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Single-cell RNA-seq reveals a concomitant
delay in differentiation and cell cycle of
aged hematopoietic stem cells
Léonard Hérault1,2, Mathilde Poplineau1, Adrien Mazuel1, Nadine Platet1, Élisabeth Remy2† and Estelle Duprez1*†

Abstract

Background: Hematopoietic stem cells (HSCs) are the guarantor of the proper functioning of hematopoiesis due to
their incredible diversity of potential. During aging, heterogeneity of HSCs changes, contributing to the deterioration of
the immune system. In this study, we revisited mouse HSC compartment and its transcriptional plasticity during aging
at unicellular scale.

Results: Through the analysis of 15,000 young and aged transcriptomes, we identified 15 groups of HSCs revealing
rare and new specific HSC abilities that change with age. The implantation of new trajectories complemented with the
analysis of transcription factor activities pointed consecutive states of HSC differentiation that were delayed by aging
and explained the bias in differentiation of older HSCs. Moreover, reassigning cell cycle phases for each HSC clearly
highlighted an imbalance of the cell cycle regulators of very immature aged HSCs that may contribute to their
accumulation in an undifferentiated state.

Conclusions: Our results establish a new reference map of HSC differentiation in young and aged mice and reveal a
potential mechanism that delays the differentiation of aged HSCs and could promote the emergence of age-related
hematologic diseases.
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Background
The hematopoietic stem cell (HSC) is an adult tissue
stem cell residing in the bone marrow (BM), with multi-
potent differentiation, regenerative and self-renewal abil-
ities, the proper functioning of which is a guarantee of a
healthy immune system. HSC properties have been ex-
tensively studied thanks to the use of specific surface
markers and multicolored fluorescence-assisted cell sort-
ing (FACS) analyses that have made it possible to isolate
them and test their properties during serial grafts [1, 2].

This cell-surface marker-based HSC characterization has
shaped the classical but largely revisited hematopoietic
model, in which the long-term HSC (LTHSC), at the top
of the hierarchy, undergoes a lineage commitment
through a series of discrete intermediate progenitor
stages in a stepwise manner. This approach has helped
to categorize short-term HSC (STHSC) and multipotent
progenitor populations (MPP2, MPP3, and MPP4) [3–5].
HSCs are not a homogeneous cell population and each

HSC does not contribute equivalently to all blood line-
ages. HSC heterogeneity was first suggested with single
cell transplantation experiments showing that phenotyp-
ically identical HSC differs in self-renewal abilities and
lineage differentiation potential [6–8]. Next, single cell
transcriptomic approaches combined with lineage tra-
cing suggested an initiation of transcriptional lineage
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programs in HSCs, which bias their differentiation po-
tential [9, 10] supporting an early HSC lineage segrega-
tion and a continuous differentiation model [11]. Thus,
it is now admitted that each individual HSC, although
sharing the same marker combination, differs in terms
of functional outputs and molecular signature [12–14].
This HSC heterogeneity has physiological conse-

quences upon aging. Hematopoietic aging is associated
with a reduced production of red blood cells and lym-
phocytes concomitant to an increase of myeloid and
megakaryocytic cells that promote immunosenescence
and myeloid malignancies [15, 16]. Evidence indicates
that these alterations of the hematopoietic system come
from an age-related modification of the HSC compart-
ment. Intrinsic changes such as accumulation of DNA
damage, changes in the activity of epigenetic modulators,
and imbalance between repressive and activating histone
marks in HSCs have emerged as contributing factors of
hematopoiesis aging [17, 18]. HSCs that are heteroge-
neous with respect to their self-renewal and differenti-
ation capacities at birth pass through clonal selection
over time due to environmental cues [19]. This results
in an increase in myeloid- and megakaryocytic-biased
HSCs within the phenotypic LTHSC compartment [20,
21]. Thus, aging is not only reflecting an intrinsic uni-
form change in lineage output of the HSCs but is rather
due to a shift in the relative proportion of HSCs with
different characteristics [22].
Previous studies on age-related transcriptomic changes

of HSCs at the single cell resolution have revealed an ex-
pansion of platelet-primed HSCs [23] and a gain of a self-
renewal expression program [24] with aging. However, the
resolution of the analyses in particular regarding the pro-
portion of the different HSC populations and their vari-
ation upon aging were limited due to the small number of
analyzed cells and sorting strategies. Here, we took advan-
tage of the 10x Genomics approaches and the develop-
ment of new bioinformatic methods and tools to increase
the resolution and revisit the transcriptional heterogeneity
and change upon aging of the HSC compartment. By ana-
lyzing 15,000 single murine hematopoietic stem and pro-
genitor cells (HSPC) transcriptomes, we detected new rare
HSC subpopulations that accumulate upon aging. We also
highlighted transcriptional program changes linked to cell
cycle activity during aging that participate to the HSC
age-related alterations.

Results
Stratification of HSPCs using single-cell transcriptome
analysis highlighted 15 different clusters
To characterize HSC populations by single cell RNAseq
(scRNA-seq), we purified HSPCs, including LTHSCs,
STHSCs, MPP2, and MPP3 by FACS from BM pools of
young (n = 5; 2–3 months) and aged (n = 5; 17–18

months) mice applying the widely used Lin−, Sca1+,
cKit+ (LSK) marker strategy with the addition of the Flt3
marker to exclude the Flt3+ LSKs also referenced as
MPP4 (Fig. 1a and Additional file 1: Fig. S1A). Four
pools (2 pools of young and 2 of aged) of thousands
HSPCs were subjected to 10x Genomics Chromium cap-
ture platform and a total of 15,000 single HSPC tran-
scriptomes were sequenced (young pools, with 5189 and
2244 cells and aged pools with 3328 and 4154 cells after
quality control; Additional file 2: Table S1). As we made
the assumption that aging would not dramatically mod-
ify HSC identity, we first analyzed young and aged
HSPCs together using Seurat workflow [25] for the inte-
gration of the different samples to correct batch effect.
Reduction of dimension and unsupervised clustering
were performed on cell-cycle-corrected data using Uni-
form Manifold Approximation and Projection (UMAP)
[26]. A total of 15 clusters were identified (Fig. 1b),
which were characterized further by identifying their
markers using differential expressed gene (DEG) analysis
on the log-normalized data without any correction
(Additional file 3: Table S2) and by deducing their char-
acteristics (Fig. 1c) from gene set enrichment analysis
(Gene Ontology, KEG, and Reactome pathways; Add-
itional file 4: Table S3) and gene signatures related to
hematopoiesis (Additional file 5: Table S4a). Six clusters
were classified as lineage-primed clusters as they were
clearly enriched for HSPCs with megakaryocyte (pMk),
erythroid (pEr), neutrophil (pNeu), mastocyte (pMast),
and lymphocyte (pL1 and pL2) commitment gene
markers (Fig. 1b–d; Additional file 3: Table S2, Add-
itional file 4: Table S3 and Additional file 5: Table S4a).
Nine clusters were considered as non-primed due to
their lack in expression of lineage restricted-genes. They
accounted for a large majority of the analyzed cells
(90%) (Fig. 1b–d; Additional file 3: Tables S2 and Add-
itional file 5: S4b). The 4 phenotypically distinct HSPCs,
LTHSCs, STHSCs, MPP2, and MPP3 were assigned by
supervised classification using previously published
scRNA-seq data of FACS-labeled HSPCs [11] (Add-
itional file 1: Fig. S1B) and were superimposed on the
UMAP (Fig. 1e). This showed that globally MPP2 and
MPP3 were composed of lineage-primed clusters, sug-
gesting their “more differentiated” state in comparison
to the remaining clusters while LTHSCs were enriched
with non-primed clusters (Fig. 1e). Distribution of the
different populations among the clusters showed that
the neutrophil-biased cluster (pNeu) was almost exclu-
sively enriched with MPP3 (98%), while pMast and pEr
were enriched with both MPP2 and MPP3 (Fig. 1f and
Additional file 5: Table S4c). The pMK cluster was com-
posed of almost 50% of LTHSCs, supporting previous
work suggesting that platelet-biased stem cells reside at
the apex of the HSC hierarchy [27].
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Fig. 1 (See legend on next page.)
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Four non-primed clusters, np1, np2, np3, and np4,
were overlapping and positioned at the center of the
UMAP (Fig. 1b) with few specific gene markers (Fig.
1c, d; Additional file 3: Table S2 and Additional file
1: Fig. S2). They were characterized by a high per-
centage of LTHSCs (Fig. 1e, f; Additional file 3: Table
S2). By contrast, 2 clusters, also composed mainly of
LTHSCs, harbored a very distinguishable signature for
growth factor signaling (tgf) and interferon response
(ifn) respectively (Fig. 1b–d and Additional file 4:
Table S3), witnessing the existence of cells with sig-
naling features at the top of the differentiation hier-
archy. The remaining 3 clusters (diff, div and rep)
were composed of less than 50% of LTHSCs (Fig. 1e
and Additional file 5: Table S4c) suggesting their
intermediate state in term of differentiation. The clus-
ter named diff had very few distinguishable markers
but was enriched with Cd34 expressing cells (Fig. 1d
and Additional file 1: Fig. S2). Interestingly, this clus-
ter was the most enriched with STHSCs (Fig. 1e and
Supplemental Table S4c), which have been character-
ized by the appearance of the Cd34 at their surface
[2]. The div cluster, characterized by enrichment for
the cell cycle KEGG pathway (Fig. 1c and Additional
file 4: Table S3) and genes involved in division such
as Hmmr2 (Fig. 1d and Additional file 1: Fig. S2), was
particularly different from the other clusters by its en-
richment in G2/M cells (Fig. 1g and Additional file 5:
Table S4d). The rep cluster was characterized by
genes involved in DNA repair and replication and
presented a specific high expression of Uhfr (Fig. 1c,
d and Additional file 1: Fig. S2 and Additional file 4:
Table S3).
As a whole, these results highlight the interest of gene

expression signature to identify heterogeneity in the HSC
population. They support the presence of differentiation-
biased cells in the immature hematopoietic compartment
and demonstrate that transcriptional programs can sub-
divide HSPCs in different clusters besides their classical
differentiation state defined by cell surface markers.

