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SUMMARY

This study questions reduced prostacyclin production in
mucosa from inflammatory bowel disease patients and
highlights prostacyclin regulation of the intestinal epithelial
barrier. Combining mouse model and human sample ana-
lyses, we demonstrated that prostacyclin prevented colitis
and occludin down-regulation, inhibited apoptosis, induced
occludin membrane location, and reduced intestinal
epithelial permeability.

BACKGROUND & AIMS: Inflammatory bowel diseases (IBDs)
that encompass both ulcerative colitis and Crohn’s disease are a
major public health problem with an etiology that has not been
fully elucidated. There is a need to improve disease outcomes
and preventive measures by developing new effective and
lasting treatments. Although polyunsaturated fatty acid me-
tabolites play an important role in the pathogenesis of several
disorders, their contribution to IBD is yet to be understood.

METHODS: Polyunsaturated fatty acids metabolite profiles
were established from biopsy samples obtained from Crohn’s
FLA 5.6.0 DTD � JCMGH800 proof �
disease, ulcerative colitis, or control patients. The impact of a
prostaglandin I2 (PGI2) analog on intestinal epithelial perme-
ability was tested in vitro using Caco-2 cells and ex vivo using
human or mouse explants. In addition, mice were treated with
PGI2 to observe dextran sulfate sodium (DSS)-induced colitis.
Tight junction protein expression, subcellular location, and
apoptosis were measured in the different models by immuno-
histochemistry and Western blotting.

RESULTS: A significant reduction of PGI2 in IBD patient bi-
opsies was identified. PGI2 treatment reduced colonic inflam-
mation, increased occludin expression, decreased caspase-3
cleavage and intestinal permeability, and prevented colitis
development in DSS-induced mice. Using colonic explants from
mouse and human control subjects, the staurosporine-induced
increase in paracellular permeability was prevented by PGI2.
PGI2 also induced the membrane location of occludin and
reduced the permeability observed in colonic biopsies from IBD
patients.

CONCLUSIONS: The present study identified Qa PGI2 defect in
the intestinal mucosa of IBD patients and demonstrated its
protective role during colitis. (Cell Mol Gastroenterol Hepatol
2021;-:-–-; https://doi.org/10.1016/j.jcmgh.2021.05.001)
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nflammatory bowel diseases (IBDs) that encompass
Abbreviations used in this paper: ANOVA, analysis of variance; CD,
Crohn’s disease; DAI, Disease Activity Index; DSS, dextran sulfate
sodium; GI, gastrointestinal; HA, healthy area; 15-HETE, 15-
hydroxyeicosatetraenoic acid; HRP, horseradish peroxidase; IBD, in-
flammatory bowel disease; IEB, intestinal epithelial barrier; IEC, in-
testinal epithelial cell; IFN, interferon; IL, interleukin; IP, prostaglandin
I2 receptor; MLC, myosin light chain; PBS, phosphate-buffered saline;
PCNA, proliferating cell nuclear antigen; PG, prostaglandin; PUFA,
polyunsaturated fatty acid; qPCR, real-time quantitative polymerase
chain reaction; SEM, standard error of the mean; TEER, transepithelial
electrical resistance; UC, ulcerative colitis; UHA, unhealthy area; ZO-1,
zonula occludens.
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Iboth ulcerative colitis (UC) and Crohn’s disease (CD)
are complex chronic inflammatory disorders with increasing
incidence and prevalence worldwide in the past decade.1

IBD is now a major public health problem that affects
approximately 3.6 million people in the United States and
Europe.2 IBD is characterized by chronic or relapsing im-
mune activation and inflammation of the gastrointestinal
(GI) tract that severely alter its function. Common IBD
symptoms include bleeding, severe diarrhea, cramps,
abdominal pain, fever, and weight loss. In CD as well as UC,
inflammation of the gut is associated with breakdown of
intestinal barrier integrity, abnormal secretions, and
changes in motility patterns. Despite optimized use of
immunosuppressive drugs and development of bio-
therapies, preventing disease relapse remains a challenge,
and surgery is still required in approximately one-third of
patients. Failure of approved therapies and in some cases
the inability to provide a surgical treatment because of
physical extension and/or mislocation of lesions are still
major challenges to the management of IBD.3,4 In the
absence of a definitive cure, better understanding of the
pathophysiology of IBD is necessary to improve disease
outcomes and prevention as well as to discover new effec-
tive and lasting treatments.

Although the etiology of IBD has not been fully
elucidated, it is currently known that IBD pathogenesis
is sustained by aberrant immune responses associated
with changes in microbiota composition as well as al-
terations of the intestinal epithelial barrier (IEB).5

Numerous susceptibility loci as well as environmental
risks factors have been described for CD and UC.2,6

Despite susceptibility genes that are for the most part
different between CD and UC, 30% of IBD-related loci
are common to these 2 intestinal diseases. These genes
are involved in the immune system modulation, micro-
biota recognition, and most interestingly in the modu-
lation of IEB functions (permeability, repair,
autophagy).6 IEB-increased permeability has been
described as an early feature of IBD,7,8 and its reduction
protects against the development of inflammation.9

Moreover, increased intestinal permeability has been
shown to precede the onset10 and relapse of CD11,12 as
well as to occur in uninflamed areas.13 This suggests
that intestinal permeability defects can occur irre-
spective of inflammation. In addition, intestinal mucosal
healing is associated with clinical remission.14,15 Alto-
gether, these events suggest that altered regulation of
the IEB might contribute to IBD pathogenesis. Hence,
strengthening of the IEB could be part of the thera-
peutic strategy.

