
immune response [101].

In addition to the phenotype, allelic polymorphisms in KIRs influence the functionality
of KIR+ NK cells. Thus, the lowest recognition of C2 ligands by KIR2DL1+ NK cells was
observed for the KIR2DL1*004 allotype [34,74,75]. This decreased recognition was reported
to be due to the mutation of Arg245 to Cys245. Indeed, this mutation plays a role in the
transduction of inhibitory signals, as KIR2DL1 allotypes carrying Arg245 recruit SHP-2
and β-arrestin 2 molecules, both of which are important signaling molecules mediated by
2DL1 [74]. Recently, we reported that the KIR2DL1*002 allotype (Arg245) interacts with all
C2 targets as observed with the 2DL1*004 allotype (Cys245), suggesting that polymorphic
positions other than that of the intracytoplasmic 245 residue may play a crucial role [34].
To a lesser extent, the KIR2DL2/3 allotypes impact the inhibition of KIR2DL2/3+ NK cell
degranulation, showing a better inhibition with the 2DL2 allotype than with the 2DL3
allotype [102]. The allelic polymorphism of HLA-C could also affect the binding affinity
of KIR2DL/HLA-C and the consequent NK cell functionality. Similarly to KIR2D, allelic
polymorphisms in KIRs modulate the functionality of KIR3D+ NK cells, as was found
through extensive studies of KIR3DL1 [30,103,104].

HLA-Cw molecules are more specifically dedicated to sensing the level of alteration
and/or decreases in HLA class I expression at the surface of tumor cells than to the
presentation of peptides to TcR [105]. As described previously, all HLA-Cw molecules
are ligands for KIRs in an allele-specific manner [48,106]. In healthy individuals, the
expression level of HLA-Cw molecules on fresh PBMCs is lower than that of HLA-A and
-B molecules [105]. The differential expression of HLA-Cw molecules according to tissue
specificity must be further investigated. The level of HLA-Cw expression varies depending
on the HLA-C alleles, HLA haplotypes and polymorphisms encountered in the coding
and regulatory regions of the HLA-C gene [107–112]. Genome-wide association studies
(GWAS) performed in US blood donors showed a biallelic polymorphism of some SNPs
located in the 5′UTR region −800 bp [109] and −35 kb [107] upstream of the initiation
codon of the HLA-C gene or in the 3′UTR region [110] that had an effect on the HLA-C
expression level. Usually, the expression level of HLA-Cw4 or -Cw6 is higher than that of
HLA-Cw2 or -Cw8, but a low expression level was reported for the HLA-Cw7 and -Cw3
molecules. While heterogeneity in the HLA-Cw expression level is observed according
to the polymorphisms in the coding and regulatory regions, some discordances remain
depending on the population studied (mostly US populations), the methodologies used
(e.g., SNPs, evaluation of the HLA-Cw expression level using the HLA-C/HLA-E-specific
DT9 mAb, or quantification of mRNA), and the allelic specificities of HLA-C under study.
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At present, it is difficult to correlate all HLA-C specificities, SNP polymorphisms, levels
of HLA-C transcripts, and the corresponding HLA-Cw expression levels in both healthy
individuals and people with diseases.

Overall, the variability in KIR gene content, KIR allele polymorphisms, the HLA class
I environment, and the clonal expression of KIRs result in the inter- and intraindividual
diversity of the KIR+ NK cell repertoire (Figure 2).

Cancers 2021, 13, x 8 of 27 
 

 

on the population studied (mostly US populations), the methodologies used (e.g., SNPs, 
evaluation of the HLA-Cw expression level using the HLA-C/HLA-E-specific DT9 mAb, 
or quantification of mRNA), and the allelic specificities of HLA-C under study. At present, 
it is difficult to correlate all HLA-C specificities, SNP polymorphisms, levels of HLA-C 
transcripts, and the corresponding HLA-Cw expression levels in both healthy individuals 
and people with diseases. 

Overall, the variability in KIR gene content, KIR allele polymorphisms, the HLA class 
I environment, and the clonal expression of KIRs result in the inter- and intraindividual 
diversity of the KIR+ NK cell repertoire (Figure 2). 

 
Figure 2. Variability of the KIR+ NK cell repertoire. KIR genes (7–14) are located in the leucocyte region complex (LRC) on 
chromosome 19. Depending on the KIR gene content, different KIR haplotypes (A and B) and centromeric/telomeric motifs 
are defined (A). KIR genes exhibit an allelic polymorphism (https://www.ebi.ac.uk/ipd/kir/) (accessed date: 26, July, 2012). 
(B), and the diversity of KIR haplotypes and/or alleles can be observed worldwide (source provided by Dr J. Hollenbach 
from the 15th IHWG KIR component) (C). HLA class I molecules are ligands of KIRs (D). Depending on the typing of 
HLA-A, -B and -C, individuals can present from one to four KIR ligands (E). The HLA class I environment also play a 
major role in NK cell licensing (F). The allelic polymorphism of KIRs has an impact on the NK cell repertoire, as illustrated 
for the expression of different KIR3DL1 allotypes (G). KIRs are clonally distributed on NK cells; thus, the heterogeneous 
repertoire of NK cell subsets is based on the expression of different combinations of KIRs with different frequencies (H). 
The functions (cytotoxicity, cytokine production) of KIR+ NK cells and KIR/KIR ligand affinities (I) could be affected by 
both KIR and HLA class I polymorphisms. 