Aging affects HSPC clusters differently
To assess the aging effect at the level of HSC popula-
tions, we first confirmed by FACS analyses and by
transcriptomic-based cell population predictions the
well-described accumulation of LTHSCs that occurs
at the expense of the STHSCs and the MPP3 upon
aging (Additional file 1: Fig. S1C and D). Analysis of
young versus aged cells in the UMAP plot showed
that aged cells were significantly more distributed in
the non-primed clusters while lineage-primed clusters
were enriched with young HSPCs (Fig. 2a, b). Indeed,
the primed lymphoid (pL1) and the myeloid primed
(pMast, pNeu, and pEr) clusters were predominantly
composed of young cells (Fig. 2b and Additional file
5: Table S4e). An exception was observed for the pL2
cluster; although representing very few cells, this clus-
ter, characterized with B cell markers, was comprised
mainly of aged ones (Fig. 2b and Additional file 5:
Table S4b and e). Interestingly, these potentially aged
B-biased cells were characterized, in addition to the
expression of early B cell markers such as Ly6d and
Cd79a (Fig. 1d, Additional file 1: Fig. S3 and Add-
itional file 3: Table S2), by Trp53inp1 expression, for
which we recently showed its involvement in the
blockage of early B cell developmental step [28]. Ana-
lysis of absolute numbers of sorted HSPCs per mouse
confirmed the higher increase of the non-primed
clusters in comparison to the primed ones upon aging
(Fig. 2c). This increase in HSC subpopulations was
specially marked for the non-primed np1, np2, ifn,
and tgf clusters that were largely amplified in aged
condition (Fig. 2c and Additional file 5: Table S4e).
This result highlights an amplification of LTHSCs be-
ing able to respond to different stimuli such as inf
and tgf signaling that may overlap with previously re-
ported HSC sub-populations, which promotes differ-
ential responses to inflammatory challenge in aged
HSCs [29]. Noticeably, we observed that the age-
induced decrease of pL1 cluster and increase of tgf
cluster were mainly driven by one batch, specific for

(See figure on previous page.)
Fig. 1 Unsupervised clustering of young and aged HSPCs revealed 15 clusters gathering mainly immature and to a lesser extend lineage-primed
HSPCs. a Overview of the scRNA-seq sample preparation and analysis. Cells were isolated from bone marrow (BM) of young and aged mice and
pooled to obtain 2 pools for each age. Pools of 2 and 3 BMs for both young and aged mice were analyzed. BM cells were FACS sorted to purify
Lin−, Sca-1+, c-Kit+ (LSK) Flt3− cells that defined the HSPCs. The four pools of HSPCs were processed using droplet-based single cell sequencing
(10X Genomics) and multiple analyses were performed using bioinformatics tools to characterize aging effects. b UMAP plot of young and aged
HSPCs (15,000 cells) analyzed using Seurat. Colors marked the 15 distinct clusters identified by unsupervised clustering and characterized with
differential gene expression and gene set enrichment analyses. Each dot represents a cell. c Selected enrichment of our analysis (Gene Ontology,
KEG and Reactome pathways Supplemental Table S3) for markers of each cluster and corresponding p values adjusted for multiple testing (padj).
NA indicates non-relevant enrichment. d UMAP plots colored by expression of selected cluster markers. Cluster names are indicated in
parenthesis. e Localization in the UMAP of LTHSCs, STHSCs, MPP2 and MPP3, identified by supervised classification. f Percentage of LTHSCs,
STHSCs, MPP2 and MPP3 within the HSPC population, in each of the 15 clusters. g Percentage of computationally assigned cell cycle (G1/G0, S
and G2/M) phases in each of the 15 clusters
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each of them (Additional file 5: Table S4e) witnessing
heterogeneity of aging inter mouse groups.
From these results, we conclude that neither HSPCs

nor individuals are affected equally by aging. Globally,
aged hematopoiesis is stemming from HSPCs that are
not lineage primed and but characterized by specific sig-
naling signatures.

Gene expression is more altered upon aging in non-
primed clusters, with a loss of differentiation and a gain
of hemostasis signatures
To reveal age-dependent changes in gene expression, we
first compared the transcriptomes of young and aged
HSPCs. Differentially expressed gene (DEG) analysis
highlighted a global HSC aging signature that was char-
acterized by an upregulation of the stress gene Nupr1,
the platelet-lineage markers Vwf and Clu, and markers
of undifferentiated HSPCs such as Procr and Slamf1, as
well as by a downregulation of genes that mark HSC dif-
ferentiation, such as Cd34 and Cd48 (Additional file 1:
Fig. S4 and Additional file 6: Table S5). These results are
in line with the altered differentiation potential and
platelet bias of aged HSPCs [23] and a recently pub-
lished comprehensive HSC aging signature [30].
In order to assess the heterogeneity of transcriptome

changes upon aging according to HSC clusters, we ana-
lyzed changes in gene expression of each cluster separ-
ately (Additional file 7: Table S6). Heatmap of the most
differentially expressed genes (DEGs) (log fold change >
0.5) upon aging analyzed per clusters showed that the
non-primed clusters exhibited more differences in their

transcriptome than the primed ones and that these
differences were towards an increase of gene expression
rather than a decrease, suggesting an increased cell-to-
cell transcriptional variability upon aging (Fig. 3a and
Additional file 1: Fig. S6). For these non-primed clusters,
except for the tgf cluster, the differential gene expression
analysis per cluster followed the aging signature that was
observed when analyzing the totality of the cells (R2 >
0.8; Additional file 6: Fig. S5). Enrichment analysis of
DEGs upon aging revealed a negative regulation of
hematopoietic or lymphoid organ development (HLOD)
marked by the downregulation of Cd34, Plac8, and
Foxo3 (Additional file 8: Table S7A), together with a
positive regulation of hemostasis with Clu and Selp in-
creased expression, Cell Adhesions Molecule (CAM)
genes such as Alcam, Jam2, Major Histocompatibility
Complex (MHC) H-2 genes and genes involved in tran-
scriptional miss-regulation in cancer (TMC) (Additional
file 8: Table S7B). TMC enrichment, in addition to TFs
such as Fli1 and Pbx1, relies on cell cycle kinase inhibi-
tors Cdkn1a and Cdkn2c and the stress response gene
Nupr1 suggesting a deregulation of the cell cycle phases
upon aging. Globally, we found that aging feature-score
differences were more pronounced in the non-primed
clusters than in the lineage-primed ones (Fig. 3b;
Additional file 8: Table S7C). However, we highlighted
that two lineage-primed clusters, the pL1 and pMK
clusters, were transcriptionally affected by aging, with an
increase in HEM, TMC, and CAM signatures (Fig. 3b
and Additional file 8: Table S7C). These observations
were confirmed by analyzing a computed aging signature

Fig. 2 Aging affects HSPC clusters differently. a UMAP plot (same as in Fig. 1b) showing the young (orange) and the aged (purple) HSPCs. b Distribution of
young (orange) and aged (purple) HSPCs in the clusters. Left panel presents percentages of young and aged HSPCs in primed/non-primed clusters gathered
and in each of the 15 clusters. The black vertical line indicates expected young and aged cell proportions according to dataset size. Names of the clusters for
which proportion of aged or young cells was significantly higher than expected (hypergeometric test p value < 0.05) are colored in purple for aged cells and in
orange for young cells. On the right, barplots represent the number of cells composing each ensemble: primed/non primed clusters gathered and individual
clusters. c Absolute number per mouse of young and aged sorted HSPCs into the 15 groups
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score retrieved from a comprehensive aging signature
[30] across the clusters (Fig. 3b and Additional file 8:
Table S7C). Looking at some genes individually, we were
able to highlight some age-related changes affecting par-
ticular clusters. We observed a downregulation of the T
cell gene Tcrg-C4 in the aged pL1 cluster and an upregu-
lation of the protease mast cell gene Mcpt8 and myeloid
integrin gene Fcer1a in aged pMast and pNeu cluster re-
spectively (Fig. 3c and Additional file 7: Table S6). We
observed an upregulation of Alcam required for HSC
maintenance in aged np2 cluster (Fig. 3c and Additional
file 7: Table S6). Finally, we also observed a very specific
transcriptome in aged tgf cluster characterized by an

increase of genes involved in HSC quiescence such as
Cdkn1a, Nr4a1 (Fig. 3c), which were clustered together
in the heatmap of DEGs upon aging (Fig. 3a).
Altogether, our results revealed particular age-related

changes mostly affecting the transcriptome of HSPCs
from non-primed clusters and characterized by a loss of
differentiation genes that could account for the func-
tional changes of the aged hematopoietic compartment.