Eicosanoids are potent bioactive signaling lipids derived
from arachidonic acid and eicosapentaenoic acid. These
polyunsaturated fatty acids (PUFAs) are associated with a
diverse set of inflammatory processes linked to various
FLA 5.6.0 DTD � JCMGH800 proof �
diseases including IBD. The production of some n-6 proin-
flammatory PUFA derivatives is increased in the lower GI
tract of IBD patients compared with control subjects16–19 or
in inflamed mucosa relative to non-inflamed mucosa20–23

and correlate with inflammation severity.24 These findings
support the idea of an imbalance between the n-6 proin-
flammatory and n-3 anti-inflammatory derivatives as path-
ologic contributing factors, but this concept was challenged
when it has been found for several derivatives that they
could have proinflammatory as well as anti-inflammatory
properties.25–30 In addition, although most PUFA metabo-
lites have been studied individually in an inflammatory
context, it has been difficult to get a global view of lipid
metabolic cascades that are involved in inflammation-
related pathologies. More importantly, recent findings
define the importance of pro-resolutive properties of some
n-6 derivatives31 and their homeostatic functions.32,33 We
recently reported that 2 eicosanoids, 15-
hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin
(PG) 11b-PGF2a , can respectively regulate IEB perme-
ability34 and healing.35 They are down-regulated in CD,34,35

suggesting a pro-resolutive and pro-homeostatic function in
IBD.

The current study presented a large profile of n-6 and n-
3 PUFA-derived bioactive lipid mediators in the supernatant
of human biopsies from both IBD and control patients using
liquid chromatography coupled to tandem mass spectrom-
etry. Within a cluster of bioactive lipid mediators down-
regulated in IBD, PGI2 was identified, and its effects on
IEB functions were addressed. In particular, human IEB
integrity and colitis development in a mouse model were
assessed.
Results
6-ketoPGF1a (PGI2 Metabolite), 11b-PGF2a, and
PGE2 Are Decreased in Healthy Mucosa From
IBD Patients

Using PUFA metabolite profiling from biopsy superna-
tants, metabolite production was determined in CD (n ¼
27) or UC (n ¼ 19) versus control (n ¼ 16) patients and in
healthy areas (HA) versus unhealthy areas (UHA) in CD and
UC patients. Cluster analysis of 23 detected metabolites in
biopsy supernatants differentiated 3 clusters of
26 May 2021 � 6:10 pm � ce CLR
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Figure 1. n-6/n-3 PUFA-derived metabolite profiling in biopsy supernatants from control and IBD patients. (A) Heatmap
of mean concentrations of liquid chromatography-tandem mass spectrometry–identified PUFA metabolites in biopsy super-
natants from control patients and HA and UHA of CD and UC patients. Color of each section is proportional to the fold-change
of lipids (red, up-regulated; blue, down-regulated). Rows: metabolites; columns: patient groups. c1, c2, c3 indicate the 3 main
clusters identified. (B) Correlation analysis of the differential metabolites (red, positive correlation factor; blue, negative cor-
relation factor). (C–E) ANOVA analysis of 6-ketoPGF1a (C, stable hydrolyzed product of unstable PGI2), 11b-PGF2a (D), and
PGE2 (E) levels in biopsy supernatants from control and HA and UHA of CD and UC patients. *P � .05 versus control; #P � .05
UHA versus HA.
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metabolites. The first cluster, c1, included 10 metabolites
down-regulated in HA of CD and UC patients versus UHA
and control patients (PGF2a, 15-HETE, TxB2, 11b-PGF2a,
PGE3, 15-deoxyPGJ2, 6-ketoPGF1a, PGE2, PGD2, 8-isoPGA2).
The second cluster, c2, consisted of 6 up-regulated metab-
olites in HA and UHA of CD and UC patients versus control
patients (8-HETE, 12-HETE, PGA1, 17-HDoHE, LTB4, 5-
HETE). The last cluster, c3, included 7 up-regulated
FLA 5.6.0 DTD � JCMGH800 proof �
metabolites in HA of CD and UC patients versus UHA or
control patients (18-HEPE, 14,15-EET, 7-MaR1, 5,6-EET,
LTB5, 5-oxoETE, 8,9-EET) (Figure 1A, Figure 2A and B).
Clustering of lipid profiles was not associated with patient
treatments (Figure 3A and B). This cluster analysis revealed
that a cluster of mediators was significantly reduced in HA
of IBD patients when compared with control mucosa.
Spearman correlation analysis showed a significant
26 May 2021 � 6:10 pm � ce CLR



