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Abstract

Background: The mechanisms underlying the obesity-cancer relationship are incompletely understood. This study
aimed to characterise metabolic signatures of greater body size and to investigate their association with two
obesity-related malignancies, endometrial and colorectal cancers, and with weight loss within the context of an
intervention study.

Methods: Targeted mass spectrometry metabolomics data from 4326 participants enrolled in the European
Prospective Investigation into Cancer and Nutrition (EPIC) cohort and 17 individuals from a single-arm pilot weight
loss intervention (Intercept) were used in this analysis. Metabolic signatures of body size were first determined in
discovery (N = 3029) and replication (N = 1297) sets among EPIC participants by testing the associations between
129 metabolites and body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR) using linear
regression models followed by partial least squares analyses. Conditional logistic regression models assessed the
associations between the metabolic signatures with endometrial (N = 635 cases and 648 controls) and colorectal
(N = 423 cases and 423 controls) cancer risk using nested case-control studies in EPIC. Pearson correlation between
changes in the metabolic signatures and weight loss was tested among Intercept participants.
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Results: After adjustment for multiple comparisons, greater BMI, WC, and WHR were associated with higher levels
of valine, isoleucine, glutamate, PC aa C38:3, and PC aa C38:4 and with lower levels of asparagine, glutamine,
glycine, serine, lysoPC C17:0, lysoPC C18:1, lysoPC C18:2, PC aa C42:0, PC ae C34:3, PC ae C40:5, and PC ae C42:5.
The metabolic signature of BMI (OR1-sd 1.50, 95% CI 1.30–1.74), WC (OR1-sd 1.46, 95% CI 1.27–1.69), and WHR (OR1-sd
1.54, 95% CI 1.33–1.79) were each associated with endometrial cancer risk. Risk of colorectal cancer was positively
associated with the metabolic signature of WHR (OR1-sd: 1.26, 95% CI 1.07–1.49). In the Intercept study, a positive
correlation was observed between weight loss and changes in the metabolic signatures of BMI (r = 0.5, 95% CI
0.06–0.94, p = 0.03), WC (r = 0.5, 95% CI 0.05–0.94, p = 0.03), and WHR (r = 0.6, 95% CI 0.32–0.87, p = 0.01).

Conclusions: Obesity is associated with a distinct metabolic signature comprising changes in levels of specific
amino acids and lipids which is positively associated with both colorectal and endometrial cancer and is potentially
reversible following weight loss.

Keywords: Metabolomics, Obesity, Weight loss, Cancer

Background
Obesity is an important risk factor for at least 13 differ-
ent types of cancer [1]. It is estimated that 3.9% (~ 550,
000 cases in 2012) of the total worldwide cancer burden
is related to obesity, while 5.7% (~ 800,000 cases in
2012) is attributed to both obesity and type 2 diabetes
[1, 2]. Experimental and molecular epidemiologic studies
indicate important roles for dysregulated sex hormone
metabolism, adipose tissue-derived inflammation, and al-
terations in insulin signalling in mediating the adiposity
and cancer associations [3, 4]. However, it is likely that
other, as of yet unidentified, biological pathways may
also underlie these relationships. Further, it is not clear
whether weight loss promotes changes in the metabolic
pathways linking obesity and cancer development, and
ultimately whether it lowers cancer risk.
Metabolomics is an established technology for the

identification of metabolic changes and biomarkers for
understanding pathophysiological processes, through
simultaneous measurement of multiple metabolites in
human biofluids or tissues [5, 6]. Metabolomic profiling
has the potential to identify specific metabolic pheno-
types that are associated with cancer and to provide in-
sights into the mechanistic pathways involved in cancer
development [7–9].
To date, a limited number of epidemiological studies

have identified metabolic and biochemical pathways that
are significantly altered in obesity [10–12]. In a previous
analysis in the European Prospective Investigation into
Cancer and Nutrition (EPIC) cohort, a metabolic signa-
ture of high body mass index (BMI) was positively asso-
ciated with hepatocellular carcinoma risk (HCC) and
was found to mediate much of the association between
measured BMI and HCC [13]. However, to date, no
study has linked metabolic signatures reflecting other
anthropometric measures of obesity, such as waist cir-
cumference (WC) and waist-to-hip ratio (WHR), to
obesity-related cancer development. Similarly, very few

studies have investigated the biochemical pathways al-
tered during weight loss [14, 15]. The Intercept study, a
pilot intervention promoting weight loss through meal
replacement diet among individuals with obesity, was
one of the first studies to demonstrate potential cancer-
relevant changes in colorectal tissue following substan-
tial weight loss [16].
In this analysis, we identified metabolic signatures as-

sociated with greater body sizes as determined by BMI,
WC, and WHR, and then investigated their association
with risk of colorectal and endometrial cancers—two
malignancies strongly linked to obesity and metabolic
dysfunction [1]—in EPIC. We also explored the extent
to which weight loss modified these metabolic signatures
within a single-arm weight loss intervention study.