Differentiation trajectory shows a HSPC progression towards
T, Mast/Neu and Mk/Er fates that is altered with age
It has been recently suggested that HSCs undergo a con-
tinuous differentiation process rather than a stepwise

Fig. 3 Gene expression is more impaired during aging in non-primed clusters with loss of differentiation and gain of hemostasis signatures. a Heatmap of the
most significant differentially expressed genes (DEGs) during aging (p value < 0.05 and log fold change > 0.5 in at least one cluster) in the different clusters
revealed by Seurat analysis (Fig. 1b). The lineage-primed clusters are gathered and labeled as primed. The upper colored bars indicate cluster identity according
to the color code in Fig. 1b. The lower colored bars indicate the proportion of young (orange) and aged (purple) cells in a given cluster. Gene expression are
standardized across the entire dataset. b Combined violin plots showing signature scores (x-axis) in young (orange) and aged (purple) conditions per cluster.
Signature scores represent the global expression of annotated genes for selected terms from enrichment analysis issued from DEGs during aging (p value <
0.05 and log fold change > 0.25 in at least one cluster) and for the HSC aging signature of Svendsen et al. (significant enrichment, hypergeometric test p value
< 10−78). Significant terms (enrichment gprofiler p value < 0.05) are: Hematopoietic or Lymphoid Organ Development (HLOD) retrieved from GO:Biological
Process, Hemostasis (HEM) retrieved from REACTOM pathways, Cell Adhesion Molecule (CAM) retrieved from KEGG pathways, MHC protein complex (MHC)
retrieved from GO:Cellular Component, Transcriptional Miss-regulation in Cancer (TMC) retrieved from KEGG pathway. See supplementary Tables 7A & B for the
lists of genes enriched in the terms. Stars show significant differences between the signature scores of young and aged cells, per cluster (average score
difference> 0.1 and p value < 0.05). c Combined violin plot showing aging marker expression in young (orange) and aged (purple) conditions for the different
clusters. Stars show significant differences of gene expression between young and aged cells (average log fold change > 0.25 and p value < 0.05)
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process [12]. In order to better capture and understand
the progression of this differentiation process during
aging, we constructed pseudotime trajectories by order-
ing HSPCs based on the similarities between their ex-
pression profiles with Monocle [31]. We first generated
the trajectories of young and aged HSPCs separately,
which showed a very similar shape, with the exception
of a group of cells standing apart from the aged trajec-
tory, and made exclusively of pL2 cells (Additional file 1:
Fig. S7A). Because these cells were detected only in aged
HSPCs and were clearly distant from the rest of the cells
in the UMAP (Fig. 1b), we excluded them for cell pool-
ing and ordering for both ages. Thus, we analyzed the
differentiation trajectory inferred from young and aged
cells pooled together, without pL2 cells. The resulting
trajectory was partitioned into 5 segments, called
Monocle states 1, 2, 3, 4, and 5 (Fig. 4a). The departure
of the trajectory was identified at the extremity of the
state 1, as this state possessed the highest percentage of
LTHSCs (Fig. 4b, c). States 2, 4, and 5 were enriched
with MPPs suggesting their progression towards differ-
entiated states (Fig. 4b, c). We characterized the 5 states
of the trajectory with previously published signatures
related to HSPCs and hematopoiesis (referenced in
Additional file 9: Table S8A) and with our state marker
analysis (Additional file 9: Table S8B & S8C). We re-
vealed that HSPCs in state 1 expressed a HSC signature
with especially cells expressing the dormant HSC marker
(Procr); state 2 cells (after the first bifurcation) were
characterized with naive T cell signature and were ex-
pressing Gata3, suggesting a primed-lymphoid differen-
tiation state (Fig. 4d); state 4 cells were characterized by
a myeloid signature [32] and high expression of Hdc,
previously reported as a marker of myeloid biased
HSPCs [33], while cells in state 5 presented a Megakar-
yocyte Erythrocyte Progenitors (MEP) signature [34] and
expressed Gata1 a MEP marker (Fig. 4d).
Analysis of Seurat cluster position and spreading on the

trajectory strengthened the pseudotime differentiation
relevance with lineage-primed clusters located at the two
extremities of the trajectory and suggested a differenti-
ation specificity of the states (Fig. 4e; Additional file 1: Fig.
S8). In addition, we assessed the similarity of our pseudo-
time cell values with a published HSC score to validate
their degree of stemness [35]. By doing so, we identified
the two non-primed clusters np2 and np3, located at the
beginning of the trajectory, as the most immature ones
(Additional file 1: Fig. S9). Analysis of the five state pro-
portions across the clusters revealed a first bifurcation
separating pL1 cells (state 2), from cells primed for mye-
loid lineages (state 3), and then a clear branching between
Neu/Mast-primed (NeuMast) HSPCs (state 4) and Mk/
Er-primed (MkEr) HSPCs (state 5) (Fig. 4f). The specificity
of state 5 for megakaryocyte differentiation was supported

by the high representation of the rep cluster (Fig. 4f), char-
acterized by a reparation gene signature (Additional file 4:
Table S3), which was previously associated with megakar-
yocyte fate [36]. Separate pseudotime ordering of young
and aged HSPCs provided very similar segregation be-
tween the lineage-primed HSPCs, with one bifurcation
from LTHSC (state 6) towards Neu/Mast-primed (Neu-
Mast) HSPCs (state 7) and Mk/Er-primed (MkEr) HSPCs
(state 8) (Additional file 1: Fig. S7A-E). However, the bi-
furcation towards the lymphocyte fate was not retrieved
probably because of the reduction of the pL1 cell number
due to the sample splitting (Additional file 1: Fig. S7A).
Hence, to synthetize our analyses, we proposed a tree-
representation of the HSC differentiation trajectory (Fig.
4g) where nodes stand for pseudotime points, and edges
for Monocles states. It contains 6 nodes: a root, the start-
ing point (s); two internal nodes, the first bifurcation point
(p) and primed Myeloid bifurcation point (pMye); and
three leave nodes, the three fates Lymphoid (L), Neutro-
phils/Mastocytes (NeuMast), and Megakaryocyte/Eryth-
roid (MkEr).
Next, we compared the differentiation progression of

young and aged HSPCs. Aged HSPCs appear to be sig-
nificantly delayed in the pseudotime (Fig. 4h) while
Seurat cluster spreading along the trajectory showed no
clear differences of any cluster pseudotime position ac-
cording to age (no median difference higher than 0.8
unit of pseudotime; Additional file 1: Fig. S10A). Look-
ing at the proportion of the different Monocle states of
the trajectory according to age revealed an increase in
aged HSPCs in states 1 and 3 in comparison to young
ones (Fig. 4i), belonging to the non-primed clusters np3,
tgf, ifn, np4, diff, and div (Additional file 1: Fig. S10B).
When focusing on cells from states 2, 4, and 5, which re-
flect the 3 lineage-primed HSPC states, we observed that
the proportion of state 5 (MkEr fate) was larger in aged
than young condition (Fig. 4j), although age was not af-
fecting the percentage of the Monocle states from
lineage-primed cluster cells (Additional file 1: Fig. S10B).
This suggests that while less aged HSCs were detected
in the three differentiation paths, cells with MkEr fate
are more maintained upon aging than the ones towards
NeuMast and L fates.
In conclusion, our trajectory analysis revealed a prim-

ing of HSPCs for lymphoid lineage that occurs early in
the differentiation process and evidenced a clear split be-
tween the NeuMast and the MkEr HSC fate identifying
an early lineage specification of HSCs (Fig. 4g). While
the global shape of the trajectory and the lineage specifi-
cation of the HSPCs are conserved upon aging, reparti-
tion of the aged HSPCs along the differentiation
trajectory is altered with a decrease in terminal states 2
and 4 conducing respectively to L and NeuMast fates, in
favor to cells of the initial states 1 and 3.