Figure 2. n-6/n-3 PUFA-
derived metabolite
profiling in biopsy super-
natants from control and
IBD patients. (A) Heatmap
of individual concentrations
of liquid chromatography-
tandem mass spectrom-
etry–identified PUFA
metabolites in biopsy su-
pernatants from control pa-
tients (Control) and HA and
UHA of CD patients. (B)
Heatmap of individual
concentrations of liquid
chromatography-tandem
mass spectrometry–
identified PUFA metabo-
lites in biopsy supernatants
from control patients (Con-
trol) and HA and UHA of UC
patients. Color of each sec-
tion is proportional to the
fold-change of lipids (red,
up-regulated; blue, down-
regulated). Rows: metabo-
lites; columns: patient iden-
tification numbers followed
by group identification
(2A¼CDHA, 2B¼CDUHA,
5A¼UCHA, 5B¼UCUHA,
6B ¼ Control). Arrows
highlight the metabolites of
cluster c1 identified by
analysis of the pool of CD
and UC data (Figure 1).
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correlation with 9 metabolites from cluster c1, excluding
only PGE3 (Figure 1B). Interestingly, 5 of 9 correlated me-
tabolites identified in cluster c1 (15-HETE, 11b-PGF2a, 15-
FLA 5.6.0 DTD � JCMGH800 proof �
deoxyPGJ2, PGD2, PGE2) are known to be involved in IEB
integrity, a process that is altered in IBD. Therefore, these 9
mediators from cluster c1 were focused on. Variance
26 May 2021 � 6:10 pm � ce CLR



Figure 3. n-6/n-3 PUFA-
derived metabolite
profiling in biopsy super-
natants from IBD patients
according to treatments.
(A) Heatmap of individual
concentrations of liquid
chromatography-tandem
mass spectrometry–
identified PUFA metabo-
lites in biopsy supernatants
from HA of CD and UC pa-
tients according to their
treatments: no treatment
(none), anti-tumor necrosis
factor (TNF)-a treatment (T),
other treatments (o, anti-
inflammatory or immuno-
suppressive drugs), and
anti-TNF-a combined with
other treatments (To). Color
of each section is propor-
tional to the fold-change of
lipids (red, up-regulated;
blue, down-regulated).
Rows: metabolites; col-
umns: patient identification
numbers followed by group
identification (2A ¼ CD HA,
5A ¼ UC HA). (B) ANOVA
analysis of 6-ketoPGF1a (C,
stable hydrolyzed product
of unstable PGI2) concen-
trations in biopsy superna-
tants from control
untreated patients (CONT
none) and CD and UC pa-
tients without treatment
(none), treated with anti-
TNF-a, anti-inflammatory,
or immunosuppressive
drugs (others), and anti-
TNF-a combined with other
treatments (anti-TNF-a and
others).
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analyses demonstrated that the concentrations of 6-
ketoPGF1a (Figure 1C), 11b-PGF2a (Figure 1D), and PGE2
(Figure 1E) were significantly lower in HA of CD or UC
patients compared with control patients. In addition, their
concentrations were significantly increased in UHA versus
HA for UC patients (Figure 1C–E). Although 11b-PGF2a and
PGE2 involvement in IEB regulation has been
described,35,36 the role of PGI2 (6-ketoPGF1a is the stable,
inactive metabolite of the bioactive PGI2) is yet to be
known. Thus, focus was centered on PGI2 regulation of
FLA 5.6.0 DTD � JCMGH800 proof �
intestinal permeability and its putative role in IEB defects
observed in IBD patients.
PGI2 Decreases Caco-2 Monolayer Permeability
To investigate PGI2 effects on IEB, whether the PGI2

analog iloprost can directly modulate the resistance and
permeability of Caco-2 intestinal epithelial cell (IEC)
monolayers in vitro was assessed. This PGI2 analog signifi-
cantly increased the transepithelial electrical resistance
26 May 2021 � 6:10 pm � ce CLR
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(TEER) (Figure 4A) and decreased paracellular permeability
of Caco-2 monolayers compared with untreated cells
(Figure 4B). Iloprost significantly regulated permeability
when applied to the basolateral but not when applied to the
apical side (Figure 4J).37 To ensure that the observed effects
were not mediated by the inactive PGI2 degradation product
6-ketoPGF1a, the TEER and permeability of Caco-2 cells
treated with 6-ketoPGF1a were also measured. Both TEER
(Figure 4K) and permeability (Figure 4L) remained un-
changed. These data demonstrate that PGI2 can directly
regulate IEB resistance and permeability.

PGI2 Increases Occludin and Decreases Claudin-
2 and Zonula Occludens-1 Expression In Vitro

To investigate the mechanisms of PGI2 regulation of IEB
permeability, expression of tight junction proteins and
regulators of paracellular permeability in Caco-2 cells
treated or untreated with iloprost was assessed. Zonula
occludens-1 (ZO-1) and claudin-2 expression were signifi-
cantly decreased in the presence of iloprost (Figure 4C–E).
In contrast, occludin expression was significantly increased
by iloprost treatment (Figure 4C and F). Junctional adhesion
molecule-A, cingulin, and phosphorylated myosin light chain
(MLC) 20 expressions were unchanged by iloprost treat-
ment (Figures 4C and G–I). These data showed that PGI2
analog treatment modified tight junction protein expression.

PGI2 Inhibits Dextran Sulfate Sodium–Induced
Colitis and Prevents Increased Permeability and
Mucosal Destruction In Vivo