3. Impacts of the KIR and HLA Class I Genes on the Antileukemic Effects of NK Cells 
in Patients with Acute Leukemia 
3.1. Expression of HLA Class I Molecules on Leukemic Cells 

Impaired recognition of tumor cells is associated with the loss of or decreased HLA 
expression [15]. This mechanism, which has been described in various solid tumors, could 
be related to genomic alterations of HLA genes, phenotypic alterations of HLA molecules, 
or changes in other elements involved in the antigenic presentation machinery. Toffalori 
et al. elegantly reported an immunological signature of relapse associated with a loss of 
HLA expression in AML patients [113]. In leukemic patients, the decreased expression of 

Figure 2. Variability of the KIR+ NK cell repertoire. KIR genes (7–14) are located in the leucocyte region complex (LRC)
on chromosome 19. Depending on the KIR gene content, different KIR haplotypes (A and B) and centromeric/telomeric
motifs are defined (A). KIR genes exhibit an allelic polymorphism (https://www.ebi.ac.uk/ipd/kir/) (accessed date: 26
July 2021). (B), and the diversity of KIR haplotypes and/or alleles can be observed worldwide (source provided by Dr
J. Hollenbach from the 15th IHWG KIR component) (C). HLA class I molecules are ligands of KIRs (D). Depending on
the typing of HLA-A, -B and -C, individuals can present from one to four KIR ligands (E). The HLA class I environment
also play a major role in NK cell licensing (F). The allelic polymorphism of KIRs has an impact on the NK cell repertoire,
as illustrated for the expression of different KIR3DL1 allotypes (G). KIRs are clonally distributed on NK cells; thus, the
heterogeneous repertoire of NK cell subsets is based on the expression of different combinations of KIRs with different
frequencies (H). The functions (cytotoxicity, cytokine production) of KIR+ NK cells and KIR/KIR ligand affinities (I) could
be affected by both KIR and HLA class I polymorphisms.

3. Impacts of the KIR and HLA Class I Genes on the Antileukemic Effects of NK Cells
in Patients with Acute Leukemia
3.1. Expression of HLA Class I Molecules on Leukemic Cells

Impaired recognition of tumor cells is associated with the loss of or decreased HLA
expression [15]. This mechanism, which has been described in various solid tumors, could
be related to genomic alterations of HLA genes, phenotypic alterations of HLA molecules,
or changes in other elements involved in the antigenic presentation machinery. Toffalori
et al. elegantly reported an immunological signature of relapse associated with a loss of
HLA expression in AML patients [113]. In leukemic patients, the decreased expression
of HLA class I molecules may depend on the loci, alleles, tissues, or cells, and it impacts

https://www.ebi.ac.uk/ipd/kir/
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different HLA molecules, leading to a loss of HLA heterozygosity or a complete HLA
haplotype loss [114–116]. The nature of HLA class I downregulation also varies depending
on the origin of the leukemia [117]. The decrease in HLA expression occurs most frequently
at the time of relapse, thus constituting a potential immunological signature [118]. In
2009, after haplo-identical HLA HSCT, Vago et al. reported a loss of the mismatched
HLA haplotype in one-third of the patients (mostly with AML) who relapsed [119]. In
a collaborative study, at the time of diagnosis of AML patients, we reported a loss of
heterozygosity in the complete HLA region in half of the patients, as well as the loss of the
HLA-A, -B, and -C genes—or only the HLA-A gene—in the remaining patients [120].

The impact of the HLA-Cw expression level on clinical outcomes after mismatched
HLA-C HSCT remains relatively undocumented. HLA-C mismatches are usually reported
to be associated with a higher incidence of acute graft-versus-host disease (GvHD) and
higher mortality [121]. However, some frequently encountered HLA-C mismatches, such as
HLA-C*03:03/*03:04 or HLA-C*07:01/*07:02, which correspond to a low HLA-C expression
level in recipients and are evaluated using the expected MFI of the corresponding HLA-C
specificities, are called permissive in the absence of deleterious effects after unrelated
mismatched HLA-C HSCT [122–124]. In contrast, no effects caused by HLA-C level
expression, which was evaluated by using the polymorphism of a miRNA in the 3′UTR,
were reported after an unrelated HSCT [125]. These discordances could rely on HSCT
cohorts or methods to correlate the levels of HLA-C expression according to the HLA-
C polymorphism. The level HLA-Cw expression on leukemic cells or on reconstituting
immune cells after HSCT is poorly documented due to the lack of specific mAbs available.
One could expect that the level of HLA-Cw expression could modulate NK cell functions
and their development through their trans- and cis-interactions with KIRs, respectively.