Hérault et al. BMC Biology           (2021) 19:19 Page 7 of 20



HSPC differentiation trajectory is associated with
transcriptional programs that are altered upon aging
Cell fate decision and proper function of HSCs rely on
tightly controlled transcriptional programs orchestrated

by transcription factor (TF) activity [37]. Since level of
the expression of TFs is not sufficient to assess their ac-
tivity, we measured changes in TF activity during differ-
entiation and aging of HSPCs. For that, we took

Fig. 4 HSPC differentiation trajectory revealed a clear split between L, MastNeu and MkEr primed cells. a Differentiation trajectory generated using
Monocle 2 with all HSPCs excepted pL2 cells that were excluded. Cells are colored according to five states (1 gray, 2 yellow, 3 green, 4 orange and 5
blue), which partition the trajectory. b Barplots representing the LTHSC, STHSC, MPP2 and MPP3 proportions in the five states. c HSPC differentiation
trajectory colored according to HSPC pseudotime values and representing their differentiation progression. d HSPC differentiation trajectories colored
according to HSPC scores for hematopoietic lineage signatures retrieved from the literature (upper panel) and according to the expression level of
HSPC differentiation markers (lower panel). For signatures, positive (red) or negative (blue) scores indicate whether the expression of the tested gene
set is more or less important than an equivalent control gene set. Signatures identified are HSC, naïve T, Myeloid and MEP (Megakaryocyte Erythrocyte
Progenitor). HSPC differentiation markers shown are: Procr for LTHSCs, Gata3 for lymphoid-primed HSPCs, Hdc for myeloid-primed HSPCs and Gata1 for
erythrocyte-megakaryocyte-primed HSPCs. e Repartition of the Seurat clusters along the pseudotime. Box plots (medians) of pseudotime values are
colored according to the most represented state. f Repartition (in percentage) of the different states (1 to 5) of the trajectory for each Seurat cluster.
g Tree representation of HSC differentiation trajectory, edges representing the states (state 1 in gray, 2 yellow, 3 green, 4 orange, and 5 blue), and
nodes standing for pseudotime points: the starting point (s), the first bifurcation point (p), the primed Myeloid bifurcation point (pMye); and the three
fates Lymphocyte (L), Neutrophil/Mastocyte (NeuMast) and Megakaryocyte/Erythroid (MkEr). h Boxplot of pseudotime values for young and aged cells.
* indicates a significant difference between young and aged pseudotime value distribution (median difference > 2.9, p value < 10−16 Wilcoxon rank
sum test) i, j Percentage of Monocle states in young and aged conditions, when considering all states (i) or only states 2, 4, and 5 (j). * indicates a
significant dependence between state and age repartitions (p value < 10−10 Pearson’s chi-squared test)
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advantage of Single-Cell Regulatory Network Inference
and Clustering (SCENIC) approach [38] that calculates
the activity of a given TF (regulon score) based on target
expression and cis-regulatory elements. We considered
154 TFs, selected from the literature or from our single
cell expression data analysis (Seurat cluster markers),
out of which, 58 were identified as active regulons in our
HSPCs (Additional file 10: Table S9A). By looking at
regulon activities of young HSPCs along the trajectory,
we revealed a specific regulon signature for each state
(Additional file 10: Table S9B). State 1 was characterized
with activity of the stress sensors Atf3, the interferon
signaling factors, Irf1, Irf7, Irf9, and the downstream tar-
gets of the Tgfbeta signaling, Stat1, Klf4, Egr1, Klf6,
Junb, depicting a stemness state (regulon clusters C1a
and C1b Fig. 5a and C1a Fig. 5b, young panel). Compari-
son of TF activities between state 2 and state 3 at the
first bifurcation (p) emphasized the L fate of state 2 with
the detection of high activity of the T cell transcription
factors Ikzf1, Sox4 (regulon cluster C2 Fig. 5a, young
panel) while state 3 cells enter a more general differenti-
ation program with a slight increase of regulon activities
such as Myc (regulon cluster C3 Fig. 5a, young panel).
As expected, aging reduced the activity of the two regu-
lons in state 2 witnessing the reduced lymphoid activity
during aging. By contrast, Klf6, Junb, Jun, and Stat1 ac-
tivities of aged HSCs were spread and increased in aged
states 1 and 3, (Fig. 5a, b and Additional file 10: Table
S9C), which was consistent with the stem cell activity of
aged states 1 and 3 containing mainly LTHSCs (Fig. 4b).
By looking at the second bifurcation (pMye) between

state 4 and state 5, we confirmed that state 4 was neu-
trophil- and mast-biased as it was indorsed with a high
activity of C/ebpa-e, Runx1, and Irf8, involved in mye-
loid differentiation (regulon cluster C4 Fig. 5b, young
panel). Noticeably, aging decreased the activity of regu-
lons involved in myeloid fate such as Cebpa and -e in
state 4 (Fig. 5b and Additional file 10: Table S9C). This
result was consistent with the decrease of neutrophils
and mastocyte primed-cell number with aging (observed
in Fig. 2b) and strengthened our hypothesis that myeloid
bias of aged hematopoiesis would not come from this
path of the trajectory. Cluster C5 of the heatmap shows
that State 5 was characterized with a strong activity of
Klf1, E2f8, Ybx1, Gfi1b, and Ezh2, all of which are impli-
cated in the erythroid/megakaryocyte development (reg-
ulon cluster C5 Fig. 5b, young panel). Interestingly, the
activity of E2f8 was significantly reduced with aging in
state 5 whereas Gfi1b activity was considerably increased
in this aged state. It should be noted that Gfi1b is the
regulon that experienced the greatest increase in activity
with aging, not only in state 5, but also at the beginning
of the trajectory in state 1. As Gfi1b is a master regulator
of thrombopoiesis (reviewed in [39]) and as we found

some of its targets such as Clu, Esam, and Serpinb1a,
annotated for hemostasis (Additional file 10: Table S9A)
upregulated with aging (Additional file 8: Table S7B), we
suggested that Gfi1b sustains the platelet bias of aged
HSPCs.
Thus, TF activity analyses over the pseudotime corrob-

orated the trajectory features and clearly identified a sep-
aration in TF activity that explains the L priming (Fig.
5a) and the two distinct myeloid fates, NeuMast and
MkEr (Fig. 5b). It also indicated that aging is associated
with marked changes in TF expression and activity with
a gain of TFs involved in stemness and platelet activity
and a loss of lineage-specific factors that drive lineage
commitment and terminal differentiation.

Cell cycle analysis along pseudotime highlights a delay in
differentiation associated with cell cycle arrest in aged
condition
As one of the hallmarks of HSC aging is a reduction of
cycling HSCs [40], we analyzed the cell cycle phases ac-
cording to BM age. We showed an increase of non-
cycling HSPCs (G1/G0) at the expense of the S and G2/
M phases in aged BM in comparison to young one
(Fig. 6a). Analysis of LTHSC, STHSC, MPP2, and MPP3
population separately showed that age did not typically
affect the proportion of cycle phases within each sub-
type, with the exception of a slight but significant change
in LTHSCs and MPP2 (Fig. 6b). This suggests that the
increase of the G1/G0 phase proportion observed upon
aging is mainly due to the accumulation of quiescent
LTHSCs that are known to be arrested in G1/G0 phase
[41], and to a lesser extent to LTHSC and MPP2 intrin-
sic cell cycle changes induced by aging.
Positioning quiescent versus proliferative cells along

the trajectories showed that quiescent cells were at the
departure of the trajectory while proliferating cells were
towards the differentiated states (Fig. 6c, left panel).
Comparison of the quiescence and proliferation signa-
tures between young and aged HSPCs showed a quies-
cence gain in the aged condition in the first part of the
trajectory (states 1, 2 and 3) while the proliferation sig-
nature remained unchanged (Fig. 6c, right panel and
Additional file 11: Table S10A).
Next, we addressed the question of cell cycle and its

influence on HSPC aging. We first looked at the distri-
bution of young and aged HSPCs along the trajectory,
analyzing T, NeuMast, and MkEr fates separately (Fig.
6d). Doing so, we confirmed the accumulation of aged
HSPCs in state 1 before the first bifurcation point p and
the decrease of aged cells in the differentiated states 2, 4,
and 5 (Fig. 6d). To associate cell-cycle status and cell ac-
cumulation, we performed high-resolution analysis of
HSC cell cycle along the trajectory by plotting the ratio
of dividing cells on pseudotime bins for young and aged
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cells in Lymphoid, NeuMast, and MkEr fates separately
(Fig. 6e). This highlighted a dramatic loss of dividing
cells in aged condition in state 1 with the exception of
cells located at the very beginning of the trajectory (Fig.
6e). We hypothesized that these dividing cells (that are
LTHSCs and belong to np3 cluster) represent cell-cycle
activity of self-renewing LTHSCs. Interestingly, we
found no difference in cell cycle phase proportion be-
tween these young and aged LTHSCs (p value > 0.3
Pearson’s chi-squared test; Additional file 1: Fig. S12),
suggesting a conservation of self-renewal potential in
aged HSCs. By opposition, the absence of cell cycle ac-
tivity of aged HSPCs later in state 1, which may repre-
sent cell cycle activity linked to differentiation,
underlines a default in cell division of aged HSPCs asso-
ciated to differentiation (Fig. 6e). Division rate of aged
HSPCs became positive after the first bifurcation and
was similar to what we observed in young HSPCs (Fig.
6e), with the exception of a decrease in aged cycling cells
in state 4 (towards NeuMast fate) suggesting a default of
cell cycle in aged Neu-primed HSPCs. Visualization of
the distribution of the different HSPC subsets confirmed
the accumulation of aged LTHSCs at the expense of the
STHSCs and revealed a dramatic loss of NeuMast-
primed cells upon aging (Fig. 6f).
We extracted from our DEG analyses with aging