To study the role of PGI2 in vivo, the damage observed in
dextran sulfate sodium (DSS)-induced mouse colitis model
was examined with or without synthetic PGI2 epoprostenol
treatment (Figure 5A). The typical weight loss observed in
DSS-induced mice was absent when they received PGI2
(Figure 5B). As expected, the Disease Activity Index (DAI),
which considers stool consistency and gross bleeding,
significantly increased in DSS-induced mice compared with
control animals and significantly decreased in PGI2-treated
mice compared with DSS-induced colitis mice (Figure 5C).
To assess the impact of PGI2 supplementation on IEB
integrity, intestinal permeability was measured in vivo.
Paracellular permeability was increased in DSS-induced
mice compared with control animals, and PGI2 treatment
reduced the DSS-induced permeability to baseline levels
(Figure 5E). Transcellular permeability was unaffected be-
tween all 4 experimental groups (Figure 5D). Both the cecal
atrophy and reduction of colon length observed in DSS-
treated mice were prevented when these mice simulta-
neously received PGI2 (Figure 3F and G). Epoprostenol in-
jections in control mice did not affect the measured
parameters (Figure 3B–G). The DSS-induced changes in
distal colon morphology were also prevented by PGI2
treatment (Figure 5I). Quantification of this intestinal
remodeling showed that PGI2 treatment prevented mucosal
architecture alteration (Figure 5H) but did not prevent
muscle thickening (Figure 5J). Mucosal infiltration by im-
mune cells and goblet cell depletion were only significantly
FLA 5.6.0 DTD � JCMGH800 proof �
increased in DSS-induced colitis mice compared with con-
trol mice without PGI2 treatment (Figure 5K and L). Alto-
gether, these data showed a beneficial role of PGI2
supplementation that prevented intestinal damage observed
in vivo during colitis development induced by DSS.

PGI2 Partially Reduces Inflammation Observed in
DSS-Induced Colitis

The effect of PGI2 on the colonic inflammatory response
induced by DSS with or without synthetic PGI2 epoprostenol
treatment was investigated next. DSS-induced increases in
tumor necrosis factor-a (Figure 6A), interleukin (IL) 6
(Figure 6C), and IL17A (Figure 6E) mRNA expression were
not affected by PGI2 treatment. In contrast, DSS-induced in-
creases in IL1b (Figure 6B), interferon (IFN-g) (Figure 6D),
and IL22 (Figure 6F) mRNA expression were not significant
when animals were treated with PGI2. These data suggested
that PGI2 partially tamperswith the inflammatory process via
down-regulation of cytokines such as IL22, IFN-g, and IL1b.

PGI2 Protects Against DSS-Induced Decreases
in Occludin Expression and Apoptosis

To investigate the molecular remodeling associated with
PGI2 effects on IEB during colitis development, expressions
of occludin and claudin-2, the 2 tight junction proteins
identified in Caco-2 cells (Figure 4), were analyzed in mice
colons. Occludin immunostaining showed clear epithelial
staining unchanged by PGI2 supplementation. DSS-induced
colitis decreased occludin staining that was restored by
PGI2 treatment (Figure 7A and C). Because IEB permeability
could be regulated by changes in tight junction protein
expression as well as modulation of IEC apoptosis or
renewal, cleaved caspase-3 expression, proliferating cell
nuclear antigen (PCNA) expression, and Akt phosphoryla-
tion in the colon of DSS-induced mice with or without PGI2
treatment were measured. Immunofluorescent staining
revealed a higher level of cleaved caspase-3 in the colonic
mucosa of DSS-induced colitis mice compared with controls,
mice treated with PGI2 alone, and DSS-induced mice treated
with PGI2 (Figure 7B and D). PCNA expression was not
modified (Figure 7E and F), but Akt phosphorylation was
increased in DSS-induced mice treated with PGI2 compared
with PGI2-treated animals (Figure 7E and G). These data
suggested that in addition to maintenance of occludin
expression, PGI2 can play an epithelial protective role by
decreasing apoptosis and promoting IEC survival.

PGI2 Inhibits Apoptosis and Permeability and
Induces Membrane-Associated Occludin
Expression in Human and Mouse Explants
Ex Vivo

To validate PGI2 ability to prevent IEB permeability
induced by altered tight junction proteins and epithelial
apoptosis, colonic samples from control mice and mucosal
explants from control patients treated with the apoptosis
inducer staurosporine were treated with or without iloprost,
and permeability was measured in Ussing chambers. Mice
26 May 2021 � 6:10 pm � ce CLR



Figure 4. PGI2 analog iloprost increases resistance, reduces permeability, increases occludin, and decreases ZO-1 and
claudin-2 expression in vitro. (A and B) PGI2 impact on TEER (A) and permeability (B) was measured in vitro on Caco-2
monolayer after 1 day with or without (CT) 10 mmol/L iloprost in the basolateral compartment. Data represent means ±
SEM of 13–16 Caco-2 filters per condition. ***P < .001 Mann-Whitney test. (C–I) Western blot analyses of tight junction protein
expression from Caco-2 lysates. Representative Western blot (C), ZO-1 (D), claudin-2 (E), occludin (F), junctional adhesion
molecule-A (G), cingulin (H), and phosphorylated MLC20 (I) expression quantification related to b-actin expression from
Western blot analysis. In (D–I), data represent means ± SEM of 7–12 Caco-2 filters per condition. *P � .05 nonparametric
Mann-Whitney test. (J) Sulfonic acid permeability was measured on Caco-2 monolayer after 1 day of 10 mmol/L iloprost (ILO)
treatment in basolateral (Baso) or apical (Api) compartments or without it (Cont). (K) TEER was measured on Caco-2 monolayer
after 1 day of 10 mmol/L 6-ketoPGF1a (6 keto) treatment in the basolateral compartment or without it (Cont). (L) Paracellular
permeability was measured by sulfonic acid (SA) flux through the same Caco-2 monolayer. Data represent means ± SEM of
3–6 independent experiments. * Q8P > .05 by nonparametric Mann-Whitney test.
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explants treated with staurosporine showed an increased
cleaved caspase-3 level and apoptosis score (Figure 8A andD)
associatedwith adecrease in occludin expression (Figure8B),
mucosal architecture disorganization (Figure 8C), and
FLA 5.6.0 DTD � JCMGH800 proof �
increased permeability (Figure 8E). Supplementation with
the PGI2 analog iloprost prevented all these changes
(Figure 8A–E). Dose-response experiments demonstrated
that 1 mmol/L iloprost had no significant effect (Figure 9A).
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Cell fractionation analyses showed that rather than an in-
crease in total occludin expression, iloprost increased
membrane-associated occludin (Figure 9B and C). In human
explants, staurosporine treatment also increased paracellular
permeability that was entirely inhibited by iloprost supple-
mentation, leading to a recovery of permeability values
(Figure 10A). Altogether, these data demonstrated that ilo-
prost was able to prevent apoptosis-induced permeability.
Cleaved caspase-3 expression increased within 2–5 hours
after staurosporine treatment. This effect was again entirely
inhibited by iloprost pretreatment (Figure 10B).