Methods
European Prospective Investigation into Cancer and
Nutrition
EPIC is a multicentre cohort of 521,330 participants
who were recruited between 1991 and 2000, predomin-
antly from the general populations of 10 European coun-
tries (Denmark, France, Germany, Greece, Italy, the
Netherlands, Norway, Spain, Sweden, and the UK) [17,
18]. The current study used data from all EPIC countries
apart from Greece.
Anthropometric characteristics were measured by

trained observers using standardised methods [18]. Body
weight was measured in all centres by electronic digital
scales, with participants wearing only light underwear
and after voiding the bladder. Height was measured to
the nearest 0.1 cm using a flexible anthropometer [19].
The exceptions were Oxford, France, and Norway where
these measures were self-reported; however, they were
shown to be valid for identifying associations in epi-
demiological studies [20, 21]. Assessed weight and height
(measured and self-reported) were used to calculate
body mass index (BMI) defined as weight in
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kilogrammes divided by height in metres squared (kg/
m2). Waist circumference (WC) was measured either at
the narrowest torso circumference or at the midpoint
between the lower ribs and iliac crest. At baseline, ques-
tionnaires were used to collect information on demo-
graphics, behavioural factors including dietary intakes,
and medical information. Physical activity levels were es-
timated using a questionnaire focused on past-year phys-
ical activity in occupational, leisure, and household
domains and classified according to the validated Cam-
bridge physical activity index [22]. Validated country/
centre-specific dietary questionnaires were used to ob-
tain information on dietary intake including total energy,
dietary fibre, fish and shellfish, meat, and processed meat
intake.
Incident cancer cases were identified using cancer

registries in Norway, Sweden, UK, Spain, Italy, the
Netherlands, and Denmark. For France and Germany,
incident cancer cases were identified during follow-up
from a combination of sources including cancer and
pathology centres, health insurance records, and active
follow-up of study subjects. All countries followed a de-
tailed protocol for the collection and standardisation of
clinical and pathological data on each cancer site [23–
26]. Cancer cases were defined using the tenth revision
of the International Classification of Diseases (ICD-10)
(ICD-10) and the second revision of the International
Classification of Diseases for Oncology (ICDO-2). In the
current analysis, we focused on two malignancies
strongly linked to obesity and metabolic dysfunction [1],
colorectal (C180-209) and endometrium (C540-549),
more specifically on type I (endometrioid type) endo-
metrial tumours, and on colon cancer.

Study participants
For the derivation of the metabolic signature, we used
existing data from 4326 participants who had been se-
lected as matched control (non-cancer) participants in
four separate case–control studies nested within EPIC
(breast, kidney, liver and prostate cancer studies). These
control participants were selected as they had both meta-
bolomics and anthropometric data available. These data
were randomly split into a discovery set (N = 3029) and
a replication set (N = 1297), for the validation of the
metabolic signatures. The derived metabolic signatures
associated with greater body size were then investigated
in relation to colorectal and endometrial cancers using
data from two case-control studies nested within EPIC
comprising 423 colorectal cancer cases and 423 matched
controls and 635 endometrial cancer cases and 648
matched controls. For the colorectal case-control study,
participants were matched on study recruitment centre,
sex, age at blood collection, time of blood collection, and
fasting status. Similar matching criteria were applied to

the endometrial case-control study, but also included
menopausal status, and for premenopausal women,
phase of menstrual cycle. All participants included in the
current study self-reported being free of diabetes and
not using hormone replacement therapy at baseline
(women only).

Intercept weight loss pilot intervention
The Intercept study was a single-arm pilot study testing the
effect of weight loss among obese individuals on bio-
markers of colorectal cancer risk measured in serum and
colorectal tissue biopsies. The study was registered on the
ISRCTN registry as ISRCTN35702367. Twenty-six partici-
pants (21–57 years old) with obesity (BMI ≥ 30 kg/m2) were
recruited via advertisements placed around University Col-
lege London between July 2013 and July 2014. Briefly, par-
ticipants followed an 8-week liquid weight-loss diet
programme (810 cal per day) based on formula diet prod-
ucts (Cambridge Weight Plan™, Northants., UK). A detailed
description of the study and primary results has been pub-
lished elsewhere [16]. The programme was carried out by
trained researchers, who also offered support and advice on
behaviour change techniques on a weekly basis. At the end
of the 8 weeks, 4 weeks of additional support were provided
to help participants with meal reintroduction and weight
loss maintenance. Pre- and post-intervention measures of
weight, height, and waist circumference were collected, and
two 20-ml fasting blood (serum) samples were taken by a
research nurse at each time point.

Study participants
Data from 17 participants from the Intercept pilot inter-
vention with metabolomics data measured in serum
samples collected pre- and post-intervention were in-
cluded to assess the association between the derived
body size-related metabolic signatures and weight loss.

Laboratory analysis
Plasma (EPIC) and serum (Intercept) metabolites from
all study populations were assayed using the targeted
AbsoluteIDQ p180 kit (BIOCRATES Life Sciences AG,
Innsbruck, Austria) on the liquid chromatography mass
spectrometry (LC/MS) platform at IARC, Lyon, France.
The exception were the plasma metabolites from the
endometrial case-control study, which were assayed at
Imperial College London, UK, using the same method-
ology. Amino acids and biogenic amines were separated
by liquid chromatography before injection into the mass
spectrometer, while flow injection analysis was used for
glycerophospholipids, hexoses, acylcarnitines, and sphin-
golipids. Metabolites with inter-batch or intra-batch co-
efficients of variation (CVs) larger than 20% for
analytical replicates and with more than 20% missing
data were excluded. For the included metabolites,
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measurements below the limit of detection (LOD) or
quantification (LOQ) were set to half the batch-specific
LOD or LOQ, respectively. When all of the samples
within the same batch had measurements below the
LOD and LOQ, half of the lowest measured concentra-
tion detected for that metabolite across all other batches
was imputed. All metabolites above the highest calibra-
tion standard were given the highest value obtained in
the sample. For the metabolites with up to 20% missing
data, the median value was imputed. In the EPIC discov-
ery and replication sets, 129 metabolites were included.
For the colorectal, endometrial and Intercept data sets
129, 124, and 128 metabolites were included, respect-
ively (Additional file 1: Table S1).
C-peptide was assayed in serum samples from a sample

of EPIC participants by enzyme-linked immunosorbent
assay by Mercodia (Sylveniusgatan, Sweden) as previously
described [27]. The mean intra-batch and inter-batch co-
efficients of variation were 6.69% and 5.75%, respectively,
for C-peptide concentration of 5 ng/ml [27].