(Additional file 11: Table S10B) DEGs involved in
proliferation, differentiation, and cell cycle and ana-
lyzed their expression profile in young and aged cells
along the trajectory. We observed a pronounced in-
crease in expression of the two proliferation-division
genes, Ccnb1 and Mki67, in young HSPCs that was
occurring in state 1 concomitant to the increase of
the marker of differentiation Cd48 (Fig. 6g). In aged
cells, increase in the expression of these three genes
was also detected but was delayed until the branching
point pMye suggesting a delay in the commitment of
aged HSPCs. To grasp molecular mechanism(s) that
could be involved in this delay, we compared cell
cycle inhibitor expression across young and aged
HSPC trajectories. Cdkn1a and Cdkn2c were upregu-
lated along the aged trajectory (except in state 4 for
Cdkn2c) especially in the first part of the trajectory

(states 1, 2, and 3) in comparison to young one. By
contrast, Cdkn1b was downregulated in states 1 and 2
of the aged trajectory (Fig. 6g and Supplemental
Table S10B). The change in expression with aging of
the three cell cycle inhibitors known to control HSC
fate indicates deregulation of cell cycle phases in aged
HSCs. It is interesting to note that Cdkn1a was found
to be a target of Stat1, Jun, and Junb which are
themselves targets of the Klf6 regulon (Add-
itional file 10: Table S9A), four regulons whose activ-
ities increased with aging in the same range of
pseudotime as changes in the level of Cdkn1a expres-
sion (Figs. 6g and 5b).
Together, these results suggest that aged HSCs have a

default in cell cycle, concomitant to a delay in their dif-
ferentiation program, which occurs before the lineage
priming of the HSPCs.

Discussion
In this study, we questioned the effect of aging on the
heterogeneity of HSCs and their properties using
scRNA-seq, which provides a powerful method for de-
fining cell subtypes as well as a detailed description of
the functional properties specific to these subtypes [42].
At first, the large number of cells analyzed provided us

new insights of HSPC heterogeneity, through the identi-
fication of 15 distinct HSPC clusters that we divided in
two categories, the non-primed clusters by opposition to
the lineage-primed clusters composed of low-abundant
HSPCs with restricted lineage potential. We identified
distinct lineage-primed HSPCs such as HSPCs with mas-
tocytes, neutrophils, erythrocytes, and lymphoid-
restricted lineage signatures in addition to the previously
reported Mk-restricted HSPCs [8, 11, 27]. The lineage
potentials of HSPCs detected in this study, which favors
an early HSPC uni-lineage segregation [11, 43], may be
the result of our cell cycle correction that diminish cell
cycle gene expression noise, a dominant source of tran-
scriptional heterogeneity in the HSC compartment [44].
Our pseudotemporal reconstruction of differentiation
trajectories together with our clustering and transcrip-
tional activity analyses highlighted a clear separation in
the fates of specific lineage-primed HSPCs and clearly

(See figure on previous page.)
Fig. 5 HSPC differentiation trajectory associates with transcriptional programs that are altered upon aging. a, b Heatmaps showing standardized
regulon activity scores, recovered with the AUCell procedure of Scenic, for young (left panel) and aged (right panel) HSPCs across Monocle states. Cells
(columns) were ordered according to their pseudotime, and color bars at the top of the heatmaps indicate the state at which cell belongs (1 gray, 2
yellow, 3 green, 4 orange, and 5 blue). Regulons (rows) were hierarchically clustered, based on their activity score in young HSPCs. In a, 4 clusters of
regulons are highlighted when analyzing regulon activity along pseudotime trajectories from s to L fate and from s to pMye bifurcation point (i.e.,
across Monocle states 1, 2 and 1, 3). In b, regulon activity along pseudotime trajectories from s to NeuMast and from s to MkEr fates (i.e., across states
1, 3, 4 and 1, 3, 5) is analyzed and 4 other clusters of regulons are highlighted. Arrows mark regulons for which a significant difference of activity with
aging (average AUCell score difference between young and aged cells > 0.002 and p value < 0.05) were found in at least one of the considered states
(i.e., states 1, 2, and 3 in a and 1, 3, 4, and 5 in b). The color indicates if regulon activity is increased (purple) or decreased (orange) in aged condition
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characterized two bifurcation points, revealing three dis-
tinct HSPC fates towards Lymphocyte, Neu/Mast, or
Mk/Er lineages. In addition, our analysis showed that
lineage priming of HSPCs is not delineate by a specific
HSPC subset such as LTHSC, STHSC, MPP2, and
MPP3 in any instance. Although we showed that Neu
priming is clearly stemming from MPP3 and Er priming
from MPP2, lineage priming could also arise from a
combination of HSPC subsets. This is the case for Mk
priming which stems from LTHSC and MPP2 subsets,
in line with previous studies [11, 23]. It is also the case
for B and T lymphoid potential found in the four subsets
of HSPCs, suggesting a lymphoid-priming occurring
earlier in the BM and not restricted to the more engaged
Flt3-positive MPP4 as previously reported [45]. The fact
that we detected lineage primed cells in the very early
subset of HSPCs goes in line with a previous studies
showing the existence of four distinct and closely related
stages of self-renewing LTHSCs in adult BM that stably
adopt lineage-restricted fates (platelet, B and T lymph-
oid, erythroid, and myeloid lineages) despite remaining
multipotent [46]. In addition, we were able to distinguish
subtle differences in the LT-HSC compartment. Our
study delineates a discrete hierarchy of differentiation
within the LTHSCs, thanks to the pseudotime and clus-
ter characterization, which posits the np2 cluster as be-
ing the most immature one.
If the accumulation of very immature HSCs in the BM

of aged individuals is now an accepted criterion of
hematopoietic aging, we still do not fully understand what
are the characteristics of these aged HSCs and what causes
them to accumulate. By looking at the transcriptomic
changes at the single cell scale, we confirmed the global
increase of the LTHSC fraction within the HSPCs. How-
ever, by analyzing our aged HSPCs by clusters or individu-
ally, we could demonstrate that HSPCs are not affected
uniformly by aging and grasp some interesting aging fea-
ture. At first, we showed that the proportion of aged

HSPCs in pMast, pNeu pEr, and pL1-primed clusters was
decreased while increased in ifn, tgf, np1, and np2 clusters.
In addition, young and aged cells were found in the ex-
pected ratio in the pMk cluster. This clearly indicates that
the platelet and myeloid bias observed upon aging [23] is
not due to an amplification of the pool of lineage-primed
HSPCs but stem from other HSPC subsets. Secondly, we
highlighted some specific amplification of LTHSCs such
as LTHSCs with miss-regulated interferon signaling (ifn
cluster). As the increase in interferon response with aging
in a number of different tissues has been observed [47]
and is consistent with the concept of inflammaging [48],
this amplification could afford for the myeloid bias ob-
served in aging. Another interesting HSC group that we
detected amplified during aging was the cluster of LTHS
Cs presenting a Tgf signature that may correspond to the
accumulation of the HSC subtypes with differential re-
sponses to Tgf that was previously identified [49]. These
two types of aged HSCs need to be further analyzed but
considering their characteristics, it is tempting to
hypothesize that their proportion was increased under
stress selection pressures to compensate for the loss of
mature cell production that occurs upon aging. Moreover,
cluster amplification during aging has not been observed
in the same way in our different animals, this is particu-
larly true for the amplification of HSCs marked for Tgf,
driven by a batch of aged mice. This heterogeneity of
aging might witness the emergence of competitive clones
that amplify during aging and fit quite well with the clonal
hematopoiesis model. In another perspective, the appar-
ition of the pL2-primed cluster that we observed quasi ex-
clusively in the aged BM might also represent clonal
evolution. Since this cluster was characterized with the ex-
pression of Trp53inp1, a gene limiting B-lymphoid differ-
entiation upon aging, it could correspond to an
accumulation of aged HSPCs altered in their lymphoid
differentiation [28] but resulting for a pressure of immune
deficiency.