Apoptosis and Cleaved Caspase-3 Expression
Are Increased in the Mucosa of CD and UC
Patients

To determine whether apoptosis was increased in the
mucosa of IBD patients, apoptosis was measured by (1)
immunohistochemistry using an antibody directed to
cleaved caspase-3 or the cytodeath M30 antibody specific
for apoptotic epithelial cells38 and (2) measuring BAX and
BCL2mRNA expression in the mucosa of control, CD, and UC
patients. Whereas the expression of cleaved caspase-3 was
increased in CD and UC patients compared with control
patients (Figure 10C and D), BCL2 and BAX mRNA were
unchanged (Figure 10E and F). Immunohistochemistry of
cleaved caspase-3 and epithelial apoptosis measurement
using cytodeath M30 showed very low levels of cleaved
caspase-3þ or cytodeath M30þ cells in control patients,
whereas high numbers of both were observed in CD or UC
patients (Figure 10C). These data indicate that epithelial
apoptosis was increased in the mucosa of CD and UC pa-
tients compared with control patients. To determine how
tight junction proteins are expressed in biopsies from IBD
patients and whether it is dependent on disease activity, ZO-
1 and occludin expressions in biopsies from control, quies-
cent, or active (HA and UHA) CD patients were analyzed.
Whereas ZO-1 expression was not significantly altered
(Figure 10H), occludin expression was significantly
decreased in UHA of CD patients compared with HA or
control biopsies (Figure 10I).

PGI2 Reduces Permeability of Biopsies From IBD
Patients

To assess whether PGI2 treatment can reduce the
increased permeability observed in IBD patients, biopsies
from CD or UC patients were pretreated with the PGI2
Figure 5. (See previous page). Synthetic PGI2 epoprostenol
and mucosal destruction and increases permeability in viv
measured at end of the protocol in control (CT) or DSS-induce
during the 4 days of the protocol. Experimental design (A), a
paracellular permeability (E) (evaluated by measurement of HR
gavage), cecal remodeling (F; scale bar: 1 cm), and colon length
mice. Hematein Phloxin Safran coloration of distal colon sectio
(EPO), or epoprostenol-treated DSS-induced (EPOþDSS) mic
from Hematein Phloxin Safran staining by quantifying the destruc
goblet cells (K), and cellular infiltration (L). Data represent mean
Bonferroni post hoc tests. *P � .05 and ***P � .001 (DSS facto

FLA 5.6.0 DTD � JCMGH800 proof �
analog iloprost 1 hour before paracellular permeability
measurement in Ussing chambers. Iloprost treatment
significantly decreased the permeability of IBD biopsies
(Figure 11A). This decrease was not due to altered expres-
sion of ZO-1 or occludin (Figure 11B) or the PGI2 receptor
(IP) in the mucosa of IBD patients because IP mRNA levels
were not significantly different in CD or UC versus control
mucosa (Figure 9G). Nevertheless, cell fractionation and
immunohistochemistry analyses showed that occludin
membrane expression increased when biopsies were
treated with iloprost (Figure 11C–E). These results showed
that PGI2 can reduce the permeability of IBD biopsies, sug-
gesting that the functional defect of PGI2 mucosal produc-
tion by IBD patients could be fixed by addition of a PGI2
analog.
Discussion
Whereas IEB integrity loss is a well-recognized IBD

contributing factor,39 the underlying molecular mechanisms
of IEB failure and strategies dedicated to protect and/or
improve IEB remain to be identified. Not only does the
current work give a clear picture of lipid metabolic profiles
in human samples and better define the role of PGI2 in IEB
homeostasis, it also aids the understanding of n-6 PUFA-
metabolite contributions to IBD development and pro-
poses its use as an IEB reinforcing agent in IBD.

Our current findings first highlight a cluster of n-6 PUFA
metabolites that are less present in supernatants of HA from
CD or UC patients compared with UHA or control patients.
This cluster is composed of 4 principal bioactive PGs (PGD2,
PGE2, PGF2a, PGI2), 2 PGD2 metabolites (11b-PGF2a, 15-
deoxyPGJ2), thromboxane A2, and 1 eicosanoid (15-HETE).
It is important to note that their concentrations are
decreased in non-inflamed HA but increased in inflamed
UHA, which is consistent with the increased PG production
generally induced by acute inflammation40 and already
observed in rectal mucosa of active UC patients,19,41,42

inflamed esophageal mucosa,43 or experimental ileitis.44

Nevertheless, genome-wide analysis of DNA methylation
identified the down-regulation of the PGI2 synthase in
fibrotic CD patients,45 reinforcing the idea that the decrease
in PGI2 content observed in HA of CD or UC patients herein
could sensitize IEB and participate in IBD development.