Statistical analysis
Descriptive analyses were performed for sociodemo-
graphic, behavioural and blood sampling-related vari-
ables for each study population (discovery and
replication sets, colorectal and endometrial nested case-
control studies and Intercept pilot intervention). Within
each study population, metabolite levels were log-
transformed (natural logarithm) and Z-standardised.
The Principal Component Partial R-square (PC-PR2)

method [28] was performed in each study population to
estimate the contribution to total variability in metabol-
ite levels attributed to anthropometric variables and
other factors such as subjects’ characteristics and tech-
nical aspects of the samples. In the EPIC discovery set,
lifestyle (physical activity, smoking status and dietary in-
take), fasting status, sex, age at blood collection, and
batch/study variables all together explained 32% of the
total variability in metabolite levels (Additional file 1:
Figure S1, Figure S2 and Figure S3). The main contribu-
tions of variability were batch/sub-study (8%) and coun-
try (13%). Regarding the anthropometrics, BMI, WC,
and WHR explained 1.34%, 1.36%, and 1.10% of the total
variability, respectively. Similar variability was observed
in the replication set and in the colorectal and endomet-
rial case-control studies. In the Intercept study, the vari-
ability of the changes in metabolites over 8 weeks were
mainly explained by percentage of weight loss (32%),
while baseline BMI, WC, and WHR explained 15%, 17%,
and 13%, respectively (Additional file 1: Figure S4).
In all study populations, the metabolite levels (Z-stan-

dardised and log-transformed) were transformed into re-
siduals of linear models with country and sex as
independent variables (when possible) and random

intercepts for analytical batches (nested within studies,
when relevant).

Metabolic signatures of greater body sizes
In the discovery and replication sets, the residuals were
used as dependent variables in linear regression models
testing confounder-adjusted associations with log-
transformed BMI, WC, and WHR. Models were adjusted
for a set of a priori-defined covariates that included age
at blood collection (continuous), fasting status at blood
collection (< 3 h/3–6 h/> 6 h/unknown), education,
smoking status at recruitment (current/former/never/
unknown), physical activity index (inactive/moderately
inactive/moderately active/active/unknown), height, and
daily intake of energy, red and processed meat products,
fish and shellfish, fibre, and alcohol (all continuous). In
the discovery analysis, false discovery rate (FDR) adjust-
ment of p values was applied using the Benjamini–
Hochberg method (q values < 0.05 were considered sta-
tistically significant), as it has greater power to detect
real differences when compared to the Bonferroni ap-
proach and reduces the risk that potentially relevant me-
tabolites might be missed in the discovery phase. Then,
in the replication phase, in which we eliminate the non-
relevant metabolites and we focus on a smaller set of
metabolites (only those that were significant in the dis-
covery analysis), we used a more conservative approach,
that is, Bonferroni correction (in order to only select the
metabolites that are most highly statistically significantly
associated with the outcome). Separate models were run
for each exposure, i.e. BMI, WC, and WHC. In the dis-
covery set, the PC-PR2 method was performed again
using residuals of each metabolite in which its associ-
ation with body size was validated. Also in the discovery
set, residuals of each metabolite in which its association
with body size was validated were included as multivari-
ate predictors of greater body size in the PLS regression,
a multivariate method that achieves dimensionality re-
duction [29]. The metabolic signatures were predicted in
the replication set and correlated to BMI, WC, and
WHR in the entire sample as well as separately by sex
(Pearson correlation was applied).

Metabolic signatures of greater body sizes and cancer risk
The metabolic signatures of greater body size were pre-
dicted in all participants from each nested case-control
study using the residuals for each metabolite. Condi-
tional logistic regression models were applied to assess
the associations between the metabolic signatures of
greater body size and risk for colorectal and endometrial
cancers. The multivariable model included adjustment
for age at blood collection, fasting status at blood collec-
tion, education, smoking status at recruitment, physical
activity index, height, and daily intake of energy, red and
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processed meat products, fish and shellfish, fibre, and al-
cohol. For colorectal cancer, the models were further ad-
justed for fibre and calcium intake, while for
endometrial cancer the models were further adjusted for
menopause status (premenopausal, perimenopausal, and
postmenopausal), age at first menstrual period, age at
first full-term pregnancy, hormone therapy and oral
contraceptive use. In an attempt to investigate whether
the metabolic signatures were able to predict cancer risk
beyond individuals’ body size, the multivariate models
were further adjusted for BMI and residuals of the linear
regression of WC on BMI and the residuals of the linear
regression of WHR on BMI and WC. We have also fur-
ther adjusted the models for C-peptide level, a valid
marker of insulin secretion, as a possible confounder be-
tween the associations of metabolic signatures and can-
cer risk. Further adjustment for cancer grade and stage
was also conducted. Additionally, we investigated the as-
sociation between the log-transformed anthropometric
variables and cancer risk. Correlations between the
metabolic signatures and BMI, WC, and WHR among
colorectal and endometrial controls were also tested. Fi-
nally, sensitivity analyses were performed by excluding
cases of cancer diagnosed during the first two years of
each participant’s follow-up to minimise/limit reverse
causality bias.