(See figure on previous page.)
Fig. 6 Cell cycle analysis along pseudotime highlights a delay in differentiation associated with cell cycle arrest in aged condition. a Repartition
(in percentage) of the cell cycle phases (estimated with cyclone) in young and aged HSPCs. b Repartition (in percentage) of the cell cycle phases
(estimated with cyclone) in LTHSCs, STHSCs, MPP2 and MPP3 in young and aged conditions. For a and b, * indicates a significant dependence
between cell cycle phase and age repartitions (p value < 0.05 Pearson’s chi-squared test). c Left panel, differentiation trajectory of HSPCs colored
in accordance to their score for previously published quiescence and proliferation signatures. Right panel, comparison of the scores for the
quiescence and proliferation signatures between young and aged HSPCs in pseudotime. d Density plot of young (orange) and aged (purple) cells
along pseudotime for the T (left), NeuMast (middle), and MkEr (right) fates. Black and red dashed lines mark respectively p and pMye bifurcation
points. e Division rate along pseudotime for young (orange) and aged (purple) HSPCs for the T (left), NeuMast (middle), and MkEr (right) fates. On
x-axis, pseudotime was cut into 50 bins and a division rate is calculated for each bin, by dividing the number of young (resp. aged) cells assigned
to G2M phase by the total number of young (resp. aged) cells of the bin. Black and red stretched lines mark p and pMye pseudotime bifurcation
point respectively. f Stacked plot of predicted cell types along pseudotime cut into 50 bins for young (upper part of the plots) and aged (lower
part of the plots), for the L (left), NeuMast (middle) and MkEr (right) fates. Black and red stretched lines mark p and pMye bifurcation point
pseudotime respectively. g Smoothed gene expression along pseudotime of selected markers for young (upper panel) and aged (lower panel)
HSPCs. Points represent cells, which are colored according to their belonging to the 5 different states (1 gray, 2 yellow, 3 green, 4 orange and 5
blue). The y-axis is in log scale. * indicates significant differences in gene expression between young and aged cells (p value < 0.05) and star color
indicates the state where the difference is found
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Pseudotime trajectory analysis led us to address the
question concerning the differentiation state of aged
LTHSCs, which were thought to accumulate in a more
undifferentiated state compared to young LTHSCs [24].
First, the outcome of our analyses is in favor of no dif-
ference in term of differentiation state between young
and aged LTHSCs as when plotted together along the
trajectory the most immature aged cells were not posi-
tioned at an anterior pseudotime compared to the young
ones. Second, our results support that aged LTHSCs are
delayed in their differentiation journey in comparison to
young ones and that this delay occurs pretty early in the
pseudotime, before the first bifurcation point that splits
lymphoid fate from myeloid fate. This was clearly em-
phasized by our regulon activity analysis of transcription
factors such as Myc, Trp53, or Spi1 that were previously
described involved in multipotency and commitment of
HSCs [50] and for which we could observe a delay in
their activity along the differentiation trajectory.
Thus, the aged HSCs are not more undifferentiated

than the young ones but seem to have intrinsic defaults
that would delay their commitment. This finding is in-
teresting when putting in perspective what causes the
accumulation of LTHSCs. Increase of LTHSCs with
aging could originate from an increase in the self-
renewal rate of HSCs or/and from a blockade or at least
a slowdown of the LTHSCs along their differentiation
journey. It was also hypothesized that label-retaining
HSCs (LR-HSCs), which divide minimally over time, ac-
cumulate in aged BM after completing four traceable
symmetric self-renewal divisions to expand its size be-
fore entering a state of dormancy [51]. Although we
could not directly address the question of self-renewal,
we can argue based on our regulon and cell cycle ana-
lyses that aged LTHSCs have kept their capacity to self-
renew and have not reached a state of complete dor-
mancy but have reduced their proliferation linked to dif-
ferentiation. Interestingly, we could associate this
reduced and age-related proliferation/differentiation po-
tential to a high level of Mycn activity, known to con-
tribute to the stemness and self-renewal of different
stem cells [52] and a high level of Gfi1b activity known
to promote self-renewal of HSCs [53].
One interesting outcome of our analysis is the link be-

tween the delay in differentiation and cell cycle activity
changes of aged HSPCs. We deduced from our compu-
tational cell cycle classification that lineage-primed
HSPCs were less in G1/G0 than the non-primed LTHS
Cs. This observation is fully consistent with current
knowledge that the most undifferentiated HSCs reside in
the G0 phase and cycle infrequently and that cell cycle
overall becomes more frequent as HSCs are gradually
committed [41, 54]. In addition, we detected an increase
in HSCs in G1/G0 phases in older BMs and an increase

in older LTHSCs in G1/G0 phases compared to younger
LTHSCs, which reflects the decrease in cell cycle activity
of older HSCs when considered as a whole [55]. Finally,
when calculating a division rate per cells and studying
division gene expression along the trajectory, we could
detect a loss of aged dividing HSPCs located before the
first bifurcation of the differentiation trajectory. These
cells partially overlap in our trajectory with the div clus-
ter, marked by genes related to asymmetric division such
as gpsm2, Ragcap, and Ccnb1 [56, 57], suggesting that
the delay in differentiation could be linked to an altered
capacity of aged HSPCs to divide asymmetrically. In
addition, gene expression of cell cycle inhibitors clearly
shows that HSPCs in the first part of the trajectory have
increased expression in Cdkn1a and Cdkn2c, promoters
of quiescence but a reduction in Cdkn1b activation,
which promotes commitment [58]. Interestingly, our
analysis pointed out Cdkn1a as a direct target of Junb,
itself target of Klf6. As the activation of Cdkn1a by Junb
has been previously described to limit hematopoietic
stem cell proliferation [59] and as Klf6 is a key factor in
Tgfbeta signaling pathway [60, 61], our work unveils an
interesting pathway controlled by the cytokine Tgfbeta
involving Klf6 as a key regulon and Cdkn1a as a cell
cycle regulator that is enhanced upon aging, endorses
quiescence, and limits HSC differentiation.

Conclusions
Our single-cell transcriptome-based identification of cell
identity and its modifications associated with aging pro-
vides new information on cellular heterogeneity and in-
trinsic changes that will be useful for future investigation
of the role of other regulators on the aged HSC
phenotype.

Methods
Mouse model and cell sorting
C57BL/6-CD45.2 mice were purchased from Charles
River Laboratories and were aged at the CRCM animal
facility under specific pathogen-free conditions and han-
dled in accordance with the French Guidelines for ani-
mal handling (Agreement #02294.01). Only males were
analyzed, at 2–3 months (young) and 17–18months
(aged) of age. HSPCs were collected from the BM of 5
young and 5 aged mice over 2 independent batches with
cells from 2 pooled young (Young_A sample) and 3
pooled aged (Old_A sample) mice for one batch, and
cells from 3 pooled young (Young_B sample) and 2
pooled aged (Old_B sample) mice for the other one
(Supplemental Table S1). For each sample, the BM was
lineage depleted by using the Lineage Cell Depletion Kit
(Miltenyi Biotec) and labeled with the following antibody
cocktail: anti CD45.2, anti Sca-1, anti-cKit, anti CD150,
anti Cd48, anti Cd34, and anti Flt3 antibodies
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(Additional file 12: Table S11) to purify Lin-Sca1+cKit+
Flt3 cells (HSPCs) by multi-parameter fluorescence-
activated cell sorting (FACS) on a FACSAriaII (Specia-
lOrderResearch Products; BD Biosciences). Flow cytom-
etry analyses were performed using a BD-LSRII
cytometer and analyzed using BD-DIVA Version 6.1.2
software (Special Order Research Products; BD
Biosciences).

Single cell RNA-seq and data processing
We used the 10x genomics platform from two facilities:
HalioDX for samples Young_A and Old_A (Marseille,
France) and TGML for samples Young_B and Old_B
(Marseille, France). In both facilities, FACS purified
HSPCs were loaded 30min after the sorting onto a
Chromium Single Cell Chip and processed with the
Chromium Controller (10x Genomics) according to the
manufacturer’s instructions for single cell barcoding at a
target capture rate of 4000 individual cells per sample.
Libraries were prepared using Chromium Single-Cell 3′
Reagent Kits v2 (10x Genomics) and were sequenced
using an Illumina NextSeq500 sequencer to an average
depth of about 45,000 reads per cell for Young_A and
Old_B samples and about 130,000 reads per cell for
Old_A and Young_B samples. Cell ranger software v2.2
was used to align reads to the (GRCm38) mm10 mouse
reference genome. Cell counts and transcript detection
rates are summarized in Supplemental Table S1.

Quality control and data normalization
Cells outside 2 standard deviations (SDs) from the mean
UMI log-counts were filtered out for each sample to dis-
card poor quality cells and doublets. In total, 7433 young
and 7482 aged cells were kept. For each dataset (our
four samples and the Rodriguez-Fraticelli dataset), genes
with no UMI count in more than 0.5% of the cells were
discarded. All gathering, 17,513 genes were kept. Then,
UMI counts were normalized with the NormalizeData
Seurat function. For each cell, we considered the log
transformation of the ratio of UMI counts per gene by
the total UMI counts of the cell, multiply by a scaling
factor of 10,000 (log (10,000(UMIgene/UMIcell) + 1)).

Cell cycle phase classification
Prediction of cell cycle phase for each cell was made with
the cyclone [62], which relies on a pre-defined classifier
for cell division constructed from a training dataset of syn-
chronized mouse embryonic stem cells [63]. For each cell,
a score based on raw count data before gene filtering was
computed for each phase (G2/M, S and G1) and used to
assign a phase to the cells. As quiescent HSCs are closer
transcriptionally to G1 than S or G2/M cells of the cyc-
lone training dataset, we classified them with the cyclone
G1 cells and named this category G1/G0.