The deleterious effect of PG defects reported in studies
using PG inhibition has long been described in intestinal
mucosa, not in IBD but through observations of gastric
mucosal erosion and small intestine lesions induced by
Q9prevents DSS-induced colon atrophy, animal weight loss,
o. (A–E) PGI2 impact on colitis induced by DSS in vivo was
d mice (DSS) that received PBS (NT) or epoprostenol (EPO)
nimal weight (B), DAI (C), transcellular permeability (D), and
P and sulfonic acid in animal plasma 4 hours after mouse
(G). (H–L) Tissue remodeling was analyzed in the 4 groups of
ns of control (CT), DSS-induced (DSS), epoprostenol-treated
e (I; scale bar: 100 mm). Histologic scores were evaluated
tion of mucosal architecture (H), muscle thickening (J), loss of
± SEM of 4–12 mice per group. Two-way ANOVA followed by
r effects) or #P � .001 and ###P � .001 (EPO factor effects).
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Figure 6. Synthetic PGI2 epoprostenol partially prevents inflammation observed during colitis development. (A–F) mRNA
expression of tumor necrosis factor (Tnf)-a (A), IL-1b (C), IL-6 (C), IFN-g (D), IL-17A (E), and IL-22 (F) was measured at end of 4-
day treatment in colon fragments of control (CT) or DSS-induced mice (DSS) that received PBS (NT) or epoprostenol (EPO)
every day. Data represent means ± SEM of 12 mice per group. Two-way ANOVA followed by Bonferroni post hoc tests. *P �
.05, **P � .01, and ***P � .001 (DSS factor effects).
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cyclooxygenase inhibition.46 A decrease in endogenous
gastric prostanoid synthesis has also been observed in
ulcers,47–49 and the beneficial impact of PG supplementation
on intestinal mucosa was described in the 1980s, particu-
larly through the concept of cytoprotection developed by
André Robert. He and others described how PG can prevent
induction of gastric mucosal erosion and mainly concerns
PGE2.

50,51 Numerous works have described PGE2 effects in
the GI tract, driving the current idea that PGE2-specific
FLA 5.6.0 DTD � JCMGH800 proof �
effects depend on the targeted receptor (EP1–4) and cell
type and could provide mucosal protection to colitis trough
EP4/2 receptors.36,52,53 Concerning PGD2, how its metabo-
lites, 11b-PGF2a and 15-deoxyPGJ2, increase IEB healing35

and modulate epithelial cell proliferation and differentia-
tion has already been described.54 Nevertheless, the role of
PGD2 in gut inflammation remains debated since Hokari
et al27 suggested that L-PGD synthase plays a proin-
flammatory role in the development of colitis in clinical and
26 May 2021 � 6:10 pm � ce CLR
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experimental studies. On the other hand, PGD2/DP1 axis
activation has been shown to confer anti-inflammatory
properties26,29 and reduce colitis development.28

As for the other PG, PGI2’s impact on gut function is
manifold and complex because it regulates and is produced
by different cell types, but its regulation of IEC function is
not well-described. Indeed, we know that PGI2 regulates
FLA 5.6.0 DTD � JCMGH800 proof �
gastric emptying and small intestinal transit55 through
regulation of smooth muscle contraction.56–59 PGI2 is a well-
known vasodilator,60 inhibitor of platelet aggregation,61 and
promoter of angiogenesis,62 and it is precisely through these
vascular effects that PGI2 has a remarkable action against
anastomotic leakage under artificially obstructive condi-
tions,63 could enhance colon anastomotic healing,64 or
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improve intestinal barrier function.65 Its well-described
impact on the IEB itself includes reduction of acid secre-
tion,66,67 induction of chloride secretion,68,69 and inhibition
of water and solute absorption.70,71 Concerning PGI2 regu-
lation of IEC proliferation or apoptosis, studies are contra-
dictory. PGI2 promotes HT29 cell proliferation in vitro72 but
does not stimulate growth of gastroduodenal mucosa
in vivo.67 It does not impact HT29 apoptosis72 but promotes
colonocyte survival and presents some anti-apoptotic effects
through peroxisome proliferator-activated receptor d acti-
vation.73 A working hypothesis is that these effects partici-
pate in the increased restitution of IEC6 or Caco-2 cells74

and increased IEB restoration and resistance induced by
PGI2 when paired with PGE2.

75–78

Our present work provides evidence that PGI2 regulates
intestinal epithelial permeability as well as tight junctions
and has anti-apoptotic properties. We demonstrated that
in vitro treatment of intestinal epithelial monolayers or
isolated mouse or human mucosa explants with the PGI2-
stable analog iloprost decreases IEB permeability, increases
occludin membrane expression, and protects against
apoptosis. These effects could have been attributed to the
activation of other eicosanoid pathways, because iloprost is
not entirely selective for the PGI2 receptor (IP) but could
activate PGE2 EP1–4 receptors.79 Nevertheless, similar ef-
fects were found using the synthetic PGI2 epoprostenol,
which can activate EP3 and more specifically the IP.80

Indeed, the present study demonstrated that PGI2 supple-
mentation in vivo inhibits DSS-induced colitis by decreasing
induced epithelial permeability, maintaining occludin
expression, and inhibiting epithelial apoptosis. Altogether,
our findings show that PGI2 is able to strengthen the IEB
and suggest that this strengthening contributes to allevia-
tion of colitis in vivo.