Metabolic signatures of greater body size and weight loss
In the intercept pilot intervention, paired t tests were
employed to determine which metabolites were sig-
nificantly altered during the intervention. Changes in
metabolite levels post-versus pre-intervention were
calculated and were further transformed into residuals
of linear models with sex as independent variable.
The metabolic signatures of greater body size were
predicted in all participants for the Intercept study
using the residuals for metabolite changes and de-
scribed by tertiles of weight loss. This approach
allowed us to assess changes in the metabolic signa-
tures as it provides results similar to calculating the
difference between the metabolic signature at follow-
up and at baseline. Pearson correlations between
changes in metabolic signatures of body sizes and
percentage of weight loss were assessed. Additionally,
linear regression models tested associations between
residuals for metabolite changes and weight loss
adjusted for age and residuals for anthropometric
variables. Statistical tests were two-sided and P values
< 0.05 were considered statistically significant. All
analyses were performed in Stata 15 and R 3.6.3 stat-
istical software. A flow-diagram with the main meth-
odological steps undertaken in the current study is
presented in supplementary material (Additional file 1:
Figure S5).

Results
Sociodemographic and behavioural characteristics of
participants in each study population are presented in
Table 1. The majority of the participants in the EPIC
discovery and replication sets were men (~ 70%), while
in the colorectal case-control (~ 60%), endometrial case-
control (100%), and Intercept (~ 65%) studies, most par-
ticipants were women. In the EPIC discovery set, around
36% of participants were normal weight and 64% were
overweight or obese and similar characteristics were ob-
served in the other EPIC sets. Participants were
followed-up by a mean of 10.9 (SD 5.2) and 12.1 (SD
4.9) years in the colorectal and endometrial case-control
studies, respectively. Cases and controls showed similar
characteristics. In the Intercept pilot intervention, all
participants were obese and lost at least 10% of their ini-
tial body weight (mean = 13.4 kg).

Metabolic signatures of greater body sizes
In the discovery set, BMI, WC, and WHR were sta-
tistically significantly (after FDR-adjustment; degrees
of freedom = 2949) associated with levels of 89, 94,
and 75 metabolites, respectively (Fig. 1). In the repli-
cation phase, after Bonferroni correction, 47% (N =
42), 42% (N = 40), and 21% (N = 16) of these metabo-
lites were associated with BMI, WC, and WHR, re-
spectively (Additional file 1: Table S2). As shown in
Table 2, a total of 16 metabolites were associated
with all three measures, and 23 were associated with
both BMI and WC. Considering the metabolites with
the strongest association with the three anthropo-
metric measures, higher BMI, WC, and WHR were
associated with higher levels of valine, phosphatidyl-
choline diacyl (PC aa) C38:3, and lower levels of
lysophosphatidylcholine acyl (LysoPC) C18:2. PC-PR2
was performed using residuals of each metabolite in
which its association with body size was validated
and showed that the anthropometric variables ex-
plained over 3% of their total variability (Add-
itional file 1: Figure S6).
PLS regression analysis defined metabolic signa-

tures of BMI, WC, and WHR (Fig. 2). The metabo-
lites with the greatest contribution to the metabolic
signature of BMI were PC aa C38:3 (loading = 0.19),
valine (loading = 0.18), tyrosine (loading = 0.17),
lysoPC C18:2 (loading = − 0.25), phosphatidylcholine
acyl-alkyl (PC ae) C34:2 (loading = − 0.25), and PC ae
C34:3 (loading = − 0.25). Similar results were ob-
served for the metabolic signatures of the other an-
thropometric measures (Additional file 1: Table S3).
In the replication set, the metabolic signatures of
greater body sizes showed a moderate Pearson cor-
relation with BMI (r = 0.48, 95% CI 0.44–0.53, p <
0.001), WC (r = 0.39, 95% CI 0.34–0.43, p < 0.001),
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and WHR (r = 0.28, 95% CI 0.24–0.33, p < 0.001).
Similar correlations were found among CRC and
endometrial cancer controls and for men and women
(Additional file 1: Table S4). Additionally, the meta-
bolic signatures of BMI, WC, and WHR explained ~
23%, ~ 16%, and ~ 8% of the variability of their re-
spective anthropometric variable, among CRC and
endometrial cancer controls.

Metabolic signatures of greater body size and cancer risk
As shown in Fig. 3, endometrial cancer was positively as-
sociated with the metabolic signature of BMI (odds ratio
per 1-standard deviation [OR1-sd] 1.50, 95% CI 1.30–
1.74), WC (OR1-sd 1.46, 95% CI 1.27–1.69), and WHR
(OR1-sd 1.54, 95% CI 1.33–1.79) after adjustment for the
main confounders. Similarly, colorectal cancer was posi-
tively associated with the metabolic signature of WHR

Table 1 Sociodemographic, lifestyle, dietary and blood-sampling related characteristics of participants in the study populations

European Prospective Investigation into Cancer and Nutrition Intercept*

Discovery Replication Colorectal cancer Endometrial cancer

Cases Controls Cases Control

(n = 3029) (n = 1297) (n = 423) (n = 423) (n = 635) (n = 648) (n = 17)

Age, mean (SD) 55.5 (8.1) 55.8 (8.2) 55.7 (7.8) 55.8 (7.9) 53.96 (7.9) 53.99 (7.9) 37.5 (9.7)

Sex, n (%)

Women 964 (31.8) 431 (33.2) 257 (60.8) 253 (59.9) 635 (100) 648 (100) 11 (64.7)

Educational level, n (%)

University or higher 674 (22.2) 296 (22.8) 62 (14.6) 65 (15.3) 116 (18.2) 92 (14.2) 13 (76.4)

Body mass index (kg/m2), mean (SD) 26.45 (3.7) 26.47 (3.7) 27.1 (4.5) 26.51 (3.6) 28 (5.4) 25.85 (4.2) 34.2 (3.8)

Categories of BMI, n (%)

Normal weight 1101 (36.3) 467 (36.0) 142 (33.6) 141 (33.3) 210 (33.1) 315 (48.6) –

Overweight 1456 (48.1) 619 (47.7) 182 (43.0) 216 (51.0) 226 (35.6) 239 (36.8) 1 (5.8)