HSPC subtype assignment
In order to assign known FACS cell identity in our
HSPC pool, we used CaSTLe (Classification of single
cells by transfer learning), a supervised classification
method consisting in labeling cells in a scRNA-seq
experiment, using knowledge learnt from other exper-
iments on similar subtypes [64]. We chose as source
dataset a published scRNA-seq dataset obtained from
FACS isolated HSPCs [11]. Cells from this data set
(approximately 2000/per type) were divided into 4
subsets: the LTHSC (Lin- Sca1+ Kit+ Flt3− Cd150+

Cd48−), the STHSC (Lin- Sca1+ Kit+ Flt3− Cd150−

Cd48−), the MPP2s (Lin- Sca1+ Kit+ Flt3− Cd150+

Cd48+), and the MPP3 (Lin- Sca1+ Kit+ Flt3− Cd150−

Cd48+). HscScores were computed as previously de-
scribed [35].

Dataset integration, data scaling, and cell cycle regression
To minimize batch effect between datasets, we inte-
grated our 4 sample datasets (Young_A, Young_B, Old_
A, Old_B) following the procedure of Seurat 3 [25]. Inte-
gration was done also for young and aged conditions
separately. Briefly, the highly variable genes for each
dataset were selected with the FindVariableFeatures
function (selection.method =“vst”) and ranked according
to the number of datasets in which they were independ-
ently identified as highly variable. The top highly vari-
able 2000 genes were thus integrated by iteratively
merging pairs of datasets according to a given distance.
Integration anchors, representing two cells that are pre-
dicted to originate from a common biological state in
both datasets using a Canonical Correlation Analysis
(CCA), were done using the FindIntegrationAnchors
function (dims=1:15). Then, the expression of the target
dataset was corrected using the difference in expression
between the two expression vectors for each pair of an-
chor cells. This step was realized using IntegrateData
function (dims=1:15). This process resulted in an expres-
sion matrix that contains the batch-effect-corrected ex-
pression for the 2000 selected genes of the cells from the
4 samples.
Standardized (i.e., centered and reduced) expression

values with cell to cell variations due to cell cycle effect
regressed were obtained with the ScaleData function of
Seurat using the G2/M, S and G1/G0 scores previously
computed for each cell by cyclone for the var.to.regress
argument (cf Cell cycle phase classification).

Dimension reduction and clustering
A PCA was performed on the scaled data using RunPCA
Seurat function (npc = 40). The 15 first principal components
of the PCA were kept for nonlinear dimension reduction
and cell clustering. Uniform Manifold Approximation and
Projection (UMAP), [26], a nonlinear dimension reduction
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method, was run using RunUMAP Seurat function package
in order to embed cells in a 2-dimensional space. A K-
nearest neighbor graph (KNN) based on the Euclidean dis-
tance in PCA space was constructed (k= 20) to cluster the
cells with the Louvain algorithm (resolution = 0.5) using the
FindNeighbors and FindClusters Seurat functions
respectively.

Pseudotime ordering
Unsupervised ordering of the HSPCs was done with the
Seurat 3 integrated results as input to build a tree like
differentiation trajectory using the DDRTree algorithm
of the R package Monocle v2 [31]. Integrated data from
(i) all samples (young and aged) excluding the primed
pL2 cluster cells, (ii) young cells only, or (iii) aged cells
only were processed with Monocle. For the three pseu-
dotime ordering analyses (all cells, young only, and aged
only), the 2000 gene expression matrix, scaled and
regressed for cell cycle effect (see Data scaling and cell
cycle regression) issued from the Seurat 3 integrated
samples was loaded into Monocle using the newCellDa-
taSet function (lowerDetectionLimit = 0.1, expression-
Family = uninormal()). The 2000 genes were set as
ordering genes and trajectory building was made by call-
ing the reduceDimension Monocle function (max_com-
ponents = 2, reduction_method = ‘DDRTree’, norm_
method = “none”, pseudo_expr =0). For each of the
three trajectories, the root state was identified by select-
ing the Monocle state with the highest proportion of
LTHSC predicted subtype (Fig. 4b; Additional file 1: Fig.
S6B) in order to compute pseudotime values for the cells
using the orderCells Monocle function. Expression of
some genes as a function of pseudotime (Fig. 6g) was
plotted with the plot_gene_expression Monocle function
(using the Monocle normalization method with the esti-
mateSizeFactor Monocle function).

Differential gene expression analyses
Specific markers for each cluster (Additional file 3: Table
S2) and for each Monocle state (Additional file 9: Table
S8B & C) were identified using FindAllMarkers Seurat
function, with default parameters on log-normalized
data without any cell cycle correction. Genes signifi-
cantly overexpressed in one cluster/state versus all the
others (positive markers) were tested with Wilcoxon
rank sum tests on the log-normalized data of the given
cluster against all the others. To further characterize
state 2, which shared 72% of its markers with state 4, we
identified DEGs between the two states using FindMar-
kers Seurat function (Additional file 9: Table S8C). Only
genes expressed in at least 10% of the cells in either of
the two groups (min.pct = 0.1) and with a log fold
change threshold of 0.25 (logfc.threshold = 0.25) were
tested. A p-adjusted value (Bonferroni correction)

threshold of 0.05 was applied to filter out non-
significant markers.
Aging markers for the global population were obtained

with the FindConservedMarkers Seurat function
(min.pct = 0.1, logfc.threshold = 0) using the sequencing
platform as grouping variable to minimize batch effect
(Young_A, Old_A were processed on HalioDx platform
and Young_B, Old_B on TGML platform). The Wil-
coxon rank-sum test was performed on the log-
normalized data between all young versus all aged cells
(Additional file 6: Table S5) from each batch separately
and the two p values for each gene were combined using
the Tipett’s method. Genes presenting an opposite vari-
ation between the 2 batches were filtered out.
Aging markers for each cluster (Additional file 7:

Table S6) and for each Monocle state (Additional file 11:
Table S10B) were obtained with the same method by
looking at the difference cluster per cluster and state per
state (min.pct = 0.1, logfc.threshold = 0.25 for each clus-
ter and min.pct = 0, logfc.threshold = 0 for each state).
No tests were performed in the pL2 cluster cells because
it contained less than 3 cells in one young pool. From
these results, for each cluster and each state only signifi-
cant aging markers (combined p value < 0.05 and same
direction of variation in the 2 batches) were kept.
Among these markers the highly variable ones (aver-

age log fold change > 0.5 with aging in at least one clus-
ter in both batches) were selected to generate heatmap
for all clusters with primed clusters gathered (Fig. 3a)
and for primed clusters only (Additional file 1: Fig. S4)
by adapting the DoHeatmap Seurat function. Genes
(raw) were ordered using hclust R function on standard-
ized aging gene expression of the subset. Euclidian dis-
tance and unweighted pair group method with
arithmetic mean (UPGMA) were used. Up- and down-
regulated genes with aging were ordered separately.
Volcano plots for the global aging markers were drawn

(Additional file 1: Fig. S3) with EnhancedVolcano func-
tion from the R package of the same name [65].

Gene set enrichment analysis
To characterize the identified clusters with Seurat, we per-
formed gene set enrichment analysis on cluster markers
with g:Profiler v0.6.7 [66] with default arguments except
for background set to all genes expressed in the whole
dataset (i.e., genes that passed filtering during quality con-
trol). We tested enrichments in GO terms (GO:BP, GO:
MF, GO:CC) as well as in terms from KEGG, REAC, TF,
MI, CORUM, HP, HPA, and OMIM databases (Fig. 1c
and Additional file 4: Table S3). Cluster markers were also
tested for enrichment in previously published gene set sig-
natures related to HSPCs (Additional file 13: Table S12).
Signatures tested were Bcell_Chambers, Diff_Chambers,
Gran_Chambers, HSC_Chambers, Lymph_Chambers,
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Mono_Chambers, Mye_Chambers, NK_Chambers, Nai-
veT_Chambers, and Ner_Chambers [32], lineage priming
of HSC signatures C1, C2, C3, Mk, Er, Ba, Neu, Mo, Mo2,
preDC, preB and preT [11], and HSCs and aging signa-
tures Mm_HSC_Runx1_Wu, Mm_HSC_Tcf7_Wu [67],
Mm_LT_HSC_Venezia, Mm_Proliferation_Venezia, Mm_
Quiescence_Venezia [68], Polarity_factors_Ting, Novel_
HSC_regul_polar_Ting [57], HSC aging Svendsen [30]
and MGA-MEP [34]. Cluster marker enrichment for the
different signatures in comparison to all dataset genes was
tested using a hypergeometric test (phyper R function). To
perform enrichment analysis of aging markers with a con-
sistent gene number, we gathered the overexpressed (resp.
underexpressed) markers from at least one cluster and
used gprofiler as describe above (Additional file 8: Table
S7A & B). Expression scores of the signatures or of se-
lected aging features from the enrichment analysis were
calculated for each individual cell using the AddModule-
Score Seurat function (on log-normalized data) with de-
fault parameters, using as input the genes of the
signatures or the aging markers annotated for the selected
features. The Svendsen signature score was computed in
the same way taking the aging markers common to our
study and those of Svendsen’s re-analysis [30].