3.2. Antileukemic NK Cell Function in Patients with Acute Leukemia

In the context of acute leukemia, NK-cell-mediated immunosurveillance requires the
establishment of an immunological synapse between NK cells and the target; this synapse
involves the interactions between inhibitory and activating NK receptors and their ligands
expressed on leukemic cells. NK cells express a wide range of activating receptors that
recognize induced or upregulated molecules on tumor cells [19]. Moreover, cognate ligands
are heterogeneously expressed on leukemic cells. In addition to the absence of expression or
downregulation of HLA molecules, it was reported that the presence of activating ligands
on the surface of leukemic cells was associated with the reduction of relapse incidence
and improved overall survival of patients with acute leukemia [126]. We recently reported
that ALL targets were better recognized by NK cells than AML targets. However, there is
a broad interindividual disparity in NK cell responses against the same leukemic target,
which highlights bad and good NK responders. Most effective NK cell subsets against
different ALL targets express NKG2A, and these represent the most frequent subset in the
NK cell repertoire. In contrast, minority CD57+ and/or KIR+ NK cell subsets are more
efficient against AML targets [127]. Overall, our data may help to optimize the selection of
HSC donors on the basis of immunogenetic KIR/HLA markers and to identify the best NK
cell candidates in immunotherapies for AML patients.

4. Selection of HSC Donors Based on the HLA and KIR Genes
4.1. Selection of HSC Donors Based on HLA Matching

The matching of HLA class I (HLA-A, -B,-C) and class II (HLA-DRB1, -DQB1) genes
between the donor and the recipient remains the gold standard [128,129] in order to prevent
acute GvHD occurrence, to improve overall survival (OS), and to provide a beneficial GvL
effect that is driven by alloreactive T and/or NK cells. The inheritance of HLA genes
from the parental haplotypes in blocks results in 25% likelihood of finding a 10/10 HLA-
identical donor among a patient’s siblings. In the absence of related HLA-identical donors,
an unrelated HLA-matched donor is sought in the registries. In an unrelated HSCT, an
important feature to consider is that the HLA alleles, haplotype frequencies, and LD



Cancers 2021, 13, 3767 10 of 27

between HLA genes may differ across populations [63]. Although there are more than
30 million potential unrelated HSC donors currently registered worldwide, finding suitably
matched donors can be difficult for patients that harbor rare HLA alleles and/or because
of the quality of available genotyping information. In the absence of a related or unrelated
10/10 HLA-matched donor, a 9/10 HLA-matched donor with selective mismatches could
be selected. From 2010 to 2015, umbilical cord blood donors represented another option.
For adult patients, two UCB donors were selected, and the level of HLA matching between
the donor and recipient in double umbilical cord blood transplantation (dUCBT) was based
on the HLA-A, -B, and -DRB1 genes (4/6 to 6/6 HLA matched). The impact of HLA-C
matching remains to be clarified. Over the last 5 years, unmanipulated T-cell-repleted
haplo-identical HSCT using cyclosphosphamide post-transplantation (haplo-PTCy) as
prophylaxis against GvHD has been recommended in the absence of a 10/10 HLA-identical
donor. Haplo-PTCy is increasing in use and has shown similar outcomes to those observed
after unrelated or even related HLA-matched HSCT [130,131]. Here, donors and recipients
share only one HLA haplotype, resulting in a 50% likelihood of finding a haplo-identical
donor among one’s siblings and, therefore, increasing the number of potential HSC donors.
The levels of HLA matching between a HSC donor and a recipient depending on the
stem-cell sources are summarized in Figure 3.
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Figure 3. Donor/recipient HLA matching prior to allogeneic hematopoietic stem-cell transplantations
(HSCT). The matching of the HLA-A, -B, -C, -DRB1, and -DQB1 genes between donors and recipients
in both haplotypes is usually sought prior to related or unrelated HSCT (A). In the absence of
related/unrelated 10/10 HLA-identical donors, double-umbilical cord blood transplantation (dUCBT)
could be proposed so that only the matching of the HLA-A, -B, and -DR genes would be considered.
In this context, the two UCB units and the recipient usually have 4/6 to 6/6 HLA matches (B). More
recently, a donor with a 5/10 HLA-haplo-identical match is sought. The use of cyclophosphamide
post-grafting as a prophylaxis against GvHD permits the deletion of the reconstitution of alloreactive
T cells from T-repleted grafts (C).
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4.2. KIR Models Used to Evaluate NK Cell Alloreactivity and Clinical Outcomes after
Allogeneic HSCT