Obese 472 (15.6) 211 (16.3) 99 (23.4) 66 (15.6) 199 (31.3) 94 (14.5) 16 (94.2)

Waist circumference (cm), mean (SD) 90.7 (12.0) 90.4 (12.1) 89.6 (13.3) 87.8 (11.5) 85.7 (12.1) 81.5 (10.5) 102.8 (8.0)

Waist-hip ratio (cm), mean (SD) 0.89 (0.09) 0.89 (0.09) 0.87 (0.09) 0.86 (0.1) 0.81 (0.06) 0.80 (0.06) 0.86 (0.7)

Height (cm), mean (SD) 169.0 (8.8) 168.9 (8.9) 164.3 (9.1) 163.8 (9.4) 160.2 (6.6) 160.2 (6.8) 170.6 (7.9)

Physical activity, n (%)

Inactive 679 (22.4) 296 (22.8) 133 (31.4) 122 (28.8) 95 (14.9) 86 (13.3) NA

Moderately inactive 1026 (33.9) 463 (35.7) 183 (43.2) 175 (41.4) 189 (29.7) 175 (27.0) NA

Moderately active 670 (22.1) 278 (21.4) 63 (14.9) 71 (16.8) 18 (2.8) 13 (2.0) NA

Active 597 (19.7) 237 (18.3) 44 (10.4) 54 (12.7) 115 (18.1) 126 (19.4) NA

Smoking status, n (%)

Never smoker 1224 (40.4) 518 (39.9) 198 (46.8) 222 (52.5) 82 (12.9) 111 (17.1) NA

Current smoker 703 (23.2) 299 (23.0) 90 (21.3) 77 (18.2) 417 (65.6) 396 (61.1) NA

Meat intake (g/d), mean (SD) 86.5 (55.2) 88.9 (59.5) 76.7 (81.7) 77.6 (44.4) 634.7 (378.8) 646.2 (376.4) NA

Fish intake (g/d), mean (SD) 37.1 (37.2) 35.3 (33.7) 36.3 (32.4) 37.9 (36.5) 523.9 (316.5) 509.0 (312.9) NA

Fibre intake (g/d), mean (SD) 23.7 (8.1) 23.3 (7.8) 22.9 (7.6) 23.3 (8.0) NA

Alcohol intake (g/d), mean (SD) 3.1 (1.3) 3.1 (1.27) 2.9 (1.4) 2.7 (1.3) 3.1 (1.2) 3.1 (1.2) NA

Energy intake (g/d), mean (SD) 2253 (654.7) 2255 (643.0) 2221 (829.0) 2187 (627.9) 661 (383.9) 667 (380.1) NA

Fasting status, n (%)

Non-fasting 1351 (44.6) 601 (46.3) 23 (5.4) 23 (5.4) 99 (15.6) 105 (16.2) 17 (100)

Sub-study, n (%)

Breast cancer controls 752 (24.8) 332 (25.6) n/a n/a n/a n/a n/a

Kidney cancer controls 346 (11.4) 134 (10.3) n/a n/a n/a n/a n/a

Hepatobiliary cancer controls 151 (4.9) 65 (5.0) n/a n/a n/a n/a n/a

Prostate cancer controls 1780 (58.7) 766 (59.0) n/a n/a n/a n/a n/a

*Intercept pilot weight loss intervention. NA, not available; n/a, not applicable
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Fig. 1 (See legend on next page.)
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(OR1-sd: 1.26, 95% CI 1.07–1.49), but borderline statisti-
cally significantly with the metabolic signatures of BMI
(OR1-sd: 1.16, 95% CI 0.99–1.35) and WC (OR1-sd: 1.17,
95% CI 1.00–1.36). The association between endometrial
cancer and the metabolomic signature of WHR
remained statistically significant even after adjustment
for anthropometric measures of obesity. We also tested
the effect of further adjusting the models for C-peptide
and cancer grade and staging; however, the results
remained similar to those without these adjustments
(Additional file 1: Table S5). Similar results were also
found when analyses were repeated removing the cancer
cases reported in the first two years of follow-up (results
not shown).

Metabolic signatures of greater body size and weight loss
The percentage of weight loss was positively correlated
with changes in the metabolic signatures of BMI (r = 0.5,
95% CI 0.06–0.94, p = 0.03), WC (r = 0.5, 95% CI 0.05–
0.94, p = 0.03), and WHR (r = 0.6, 95% CI 0.32–0.87, p =
0.01). Participants in the third tertile of weight loss
(mean = 16.5 kg) showed the greatest reduction of the PLS
scores for BMI, WC, and WHR compared to those in the
first (mean = 10.6 kg) and second (mean = 12.7 kg) tertiles
(Fig. 4). There were statistically significant changes in 105
measured metabolites during the intervention (Add-
itional file 1: Table S6). As shown in Fig. 4, there were sig-
nificant decreases in the serum levels of acylcarnitines C0,
C3, C5, glutamate, leucine, phenylalanine, tyrosine, kynur-
enine, PCs aa C32:1, C32:2, C38:0, C38:3, C38:4, C40:2,
C40:4, C40:6, and hexoses and an increase in the serum
levels of glycine, serine, and sphingomyelin C18:1 follow-
ing the intervention. All these changes were consistent
with the metabolic signatures of greater body sizes. How-
ever, the association between changes in these metabolites
and weight loss were mainly not significant (Add-
itional file 1: Table S7 and Figure S7), which may reflect
the small sample size (N = 17).

Measured anthropometry and cancer risk
Analysis of the association between the three measures
of obesity and cancer risk showed that greater BMI and
WC were significantly associated with increased risk of
endometrial and colorectal cancers, while greater WHR
was only associated with increased risk of colorectal can-
cer (Additional file 1: Figure S8). When the models were
further adjusted to their respective metabolic signature,

all associations were attenuated, suggesting a partial me-
diating role of the metabolic signatures in these relation-
ships (Additional file 1: Figure S8).