Differential signature score analysis
Signature markers of Monocle state were tested in the
same way as gene state markers (see above) using Fin-
dAllMarkers (min.pct = 0, logfc.threshold = 0) with Stu-
dent’s t tests. Only signatures with an average score
differences above 0.015 between one state and all were
kept. A p-adjusted value (Bonferroni correction) thresh-
old of 0.05 was applied to filter out non-significant
differences.
Signature score differences with aging in each state

were tested in the same way as the aging markers per
clusters (see above) using the FindConservedMarkers
Seurat function (sequencing platform as grouping vari-
able, min.pct and logfc.threshold set to 0) with Student’s
t tests. For each Monocle state, only average score differ-
ences of same sign and above 0.015 in the two batches
presenting a combined p value < 0.05 were kept (Add-
itional file 9: Table S8A).
The selected aging features expression score differ-

ences with aging in each cluster were tested in the same
way as the aging markers per clusters (see above) using
the FindConservedMarkers Seurat function (sequencing
platform as grouping variable, min.pct and logfc.thres-
hold set to 0) with Student’s t tests (Additional file 8:
Table S7C). For each cluster, only average score differ-
ences of same sign and above 0.1 in the two batches pre-
senting a combined p value < 0.05 are considered as
significant (Fig. 3b). No tests were performed in the

primed B cells clusters because it contained less than 3
cells in one young pool.

Regulon analysis
pySCENIC (1.10.0) was used with its command line im-
plementation [38]. The raw expression matrix for the
cells of all samples was filtered, by keeping genes with a
total expression greater than 2*0.01*(number of cell). 10,
698 genes passed the filtering. pyscenic grn command
was used with grnboos2 method and default options and
a fixed seed to derive co-expression modules between
transcription factors and potential targets. We used as
input all the markers of the Seurat clusters for which a
transcription factor binding motif was available in the
motifs-v9-nr.mgi-m0.001-o0.0 database provided by
Scenic, plus several TFs involved in early hematopoiesis,
Spi1, Tal1, Zfpm1, Cbfa2t3, Erg, Fli1, Gata1, Gata2,
Hhex, Runx1, Smad6 [69], Gfi1b [70], and Zbtb16 [71].
The obtained modules were refined by pruning targets
that did not have an enrichment for a corresponding
motif of the TF with pyscenic ctx command with –
maskdropouts option using the motif database motifs-
v9-nr.mgi-m0.001-o0.0 and the cis-target database
mm9-tss-centered-10 kb-7species.mc9nr. Only positive
regulons (i.e., those with a positive correlation between
the TF and its targets) were kept for downstream ana-
lysis (Additional file 10: Table S9A). AUCell scores (reg-
ulon activities) in each cell were computed with pycenic
aucell command (default options). To be noted that
number of target genes was highly variable from a regu-
lon to another (Additional file 1: Fig. S9).
For young and aged HSPCs, two heatmaps of regulon

activity scores, along pseudotime, were made in order to
analyze transcriptional activity at the two bifurcation
points for both ages. See Additional file 10; Supplementary
methods for detailed regulons heatmaps construction.

Analysis of HSPC subtypes and cell cycle phases in the
differentiation trajectory depending on age
Cell density (Fig. 6d), division rate (Fig. 6e), and stacked
plot of HSPC subtypes (Fig. 6f) were computed and plot-
ted along pseudotime at each age for the 3 HSPC fates:
the lymphoid (Monocle states 1 and 2), the Mastocytes/
Neutrophils (Monocle states 1, 3, and 4), and the Mega-
karyocytes/Erythrocytes (Monocle states 1, 3, and 5). For
division rate and stacked plot of HSPC subtypes, pseu-
dotime was cut into 50 bins. For each age, in each pseu-
dotime bin, division rate was computed as the ratio of
the number of cells with a G2/M phase assigned to the
total number of cells in the bin.

Statistics
Statistics were computed with R software v3.5.1. The
statistical tests for gene expression and signature or
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regulon activity scores were performed with Seurat and
are detailed above. In each cluster and in non-primed/
primed clusters gathered, the enrichment of age was
tested using a hypergeometric test (phyper R function
Fig. 2b). Chi2 tests (chisq.test R function) were per-
formed to test independence between cell cycle phase
and age, in all cells (Fig. 6a) and in each HSPC subtype
separately (Fig. 6b), and in the cells at the departure of
the trajectory (Pseudotime < 2, Additional file 11: Fig.
S10) and to test independence between Monocle state
and age in all Monocle states (Fig. 4i) and in the states
2, 3, and 5 only (Fig. 4j). Fisher’s exact test (fisher.test R
function) was performed to test independence between
Monocle state and age in each Seurat cluster (Additional
file 9: Supplemental Fig. S8B). Wilcoxon rank-sum test
was used to test for median difference between pseudo-
time value distributions of young and aged cells (Fig.
4h). In each cluster, a linear regression was computed
between the average log fold change (in the cluster) and
the global (in all cells) average log fold change of the
aging markers recovered in the cluster (lm R function
Additional file 6: Supplemental Fig. S5). Smooth curves
of module score expression in pseudotime through the
different fates for young and aged cells were drawn for
quiescence and proliferation signature (Fig. 6c) using the
geom_smooth function ggplot2 R package [72] with the
gam function of mgcv R package [73].
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Additional file 1. Supplementary Methods. Figure S1. LTHSCs
accumulate upon aging. (A) FACS profiles of young and aged HSPCs. (B-D)
Cell type classification: Proportions of LTHSC, STHSC, MPP2 and MPP3
determined by FACS and by supervised classification with CaSTLe when
considering (B) all HSPCs, (C) young and aged HSPCs separately and (D) the
4 samples separately. Figure S2. Representative gene markers used to
identify HSPC clusters. Violin plots showing gene markers expressed by the
15 clusters revealed in the UMAP shown in Fig. 1b. The complete list of
significantly up-and down-regulated genes for the 15 clusters is shown in
Supplemental Table S2. Figure S3. Violin plots showing Ly6d and
Trp53inp1 expression significantly up regulated in the pL2 cells cluster in
comparison to the other cells (p-value < 0.05 & log fold change > 0.25).
Figure S4. Volcano plot of differential expression upon aging tested on all
cells. Black dots indicate significant DEGs (p-value < 0.05 and log fold
change > 0.25). A total of 3362 genes were tested. Figure S5. Heatmap of
the most significant differentially expressed genes upon aging (p-value <
0.05 and log fold change > 0.5 in at least one cluster) in the 6 lineage-
primed clusters revealed by the Seurat analysis (Fig. 1b). Gene expression is
standardised across the entire dataset. Figure S6. Comparison of cluster
gene expression changes with global gene expression changes upon aging.
For each significant aging marker in a given cluster (p-value < 0.05 and log
fold change > 0.25), its global log fold change (logFC; x-axis) is plotted with
its cluster log fold change (logFC; y-axis). For each cluster, a regression line
is drown in blue, formula is indicated at the left top corner with its square
regression coefficient R2. Figure S7. (A) Monocle trajectories for young and
aged HSPCs ordered separately. Cells are coloured according to their
belonging to the 3 states (6 grey, 7 yellow, 8 blue) or to the pL2 cluster
(brown). Both trajectories present a similar segregation between the
lineage-primed HSPCs, with one bifurcation from LTHSC (state 6) towards

Neu/Mast-primed (NeuMast) HSPCs (state 7) and Mk/Erprimed (MkEr) HSPCs
(state 8). The bifurcation to the lymphocyte fate was not retrieved probably
due to the reduction in pL1 cell number due to sample splitting. (B)
Barplots representing the LTHSC, STHSC, MPP2 and MPP3 proportions in the
three states. (C) Monocle trajectories of young and aged HSPCs coloured in
accordance to their pseudotime values and representing their
differentiation progression. (D) Repartition of the Seurat clusters along the
pseudotime of young and aged HSPC trajectories. Box plots of pseudotime
values are coloured according to the most represented state. (E) Repartition
(in percentage) of the different states (6 to 8) of the trajectory for each
Seurat cluster for young and aged HSPCs. Figure S8. Localization of the
different Seurat clusters in Monocle trajectory. Cells belonging to a given
cluster are coloured in orange for young and in purple for aged HSPCs.
Figure S9. Analysis of the hscScore according to Seurat clusters. Violin plots
of hscScore distribution is presented in the 15 clusters.
Figure S10. Repartition of young and old HSPCs in Monocle pseudotime
and in states per Seurat cluster. (A) Boxplots of Monocle pseudotime values
of the young (dark) and aged (pale) cells from the different clusters
obtained with Seurat (except pL2 cluster). Box plots showing medians are
coloured according to the most represented state. (B) Comparison of
Monocle state percentage in the different clusters between young (Y, dark
colours) and aged (A, pale colours). Stars indicate a significant dependence
between state repartition of the cells and age (p-value < 0.05 Fisher’s Exact
Test). Figure S11. Number of targets recovered for each regulon identified
with scenic. Y axis is in log scale. Figure S12. Young and aged HSPCs
located at the very beginning of the trajectory cycled the same. (A)
Highlight in the trajectory of the starting cells (coloured in black,
pseudotime < 2). (B) Cell cycle phase prediction of young and aged starting
cells highlighted in A. NS: no significant dependence between age and
phase repartition (p-value > 0.3 Pearson’s Chi-squared test).
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