To evaluate the potential alloreactivity of KIR+ NK cells, the impacts of KIR ligands,
KIR genes/genotypes, and KIR/KIR ligand (KIR-L) mismatches have been deeply investi-
gated since 2000 in terms of HSCT outcomes; due to the heterogeneity of the HSCT cohorts
and/or the predictive KIR models used, the results were discordant (Figure 4) [132,133].
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Figure 4. Genetic KIR/KIR ligand models defined to predict potential KIR+ NK cell alloreactivity (adapted from Symons
et al. [134]). Genotyping of HLA class I and/or KIR genes permits the establishment of different KIR/KIR ligand models
for use in HSCT. Knowledge of the HLA class I typing of donor/recipient pairs permits the identification of KIR ligand
mismatches in the graft-versus-host (GvH) direction in HLA-mismatched HSCT, as defined by the KIR ligand model (A) or
by the KIR ligands in recipients that show missing KIR ligands (B). In these contexts, the expression of KIR is only predictive.
KIR genotyping of donors and recipients permits the assignment of donor and/or recipient KIR genes that impact the HSCT
outcome, as defined by the KIR gene/gene model (C). Genotyping of HLA class I genes in donor/recipient pairs and of KIR
genes in donors permits the identification of both educated KIR+ NK cells and missing KIR ligands in recipients (D). In this
KIR receptor–ligand model, the expression of KIRs could be assessed using appropriated anti-KIR monoclonal antibodies
(mAbs) or could be deduced from the donor’s KIR alleles (D).

The beneficial effect of NK cell alloreactivity based on HLA class I mismatches in
terms of KIR ligands in the graft-versus-host direction (GvH) was initially underlined in
the context of T-cell-depleted haplo-identical HSCTs, specifically for AML patients without
relapse and aGvHD [135,136]. In parallel, the impacts of KIR ligands, donor KIR genes,
and KIR-L mismatches on clinical outcomes were investigated after related or unrelated
HSCTs, including HLA-matched and HLA-mismatched pairs. Notably, as HLA class I and
KIR genes are located on different chromosomes, HLA-matched donor/recipient pairs
could present relevant KIR gene mismatches. In related HLA-matched HSCT, the absence
of KIR ligands in the recipient (missing KIR ligand, i.e., the absence of Bw4, C1 or C2)
for the donor’s inhibitory KIRs was found to either be a beneficial prognostic factor by
increasing OS and disease-free survival (DFS) and/or by decreasing relapse incidence
for AML patients [137,138] or have no effect [101]. In addition to genetic studies of KIR,
different profiles of NK cell reconstitution were reported with the establishment of a donor-
like KIR repertoire, showing a gradual reconstitution from 6 to 9 months or longer to
1 year after related HLA-matched HSCT [137]. NKG2A+ KIR− NK cells were shown to
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dominate early after HSCT, and NK cells that lacked inhibitory KIRs for self-HLA class I
ligands remained tolerant at different points in T-cell-repleted and -depleted HLA-matched
sibling HSCTs [101].

In unrelated HSCT, having a missing KIR ligand was found to be a predictive factor
for relapse in adult patients with AML in HLA-mismatched pairs [139]. Interestingly, in
a large series of unrelated HSCTs, including HLA-matched and single-mismatched pairs,
Venstrom et al. reported a reduction in relapses in AML patients that were grafted with
KIR2DS1+/C1+ donors [140]. In addition to KIR2DS1, we reported a beneficial impact of
KIR3DL1/S1+ grafts in Bw4+ recipients with myeloid diseases on relapse incidence after
unrelated HSCT [141]. Venstrom et al. also confirmed the beneficial impact of KIR3DS1+
donors by decreasing treatment-related mortality (TRM) and aGvHD, but found that there
was no impact on relapses [142]. More broadly, a specific donor KIR B gene content score
that is≥2 [143], donor KIR B genotypes [144], or donor KIR CenB02 [145] should be favored
for AML patients in order to decrease relapse incidence, which suggests that there is a
need to detect the activating KIR genes. Notably, one prospective and multicentric study
underlined the feasibility of donor KIR genotyping without delaying grafting [146]. In
contrast, the assignment of donor KIR alleles is more time-consuming, and their effect on
HSCT outcomes is primarily focused on limited KIR genes with phenotypic and functional
characteristics of KIR+ NK cells, as was reported for KIR2DL1 [147]. Interestingly, a benefi-
cial effect of specific donor KIR3DL1-HLA-B subtypes associated with weak or a lack of
inhibition of NK cells was reported in a large series of AML patients that included unrelated
10/10 and 9/10 HLA-matched pairs [148]. Conversely, the genetic combination of donor
KIR3DL1+ and patient HLA-A*24+ is associated with a higher risk of AML relapse follow-
ing allogeneic HSCT [149]. Schetelig et al. reported that there were no correlations between
KIR3DL1/HLA-B combinations and relapse or OS in unrelated HSCTs, which also included
10/10 and 9/10 HLA-matched pairs [150]. Recently, a retrospective study performed on a
large cohort of AML patients reported that there was no impact of KIR3DL1/2DS1 or a
haplotype-motif-based donor selection algorithm on OS and relapse after unrelated HLA
matched HSCTs [151]. In line with HSCT protocols, the impact of KIR-L mismatches was
investigated in adult patients after dUCBTs [152–158]. Once again, conflicting data were
reported, which were linked either to the competing KIR models used or the heterogeneity
of the patients and treatment modalities.