Discussion
In this analysis which used data from a large prospective
cohort, we identified metabolic signatures of BMI, WC,
and WHR that were positively associated with colorectal
and endometrial cancer risk. Further, the metabolomics
signature of WHR predicted endometrial cancer risk be-
yond measured body fatness. In an exploratory analysis
using data from a diet-induced weight loss intervention
study, we found a positive association between weight
loss and changes in the metabolic signatures of greater
body sizes.
The metabolic signature of greater BMI, WC, and

WHR was represented by higher levels of valine, isoleu-
cine, glutamate, PC aa C38:3, PC aa C38:4 and lower
levels of asparagine, glutamine, glycine, serine, lysoPC
C17:0, lysoPC C18:1 and lysoPC C18:2, PC aa C42:0, PC
ae C34:3, PC ae C40:5, and PC ae C42:5. Other metabo-
lites were also shown to be relevant for the metabolic
signatures of BMI and WC only, including leucine,
phenylalanine, tyrosine, kynurenine, C0, C3, C5, SM
C16:0, SM C18:1, and 17 glycerophospholipids. Add-
itionally, many of these metabolites changed significantly
after the Intercept weight loss intervention, reinforcing
their association with body weight.
In line with previous studies, the current analysis

showed associations between greater body size and the
amino acids valine, leucine, isoleucine, tyrosine, glutam-
ate, and the biogenic amine kynurenine [10, 11, 13].
However, this study also provided strong evidence for
the associations between body weight and the amino
acids phenylalanine, asparagine, glutamine, and glycine
in EPIC, which has been supported by other metabolo-
mics studies [30–32]. Systematic reviews of case-control
studies examining the association of serum concentra-
tions of metabolites and cancer diagnosis reported that
tyrosine and phenylalanine are associated with both
colorectal and endometrial cancers, and valine and glu-
tamate with endometrial cancer only [33, 34]. These
amino acids have been reported to be associated with in-
sulin resistance and impaired insulin secretion [35], key
factors of cancer and obesity pathogenesis [36, 37]. Val-
ine, as well as other branched chain amino acids
(BCAAs), also plays an important role in activating the

(See figure on previous page.)
Fig. 1 Smile plot with associations between metabolites with BMI, WC and WHR in the discovery set. a BMI, b WC, and c WHR. Smile plot with
FDR (false discovery rate method) q values. Analysis using residuals from Z and Log transformed metabolites with fixed effect for country and sex
and random effect for batches nested within studies. Models were adjusted for age at blood collection, fasting status at blood collection,
smoking status at recruitment, Cambridge physical activity index, height, and daily intake of energy, red and processed meat, fish and shellfish,
fibre, and alcohol. The metabolites above the horizontal line showed a significant association with the anthropometric measure (p < 0.05)
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Table 2 Metabolites significantly associated with each anthropometric variable in the discovery and replication sets
N Metabolites Association with:

BMI WC WHR

β (95% CI) p* β (95% CI) p* β (95% CI) p*

1 Asparagine − 1.02 (− 1.25; − 0.79) < .001 − 1.11 (− 1.38; − 0.84) < .001 − 0.80 (− 1.15; − 0.45) < .001

2 Glutamine − 0.83 (− 1.05; − 0.60) < .001 − 0.92 (− 1.18; − 0.65) < .001 − 0.69 (− 1.03; − 0.35) < .001

3 Glutamate 1.03 (0.83; 1.23) < .001 1.08 (0.84; 1.32) < .001 0.64 (0.33; 0.95) < .001

4 Glycine − 1.01 (− 1.24; − 0.79) < .001 − 1.31 (− 1.57; − 1.04) < .001 − 1.40 (− 1.74; − 1.05) < .001

5 Isoleucine 1.04 (0.80; 1.27) < .001 1.24 (0.95; 1.52) < .001 1.03 (0.66; 1.39) < .001

6 Serine − 0.93 (− 1.15; − 0.71) < .001 − 1.02 (− 1.29; − 0.76) < .001 − 1.04 (− 1.38; − 0.69) < .001

7 Valine 1.35 (1.12; 1.58) < .001 1.49 (1.22; 1.77) < .001 1.17 (0.82; 1.53) < .001

8 LysoPC a C17:0 − 1.14 (− 1.35; − 0.92) < .001 − 1.31 (− 1.56; − 1.05) < .001 − 0.82 (− 1.15; − 0.48) < .001

9 LysoPC a C18:1 −1.36 (− 1.57; − 1.16) < .001 − 1.51 (− 1.75; − 1.27) < .001 − 0.97 (− 1.28; − 0.65) < .001

10 LysoPC a C18:2 − 1.47 (− 1.68; − 1.25) < .001 − 1.59 (− 1.85; − 1.33) < .001 − 1.00 (− 1.34; − 0.66) < .001

11 PC aa C38:3 1.69 (1.46; 1.92) < .001 1.85 (1.57; 2.12) < .001 1.62 (1.27; 1.98) < .001

12 PC aa C38:4 1.06 (0.83; 1.30) < .001 1.26 (0.98; 1.54) < .001 1.20 (0.84; 1.56) < .001

13 PC aa C42:0 − 0.22 (− 0.27; − 0.17) < .001 − 0.26 (− 0.32; − 0.20) < .001 − 0.23 (− 0.31; − 0.15) < .001

14 PC ae C34:3 − 1.26 (− 1.49; − 1.03) < .001 − 1.7 (− 1.97; − 1.42) < .001 − 1.77 (− 2.12; − 1.42) < .001

15 PC ae C40:5 − 1.06 (− 1.29; − 0.83) < .001 − 1.24 (− 1.51; − 0.97) < .001 − 0.99 (− 1.34; − 0.64) < .001

16 PC ae C42:5 − 1.13 (− 1.35; − 0.91) < .001 − 1.34 (− 1.6; − 1.08) < .001 − 1.14 (− 1.48; − 0.8) < .001

17 Acylcarnitine C0 0.85 (0.61; 1.09) < .001 0.92 (0.64; 1.21) < .001 – –

18 Acylcarnitine C3 0.27 (0.14; 0.41) < .001 0.34 (0.18; 0.49) < .001 – –

19 Acylcarnitine C5 0.69 (0.51; 0.86) < .001 0.63 (0.42; 0.83) < .001 – –

20 Leucine 1.09 (0.85; 1.33) < .001 1.23 (0.95; 1.52) < .001 – –

21 Phenylalanine 0.78 (0.55; 1.01) < .001 0.88 (0.61; 1.15) < .001 – –

22 Tyrosine 1.23 (0.98; 1.47) < .001 1.22 (0.92; 1.51) < .001 – –

23 Kynurenine 1.10 (0.87; 1.33) < .001 0.96 (0.68; 1.23) < .001 – –

24 PC aa C32:1 0.58 (0.36; 0.81) < .001 0.46 (0.20; 0.73) 0.001 – –

25 PC aa C34:4 0.57 (0.32; 0.81) <. 001 0.44 (0.15; 0.73) 0.004 – –

26 PC aa C38:0 − 0.46 (− 0.68; − 0.24) <. 001 − 0.62 (− 0.88; − 0.36) < .001 – –

27 PC aa C40:2 − 0.11 (− 0.17; − 0.05) < .001 − 0.14 (− 0.21; − 0.08) < .001 – –

28 PC aa C40:4 0.61 (0.36; 0.85) < .001 0.78 (0.50; 1.07) < .001 – –

29 PC aa C40:6 0.73 (0.49; 0.96) < .001 0.76 (0.49; 1.04) < .001 – –

30 PC aa C42:1 − 0.12 (− 0.15; − 0.09) < .001 − 0.15 (− 0.18; − 0.11) < .001 – –

31 PC aa C42:2 − 0.56 (− 0.72; − 0.40) < .001 − 0.61 (− 0.80; − 0.42) < .001 – –

32 PC ae C32:1 − 0.57 (− 0.78; − 0.37) < .001 − 0.9 (− 1.14; − 0.66) < .001 – –

33 PC ae C34:2 − 0.92 (− 1.14; − 0.71) < .001 − 1.24 (− 1.49; − 0.98) < .001 – –

34 PC ae C36:2 − 1.12 (− 1.35; − 0.90) < .001 − 1.32 (− 1.59; − 1.05) < .001 – –

35 PC ae C36:3 −0.87 (− 1.10; − 0.65) < .001 − 1.15 (− 1.42; − 0.88) < .001 – –

36 PC ae C38:2 − 1.05 (− 1.27; − 0.82) < .001 − 1.19 (− 1.46; − 0.92) < .001 – –

37 PC ae C40:6 − 0.89 (− 1.12; − 0.65) < .001 − 1.11 (− 1.38; − 0.83) < .001 – –

38 PC ae C44:4 − 1.05 (− 1.24; − 0.86) < .001 − 1.11 (− 1.34; − 0.89) < .001 – –

39 SM C16:0 − 0.58 (− 0.74; − 0.42) < .001 − 0.64 (− 0.83; − 0.45) < .001 – –

40 PC ae C44:6 − 0.64 (− 0.87; − 0.42) < .001 – – – –

41 SM C18:1 0.49 (0.34; 0.64) < .001 – – – –

42 Hexoses 0.65 (0.44; 0.87) < .001 – – – –

43 PC aa C32:2 – – 0.45 (0.19; 0.72) 0.002 – –

Analysis using residuals from Z and Log transformed metabolites with fixed effect for country and sex and random effect for batches nested within study. The
multivariable model included additional adjustment for height, physical activity, smoking status, education level, alcohol consumption, dietary intakes of total
energy, red and processed meats, fish and shellfish, and fibre, age at blood collection and fasting status. *P value refers to FDR correction
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mechanistic/mammalian target of rapamycin (mTOR)
axis, a signalling pathway associated with cell growth,
proliferation, and survival [38], important features of
cancer development. Imbalances in the biogenic amine
kynurenine metabolism have also been implicated in
cancer development [39, 40].
Consistent with other studies, the metabolic signature

of obesity reflected lipid dysregulation [10, 11, 30, 41,
42], such as higher levels of diacyl PCs and lower levels
of acyl-alkyl PCs and lysoPCs. Some of these lipid alter-
ations have also been associated with cancer risk, for ex-
ample, LysoPC C18:1 and C18:2 have been reported to
be downregulated in colorectal cancer patients [43].
LysoPCs are important cell-signalling molecules and
their downregulation may reflect pathophysiological
changes in cancer development [43]. Recent prospective
studies have also reported lower levels of PC ae C34:2,
C36:2, C36:3, and C38:2 to be associated with breast
cancer risk [8]. The acyl-alkyl PCs seem to have antioxi-
dant properties and when downregulated may increase
reactive oxygen species (ROS) generation, promoting
oxidative stress and oncogenic DNA defects [44].