Interestingly, the IEB properties improved by PGI2 are
deficient in IBD patients in whom increased permeability
has been explained by defects in tight junction function or
IEC renewal. In CD as well as UC, claudin-2 up-regulation,
MLC kinase activation, or occludin down-regulation have
already been observed.81 In addition to the regulation of
permeability by tight junction proteins that occurs when the
epithelium is intact, epithelial cell death can also cause
barrier loss regardless of tight junction function.82 It has
already been shown that lipopolysaccharide-induced
apoptosis causes an increase in IEB paracellular
Figure 7. (See previous page). Synthetic PGI2 epoprosteno
induced by DSS in vivo. (A and C) PGI2 impact on occludin e
colon sections of control (CT), DSS-induced (DSS), epoprosten
(EPOþDSS) mice at end of 4-day treatment (A; scale bar: 1
groups of mice (C). (B and D) PGI2 impact on apoptosis. Repre
sections of control (CT), DSS-induced (DSS), epoprostenol
(EPOþDSS) mice at end of 4-day treatment (B). Quantificatio
the 4 groups of mice (D). Data represent means ± SEM of 4 mice
tests. *P< .05 (DSS factor effects) or #P< .05 (EPO factor effects
and Akt were performed on the distal colon of control (CT), DSS
treated and DSS-induced (EPOþDSS) mice at end of 4-day trea
Akt/Akt expression (E). Quantification of PCNA expression (F). Q
of the same gels (G). Data represent means ± SEM of 12 mice
tests. *P � .05 (DSS factor effects) or #P � .05 (EPO factor effe

FLA 5.6.0 DTD � JCMGH800 proof �
permeability83 and that cleaved caspase-3 is associated with
increased permeability in other colitis models.84 After 4
days of DSS treatment, an increase in cleaved caspase-3
expression in the colon of the current colitis-mouse model
was observed. This cleavage is consistent with the increase
in cleaved caspase-3 observed in tissues from IBD patients
that also presented higher epithelial apoptosis. Because
changes in BCL2 or BAX mRNA expression in the mucosa of
CD or UC patients were not observed herein, it could be
hypothesized that the transduction pathway leading to
apoptosis is mainly an extrinsic one concerning IEC death
receptor pathway activation. Moreover, the PGI2 analog
iloprost was demonstrated to efficiently inhibit apoptosis-
induced permeability as well as permeability observed in
IBD patient biopsies. This strongly suggests that the func-
tional defect of PGI2 mucosal production in IBD patients
could be fixed by additional treatment with a PGI2 analog.-
Whereas PGI2 involvement in IEB homeostasis and func-
tions was sparse, our work identified a decrease in PGI2
content in intestinal mucosa from IBD patients and clearly
demonstrated that PGI2 can directly target the IEB to
decrease apoptosis and colitis-induced IEB permeability. In
addition, the observation that PGI2 supplementation
decreased cellular infiltration as well as IL22 and IL1b
expression in vivo in the DSS-induced colitis model suggests
a more global modulatory effect of PGI2, not only on
epithelial but also on immune homeostasis. This idea is
supported by the link and common mechanisms between
IBD and chronic airway diseases85 and the current wide-
spread use of stable PGI2 analogs beraprost and iloprost as
treatment for pulmonary hypertension. These analogs
showed potent anti-inflammatory and endothelium-
dependent anti-edemagenic effects in several models of
acute lung injury.86 Nevertheless, investigation of PGI2
supplementation impact on immune cells and vascular
functions remains to be completed before considering
whether targeting the PGI2 pathway may be therapeutically
relevant in IBD.
Methods
Study Approval

Patients provided written informed consent to take part
in the study, and all procedures were performed according
to the guidelines of the French Ethics Committee for
l inhibits decreased occludin expression and apoptosis
xpression. Representative occludin immunostaining of distal
ol-treated (EPO), or epoprostenol-treated and DSS-induced
00 mm). Occludin mucosa staining was quantified in the 4
sentative cleaved caspase-3 immunostaining of distal colon
-treated (EPO), or epoprostenol-treated and DSS-induced
n of cleaved caspase-3 staining relative to mucosal area in
per group. Two-way ANOVA followed by Bonferroni post hoc
). (E–G) Western blot analyses of PCNA, phospho-Akt (P-Akt),
-induced (DSS) epoprostenol-treated (EPO), or epoprostenol-
tment. Representative Western blot analysis of PCNA and P-
uantification of P-Akt/Akt expression derived from acquisition
per group. Two-way ANOVA followed by Bonferroni post hoc
cts).
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Figure 8. PGI2 analog iloprost prevents mouse IEB breakdown ex vivo. (A–D) Potential of PGI2 to block IEB breakdown
induced by apoptosis was assessed on mouse colon explants treated without (CT) or with staurosporine (Stauro, 1 mmol/L) for
20 hours, without or with 4-hour pretreatment with 10 mmol/L iloprost pretreatment (ILO). Representative cleaved caspase-3
(CC3, A), occludin (OCLN, B), or Hematein Phloxin Safran staining (HPS, C) of explants from proximal colon of mice after the
mentioned treatments (scale bar: 50 mm). Apoptosis score evaluated from cleaved caspase-3 staining (D). Paracellular
permeability measured in Ussing chambers by sulfonic acid flux through mouse tissues after the mentioned treatments (E).
Data represent means ± SEM of 16 explants per group. Two-way ANOVA followed by Bonferroni post hoc tests. ***P � .001
(for DSS factor effects) or #P � .05 (for ILO factor effects).
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Research on Humans and registered under no. DC-2008-
402. All experiments involving mice were approved by the
Ethics Committee for Animal Experimentation of Pays de la
Loire (study no. 01953.01).
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Patients
Human tissues originating from control, CD, or UC