For the last 5 years, haplo-PTCy has offered a new means of identifying the KIR
and/or HLA class I markers that are beneficial in improving the GvL effect driven by
NK cells [159,160]. In this context, donors and recipients share only one HLA haplotype;
thus, HLA class I mismatches could represent KIR-L mismatches. Donors and recipi-
ents could also have different KIR genes. In terms of inhibitory KIR gene mismatches,
Symons et al. [134] reported a beneficial effect on the improvement of OS and the decrease
in relapse and non-relapse mortality (NRM) after haplo-PTCy in 86 patients with lymphoid
and myeloid diseases. Bastos-Oreiro et al. [161] reported the beneficial effect of at least one
inhibitory KIR gene mismatch on the improvement of event-free survival (EFS) and the
decrease in relapses after haplo-PTCy in 33 patients with various diseases. However, the
specificity of the inhibitory KIR gene mismatches was not mentioned. Wanquet et al. [162]
reported decreased relapses in patients with active diseases with KIR-L mismatches, but
there were no beneficial effects of these mismatches for patients in complete remission
after haplo-PTCy. Solomon et al. [163] reported a beneficial effect of KIR-L mismatches
on OS and relapses after haplo-PTCy in 208 patients that received either a myeloablative
conditioning (MAC) or a reduced-intensity conditioning (RIC) regimen. In 51 patients,
which were all treated with an RIC regimen and infused with PBSCs, we reported a benefi-
cial effect of KIR2D/HLA-C mismatches in the GvH direction, by decreasing the relapse
incidence while increasing OS, aGvHD, and DFS after haplo-PTCy [164]. In contrast, in
AML patients grafted with PBSCs, Shimoni et al. [165] reported a deleterious effect of
KIR-L mismatches with increased relapses and decreased OS, after haplo-PTCy. In terms of
KIR genotypes, Symons et al. [134] showed in 86 patients that KIR genotype AA recipients
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from B+ KIR donors were associated with fewer relapses. The beneficial effect of donor B+

KIR was reported in both lymphoid and myeloid diseases and with RIC regimens [134].
Solomon et al. [163] reported a beneficial effect of the donor B+ KIR genotype on relapse
incidence, particularly the presence of the KIR2DS2 gene in 208 patients with various
diseases. Mixed bone marrow/PBSCs and both MAC and RIC regimens were used in
these series. Lastly, Bastos-Oreiro et al. [161] reported that there was no protective effect
of the donor B+ KIR genotype on relapse incidence after haplo-PTCy in a limited number
of patients with mixed conditioning regimens. In terms of KIR gene motifs, we recently
reported the impact of the donor KIR cenAA motif on relapse incidence after haplo-PTCy in
39 patients with myeloid diseases, which suggested that the GvL effect could be driven by
specific KIR2DL1/3 allotypes [34]. The impact of KIR allele polymorphisms on haplo-PTCy
outcomes has not been investigated so far.

Overall, these studies, which were mainly retrospective, demonstrated that the im-
pacts of genetic combinations of KIR ligands, KIR genes, and/or KIR-L differ depending
on diseases, immunosuppressive treatments, conditioning regimens, the stem-cell sources,
the graft T-cell content, the GvHD prophylaxis, and the degree of HLA matching. However,
HLA typing alone is not sufficient for providing the specificities of the donor KIR genes
involved. Although the gene frequencies of KIR2DL1/3/3DL1 are close to 100%, allowing
speculation about their presence depending on donor KIR ligands, the distinguishing be-
tween KIR2DL2 and 2DL3 is essential because their phenotypes and functions in NK cells
differ [81]. KIR3DL1 allele typing also permits one to check for the absence of 3DL1*004,
which is frequent in Caucasian people [46]. The reported and divergent effects of KIR/KIR
ligand genetic combinations on HSCT outcomes (Table 1) suggest that donor KIR genotyp-
ing, including the detection of activating KIR genes, discrimination among KIR gene motifs,
KIR allele polymorphisms, and the HLA class I environment, should be considered in order
to predict the potential KIR+ NK cell alloreactivity after HSCT. Given the current literature,
it is proposed that an HSC donor with B+ KIR gene content is selected for HLA-identical
HSCTs, and an HSC donor with a KIR cenAA motif is selected for haplo-PTCy in order to
limit the relapse incidence in adult patients with AML.

Table 1. Impacts of the genetic combinations of KIR/KIR ligands on clinical outcomes for adult AML patients, including
selected studies that focused on both HLA-matched and HLA-mismatched HSCTs.

Authors N AML 1 HSCT HLA Source 2 Depletion Conditioning 3 Outcome 4

Hsu et al.
[138] 178 32% Related Matched BM T-cell-

depleted MAC

AML patients
with missing KIR
ligands (HLA-C

or HLA-B
ligands): ↗ OS,
↗ DFS,
↘ relapse

Björklund
et al. [101] 105 77% Related Matched

PBSC (67%)
and BM
(33%)

T-replete MAC (72%) and
RIC (28%)

No benefit of
missing KIR

ligand on DFS,
relapse,

and aGvHD

Hsu et al.
[139] 1770 13% Unrelated

Matched
(48%) and

mis-
matched

(52%)

unknown T-replete MAC

AML patients
with missing KIR

ligand: ↘
relapse in

mismatched
HSCT but no

impact on
matched HSCT
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Table 1. Cont.