Increased ROS has also been linked to many metabolic
alterations, such as insulin resistance [45], decreases in
adiponectin, and increased expression of pro-
inflammatory cytokines including TNFα and IL-6 [46],
all potential markers of obesity and cancer development.
Regarding the alterations in diacyl PCs, the metabolites
PC aa 32:1 and PC aa C38:3 are of particular interest as
they have been associated with diabetes and cardiovascu-
lar diseases [47, 48], although not yet to cancer. The role
of these lipid metabolites is still not clear and remains to
be further investigated.
The metabolic signature of greater WHR included me-

tabolites that were also significantly associated with BMI
and WC and may reflect overall greater body size. Im-
portantly, it was positively associated with endometrial
cancer risk regardless of the individual’s body fatness.
This suggests the metabolic signature of WHR was po-
tentially able to differentiate individuals with similar
body size but different metabolic health status. These re-
sults corroborate other research studies indicating that
metabolic alterations which typically accompany obesity,
such as insulin resistance and hyperinsulinemia, may be

Fig. 2 Pearson correlation between the PLS scores of BMI, WC, and WHR and their loadings

Fig. 3 Association of colorectal and endometrial cancers with the metabolic signatures of obesity. ORs and 95% CIs by 1-SD change. Adjusted
model 1 was adjusted for height, physical activity, smoking status, education level, consumption of alcohol, total energy, red and processed
meats, fish and shellfish, age at blood collection, and fasting status. For endometrial cancer, model 1 was further adjusted for menopause status,
hormonal therapy, oral contraceptive use, age at first menstrual period, and age at first full-term pregnancy, while for colorectal cancer, model 1
was further adjusted for fibre and calcium intake. Model 2 included the adjustments from model 1 plus anthropometric measures
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more relevant risk factors for some cancers than adipos-
ity per se [49–53].
Exploratory analysis of data from the Intercept study

showed that changes in the metabolic signatures of greater
body sizes were positively correlated with the percentage
of weight loss. Consistent with previous intervention stud-
ies [31, 54], the Intercept weight loss intervention pro-
moted reductions in levels of amino acids and biogenic
amines that have been consistently positively associated
with obesity and cancer risk, such as tyrosine, phenylalan-
ine, glutamate, and kynurenine, suggesting reduction in
cancer risk in individuals with obesity who lose weight.
The intervention also decreased levels of PC aa C38:3, PC
aa C38:4, and increased levels of glycine and serine, me-
tabolites that have been strongly associated with greater
body sizes and that may also be potentially linked to can-
cer risk. In support of this, primary results from Intercept
showed that weight loss in individuals with obesity was as-
sociated with improvement in insulin levels and reduction
in Ki-67 expression in colorectal tissue, an established
marker of cell proliferation [16].
To our knowledge, this is one of the largest studies

examining the associations of greater body size and

metabolic profiles, and the first to relate these signa-
tures to colorectal and endometrial cancer risk.
Strengths of this study include the assessment of nu-
merous behavioural factors and anthropometric mea-
sures in EPIC, allowing us to conduct a
comprehensive analysis of the associations between
greater body sizes and metabolites and to control for
potential confounding factors. Additionally, in the
current study, we were able to validate the association
of metabolites and greater body sizes in a replication
set. The analyses of the association of changes in the
metabolic signatures of greater body sizes and weight
loss in the Intercept intervention study are also novel.
However, since anthropometric variables have been
previously associated to cancer risk in EPIC, an exter-
nal validation of the metabolic signatures is needed.
Differences in sex distribution and fasting status be-
tween the samples may have also affected the results.
Another potential limitation of this study was the use
of targeted metabolomics data only, in which a set of
metabolites that are known a priori are measured.
Untargeted metabolomics could provide a more com-
prehensive view of the metabolic perturbations

Fig. 4 Metabolomics signatures of obesity, metabolite changes, and weight loss in the Intercept pilot intervention. a Comparison of the loadings
for the metabolomics signatures of greater body sizes, changes in metabolites, and association between changes in metabolites and weight loss.
b Means and standard deviations for metabolomics signatures of greater body sizes by tertiles of weight loss
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associated with obesity and cancer; however, such
data are currently not available for this cohort. Never-
theless, the findings from the current targeted analysis
provide some interesting clues as to the specific
metabolic perturbations that accompany obesity and
that could be associated with cancer development.
The small sample size and exploratory nature of the
Intercept intervention study are also limitations. Add-
itionally, the Intercept sample was composed mainly
of women, younger, and relatively healthy participants
with obesity, and it lacked a control group and phys-
ical activity measures. Therefore, replication of the re-
sults of this study within a large randomised
controlled trial is needed. In addition, the EPIC colo-
rectal case-control sample was relatively small, limit-
ing the possibilities of conducting stratified analysis
by sex and cancer subsite. An additional limitation
could be that metabolites were assayed in plasma
samples of EPIC participants and but in serum sam-
ples of Intercept participants. Furthermore, despite
the prospective design of EPIC and Intercept, we can-
not rule out potential reverse causation since some
metabolites may have been altered by underlying sub-
clinical carcinogenic processes. To tackle this issue,
we conducted sensitivity analyses excluding cases re-
corded in the first 2 years of follow-up, and similar
results were obtained. Finally, although we excluded
participants with diagnosed diabetes, we lacked data
on other comorbidities such as hypertension and car-
diovascular disease which may have impacted the
assayed metabolic pathways and which might repre-
sent potential confounding factors. Future studies
should aim to better understand the impact of such
comorbidities on the metabolic disturbances under-
lying the association between obesity and cancer.

Conclusions
Obesity is associated with a distinct metabolic signature
comprising changes in levels of specific amino acids and
lipids which is positively associated with both colorectal
and endometrial cancer and is potentially reversible fol-
lowing weight loss. These findings may offer insights
into the pathophysiological mechanisms underlying the
obesity-cancer relation. Further, by measuring a specific
panel of metabolites, it may be possible to identify strata
of the population at higher risk for obesity-related can-
cers. Future studies should aim to further explore the
impact of obesity on the metabolome using, for example,
untargeted metabolomics which could uncover add-
itional pathways that may be relevant for cancer
development.
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