Authors N AML 1 HSCT HLA Source 2 Depletion Conditioning 3 Outcome 4

Venstrom
et al. [140] 1277 100% Unrelated

Matched
(52%) and

mis-
matched

(48%)

BM (54%)
and PBSC

(46%)

T-replete
(72%) and

T-cell-
depleted

(28%)

MAC (85%) and
RIC (15%)

Donor
2DS1+/C1+: ↘
TRM,↘ relapse

Gagne et al.
[141] 264

52% of
acute

leukemia
Unrelated

Matched
(62%) and

mis-
matched

(38%)

BM T-replete TBI based (70%)

Donor
KIR3DL1/S1+
and recipient

Bw4+: ↗ OS,↘
relapse for

HLA-matched
and HLA-

mismatched
HSCTs for malig-

nant diseases

Venstrom
et al. [142] 1087 28% Unrelated

Matched
(62%) and

mis-
matched

(38%)

BM (97%)

T-replete
(80%) and

T-cell-
depleted

(20%)

Unknown

Donor
KIR3DS1+: ↘

TRM,↘ aGvHD,
no impact
on relapse

Cooley
et al. [143] 1409 77% Unrelated

Matched
(50%) and

mis-
matched

(50%)

BM (90%)
and PBSC

(10%)
T-replete MAC

Donor CenBB or
≥ 2 KIR B gene
content: ↗ DFS

and↘ relapse in
matched and
mismatched

HSCTs.Donor
TelBB:↘ relapse

Weisdorf
et al. [144] 2662 100% Unrelated Matched

(89%)

BM (15%)
and PBSC

(85%)
Unknown MAC (59%) and

RIC (41%)

Donor KIR B
haplotype: ↘
relapse only in
RIC patients.
Donor KIR B

genes/ recipient
C1+: ↘ relapse

Boudreau
et al. [148] 1328 100% Unrelated

Matched
(53%) and

mis-
matched

(47%)

BM (54%)
and PBSC

(46%)

T-replete
(92%)

MAC (84%) and
RIC (16%)

Donor
KIR3DL1/HLA-

B subtype
combinations

linked to weak or
non-inhibition:
↘ TRM,↘

relapse.
Distinct

beneficial effect
of donor

KIR2DS1+/C1+

Ploeg et al.
[149] 604 100% Unrelated

Matched
(64%) and

mis-
matched

(36%)

BM (48%)
and PBSC

(52%)

T-replete
(67%) and

T-cell-
depleted

(33%)

MAC (85%) and
RIC (15%)

Donor KIR3DL1+
and recipient
HLA-A*24+:
↗ relapse
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Table 1. Cont.

Authors N AML 1 HSCT HLA Source 2 Depletion Conditioning 3 Outcome 4

Ruggeri
et al. [135] 92 62% Related Haplo-

identical unknown T-cell
depleted Unknown

Donor/recipient
KIR ligand

mismatches in
the GvH

direction: no
aGvHD and no

relapse in
AML patients

Symons
et al. [134] 86 30% Related Haplo-

identical BM T-replete RIC, PTCy

Donor/recipient
inh.KIR gene

MM:↗ OS,↘
relapse, donor

KIR B/recipient
KIR AA↗ OS,
↘ NRM

Bastos et al.
[161] 33 30% Related Haplo-

identical unknown T-replete
RIC (66%) and

MAC (34%),
PTCy

At least one
donor/recipient

inh KIR gene
MM:↗ EFS,↘

relapse. No
protective effect

of donor
B genotype

Wanquet
et al. [162] 144

35% of
myeloid

dis-
eases

Related Haplo-
identical

PBSC (63%)
and BM
(37%)

T-replete
RIC (87%),

MAC (13%),
PTCy

Donor/recipient
KIR ligand MM

in the GvH
direction: ↘

relapse,↗ PFS
for patients with

active disease
but no beneficial
effect for patients

in com-
plete remission

Solomon
et al. [163] 208 34% Related Haplo-

identical
PBSC and

BM T-replete
MAC (41%),
RIC (59%),

PTCy

Donor/recipient
KIR ligand MM

in the GvH
direction or

donor KIR2DS2+:
↗ OS,↗ DFS,
↘ relapse.
No impact
on aGvHD

Shimoni
et al. [165] 444 74% Related Haplo-

identical

BM (53%)
and PBSC

(47%)
T-replete

MAC (55%) and
RIC (45%),

PTCy

Donor/recipient
KIR ligand MM

in the GvH
direction: no

impact on
aGvHD, cGvHD

and NRM. In
AML patients
grafted with

PBSCs,↗
relapse and
↘ OS
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Table 1. Cont.

Authors N AML 1 HSCT HLA Source 2 Depletion Conditioning 3 Outcome 4

Willem
et al. [164] 51 35% Related Haplo-

identical PBSC T-replete RIC, PTCy

Donor
inh.KIR2D/recipient
HLA-C MM:↗
aGvHD,↗ OS,
↗ DFS,
↘ relapse

Dubreuil
et al. [34] 81

63%
myeloid

dis-
eases

Related Haplo-
identical PBSC T-replete RIC, PTCy

Donor CenAA:
↘ relapse only
in patients with

myeloid diseases
1 AML, acute myeloid leukemia; 2 BM, bone marrow; PBSCs, peripheral blood stem cells; 3 MAC, myeloablative conditioning; PTCy,
post-transplant cyclophosphamide; RIC, reduced-intensity regimen; 4 aGvHD, acute graft-versus-host disease; CenAA, centromeric A KIR
motif; CenBB, centromeric BB KIR motif; DFS, disease-free survival; HSCT, hematopoietic stem-cell transplantation; inh. KIR, inhibitory
KIR; MM, mismatch; NRM, non-relapse mortality; OS, overall survival; PFS, progression-free survival; TRM, treatment-related mortality.

4.3. Reconstitution of NK Cells after T-Replete Haploidentical HSCT

After haplo-PTCy, NK cells rapidly reconstitute the recipient’s immune system, as
they are the first lymphocytes to mediate a GvL effect, even before T cells [164,166–168].
The prophylaxis against GvHD plays a major role in the modulation of the reconstitution
of immune cells and possibly in their function after haplo-HSCT. Recovery of NK cells after
haplo-PTCy was reported by Vago’s group in 2018 [168]. A similar NK cell recovery was
observed in patients who received different PTCy protocols. PTCy first eliminates prolifer-
ating donor NK cells; then, an IL15 peak correlated with the kinetics of NK cell recovery
appears, and a second wave of reconstituted NK cells with an immature phenotype occurs
2 weeks after HSCT. The development of mature NK cells can take place up to 1 year after
HSCT. PTCy decreases NK cell alloreactivity, and the GvL effect is correlated with residual
mature NK cells. Overall, there are predictive factors that correspond to the absolute counts
of NK cells and the proportion of mature NK cells at day +30. A high expression of KIRs on
NK cells at day +30 was correlated with a decreased relapse incidence [168]. Consistently
with the data from Russo et al., we evaluated NK cell reconstitution in a cohort of 51 adult
patients after haplo-PTCy [164]. KIR2DL2/3+ and 3DL1+ NK cell recovery at day +30 was
inversely impacted by KIR-L mismatches. The loss of KIR2DL2/3+ NK cells at day 30
in pairs with inhibitory KIR2D/HLA-C mismatches suggested a deletion of alloreactive
KIR+ NK cells by PTCy [164]. After haplo-PTCy, the reconstitution of T and NK cells
revealed increased NK and decreased T-cell frequencies in patients treated with PTCy +
ATG compared to PTCy alone [167]. In patients without relapse, the frequency of NKG2A+

KIR2DL2/3/S2− NK cells was increased at day +60 and these cells were more numerous
in patients with PTCy + ATG compared to PTCy alone. The use of the NKG2A, CD57,
NKG2C, and KIR2DL3 markers expressed on NK cells at day +30 made it possible to
define an immature NK cell repertoire (i.e., KIR2DL3−NKG2A+CD57−) associated with
fewer relapses [167]. In contrast, the predominant KIR2DL3−NKG2A−CD57− NK cell
subset was associated with a high incidence of relapse [167]. Overall, deciphering the
heterogeneity of NK cells is crucial for identifying the NK cell subsets that are efficient
against hematological diseases in order to optimize HSC donor selection and, more broadly,
NK-cell-based immunotherapies, as discussed below.

5. NK-Cell-Based Immunotherapies Apart from HSCT

In leukemic patients, the functions of NK cells are usually impaired, which is partic-
ularly linked to the alteration of their repertoire. Thus, NK-cell-based immunotherapies
are devoted to increasing their antileukemic potential in patients by using the addition
of specific cytokines, mAbs, and/or the adoptive transfer of unmodified or engineered
NK cells [18,19,169–174].
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5.1. Immune Molecules for Boosting NK Cell Functions in Leukemic Patients

Among the various cytokines, IL-2 and IL-15 are of interest for promoting the survival,
proliferation, differentiation, and activation of NK cells. In particular, ALT-803, a super-
agonist of IL-15 that was administrated to 33 patients who relapsed after HSCT, showed a
clinical benefit in 19 patients in a phase I trial [175]. In clinical studies that combined ALT-
803 with adoptive transfer of NK cells, ALT-803 was expected to enhance the activation,
survival, and expansion of donor-derived NK cells. Moreover, the cocktail of IL-12, IL-15,
and IL-18 used in vitro to promote NK cell proliferation and activation unleashes tumor
killing of NK cells via KIR downregulation [176]. Apart from cytokines, mAbs that are
specific for tumor antigens could be used to enhance the ADCC function of NK cells
through the binding of the IgG Fc fragment with the CD16 receptor. In particular, an
Fc-engineered CD133 mAb showed an improved affinity to NK cells and potent NK cell
degranulation against AML [177]. Among mAbs, bi- or tri-specific killer engagers (BiKEs,
TriKEs) are used to modulate NK cell activity. They are designed to contain variable
single-chain fragments that function against both tumor-associated antigens and NK-
activating receptors in order to create an immunological synapse between NK cells and
tumor cells [178]. In particular, it has been reported that the CD16x33 BiKE targets the
CD33 myeloid antigen and triggers the lytic activity of NK cells and the release of cytotoxic
granules against AML cells [179] in vitro. Moreover, the 161533 TriKE, which consists of
an anti-CD16 scFv, a modified IL-15 linker, and an anti-CD33 scFv, could trigger ADCC
while increasing both NK cell survival and proliferation against AML targets in vivo [180].
NK-cell-based immunotherapies using mAbs could also target immune checkpoints to
raise the inhibition driven by NK cells. Interestingly, lirulimab and monalizumab target
the pan-KIR and NKG2A inhibitory NK cell receptors, respectively [181]. PD-1 could also
represent an interesting target [171]. KIR/HLA interactions could also have an impact
on the ADCC function of NK cells, as we recently reported in lymphoma patients who
received a rituximab-based anticancer immunotherapy [182].

5.2. Adoptive NK Cell Immunotherapies

Infusions of allogeneic NK cells that are activated ex vivo or CAR-modified NK cells
represent promising immunotherapies against hematologic malignancies. In contrast to
T lymphocytes, allogeneic NK cells are not HLA-restricted and can be more safely used.
Another advantage is the wide range of NK cell sources such as PB, UCB, embryonic
stem cells, induced pluripotent stem cells, and NK cell lines [183,184]. In several clinical
trials of NK-cell-based immunotherapies, patients received chemotherapy prior to NK
cell infusion. Interestingly, the drugs used could stimulate the expression of activating
ligands or either downregulate the expression of inhibitory ligands on tumor cell [185]
or promote the recruitment of NK cells to the tumor sites by increasing the secretion of
selected chemokines. In addition to the adoptive transfer of unmodified NK cells, CAR NK
cells could be used. Similarly to CAR T cells, CAR NK cells are composed of an extracellular
signaling domain that recognizes specific antigens on tumors, a transmembrane region, and
an intracellular domain that activates pathways to enhance the lysis of target cells. CAR NK
cells eliminate tumors not only through the ability of CAR to specifically recognize antigen-
expressing tumors, but also through NK cell receptors themselves [20]. Preclinical trials of
NK cells demonstrated their clinical benefits in AML patients after HSCT. However, the
clinical activity of NK cells remains modest at best, which limits their current therapeutic
use. CAR-modified NK92 and primary NK cells are currently used against hematological
cancers. The tumor antigen that is targeted is often CD19 or CD20, which makes it possible
to target B-cell malignancies, such as B-ALL or CD33, in order to target AML [19]. However,
some issues related to the survival rate and cytotoxicity of NK cells after thawing need
to be solved in order to expand the use of CAR NK cells in clinical applications. New
strategies, including the integration of suicide genes into CAR constructs and bispecific
CAR molecules, are being developed to increase both the safety and the efficacy of CAR
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NK cell therapy [20]. The NK-cell-based immunotherapies used for the treatment of acute
leukemia are summarized in Figure 5.
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Figure 5. NK-cell-based immunotherapies for acute leukemia patients. Because of their antileukemic (GvL) effects, NK cells
play a major role, as they are the first cells to reconstitute the recipient’s immune system after allogeneic hematopoietic
stem-cell transplantation (HSCT) (A). Apart from HSCT, the efficiency of NK-cell based immunotherapies could be enhanced
with the infusion of autologous or allogeneic NK cells that are activated in vitro using a feeder and/or specific cytokines
(B). The use of bi- or tri-specific killer engagers (BiKEs, TriKEs) (C) or specific anti-NK cell receptor monoclonal antibodies
(mAbs) (D) could also enhance the GvL function of NK cells. Adoptive transfer of engineered NK cells armed with chimeric
antigen receptors (CARs) (E) is another emerging alternative.

Overall, NK-cell-based immunotherapies could be combined to boost the efficacy of
NK cells against leukemia, depending on the patients. However, given the heterogeneity
of NK cells, the source of NK cells is still a key element, and allogeneic donors should be
carefully selected by using specific KIR/HLA markers.

6. Conclusions

Polymorphic KIR and HLA class I genes play a major role in the structuration of the
functional NK cell repertoire. In the context of HSCT, they are of special interest for the
promotion of a beneficial GvL effect in leukemic patients. Haplo-PTCy makes it possible
to choose the best HSC donor among different ones. Until now, few studies have focused
on the relevance of polymorphic KIR/KIR ligands to the outcomes of haplo-PTCy. One
could expect that the consideration of the KIR gene content or specific KIR alleles could
help to refine the scores used for HSC donor selection, as well as to evaluate their influence
on haplo-PTCy outcomes in patients with high-risk and acute leukemia. The ultimate goal
is to define the best KIR and/or HLA markers during HSC donor selection with respect to
a beneficial GvL effect and a reduced GvHD incidence after haplo-PTCy. More broadly, the
inclusion of KIR/HLA markers should improve the efficiency of allogeneic NK-cell-based
immunotherapies, such as treatment with CAR NK cells.
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