patients were used for biopsy supernatant analyses
(Table 1), mucosa explants (Table 2), mucosa histology,
FLA 5.6.0 DTD � JCMGH800 proof �
molecular analyses (Table 3), and biopsy permeability
analyses (Table 4). Briefly, surgical resections (used for
explants and mucosa analyses) were collected from
macroscopically and microscopically unaffected fragments
from patients undergoing surgery. Control patients were
those undergoing surgery for colon cancer except 2 who
were undergoing surgery for stenosis or Hartmann’s
procedure that were used for explants. Samples were al-
ways taken at least 10 cm away from the tumor. Biopsies
were taken in macroscopically UHA and/or HA. Whereas
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Figure 9. Dose response of PGI2 analog iloprost on mice colon explant permeability and occludin membrane location.
(A–C) Potential of PGI2 to regulate occludin and reduce IEB permeability induced by apoptosis was assessed on mouse colon
explants treated for 16 hours with staurosporine (ST, 1 mmol/L), without or with 4-hour pretreatment with 1, 10, or 100 mmol/L
iloprost (ILO). Paracellular permeability measured in Ussing chambers by sulfonic acid flux through mouse tissues after the
mentioned treatments (A). Occludin membrane (mb), cytosolic (cyto), and total (tot) expression were assessed by Western blot
after cell fractionation (B) and quantified (C). Data represent means ± SEM of 3–9 explants per group. Nonparametric Mann-
Whitney test, **P < .005 or *P < .05.
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surgical resections came from patients with severe forms
of IBD, biopsies came from patients with light to mod-
erate clinical forms of IBD (Mayo UC-DAI from 0 to 8;
Harvey-Bradshaw Index from 0 to 7). The location of the
samples and main clinical features of patients are
mentioned in Tables 1–4.
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Biopsy Supernatants
On removal, biopsies were rapidly weighed and

immersed in hard plastic tubes containing 1 mL Hank’s
buffered saline solution per 10 mg biopsy sample and
FLA 5.6.0 DTD � JCMGH800 proof �
continuously oxygenated (95% O2/5% CO2) at 37�C. After a
20-minute incubation, the solution was removed and
centrifuged at 200g for 10 minutes before being filtered
with centrifuge tube filters (0.22 mm, SPIN-X) to remove
bacterial components. Supernatant aliquots (200 mL) were
stored at –80�C until assayed.
PUFA Metabolite Profiling
n-6/n-3 PUFA-derived metabolite dosages were per-

formed as described by Le Faouder et al87 from biopsy
supernatants.
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Data Preprocessing and Analysis
Data preprocessing was performed using the Metab-

oanalyst web interface (www.metaboanalyst.ca).88 Briefly,
preprocessing of the data matrix (concentrations) was
FLA 5.6.0 DTD � JCMGH800 proof �
performed by removing missing values. The data matrix was
transformed using a generalized logarithm and scaled using
autoscaling method (mean-centering and division by the
standard deviation of each variable). Heatmap and
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hierarchical clustering presenting group averages and
metabolite z-scores was performed on both samples and
features using a Pearson distance measure and average
clustering. The heatmap and correlation of metabolites were
done using a Spearman rank correlation distance measure.
The pattern hunter was performed on 6-ketoPGF1a with a
Pearson distance measure. One-way analysis of variance
(ANOVA) was calculated with an adjusted P value cutoff of
.05 and a Fisher least significant difference post hoc test.

Human Explants
Human explants were obtained from human colon

samples (Table 2) washed with cold Krebs’s solution and
from which the muscle layers and submucosa were
removed. Mucosa explants (30–40 mg) were maintained in
culture in RPMI/Ham’s F12 medium (v/v) supplemented
with 0.01% bovine serum albumin, 100 IU/mL penicillin,
and 100 mg/mL streptomycin and fungizone (1%) at 37�C
with 95% O2 and 5% CO2 under gentle agitation. Explants
were incubated with 10 mmol/L iloprost 4 hours before
addition of 1 mmol/L staurosporine. After 18 hours in cul-
ture, explants were placed in Ussing chambers for perme-
ability measurement.

Mucosa Histology and Molecular Analyses
Human surgical resections (Table 3) were washed

with cold Krebs’s solution, and then the mucosa was
removed and fixed for 1 hour in 4% paraformaldehyde
solution or snap frozen for further analysis (immuno-
staining or real-time quantitative polymerase chain re-
action [qPCR]).

Biopsy Permeability
On removal, biopsies were placed in Ussing chambers

and incubated with 10 mmol/L iloprost 1 hour before
permeability measurement.

Caco-2 Culture, TEER, and Permeability
Measurement In Vitro

The human IEC line Caco-2 was obtained from American
Type Culture Collection (Manassas, VA) and cultured in
Figure 10. (See previous page). PGI2 analog iloprost preven
patients present increased apoptosis and reduced occlu
breakdown induced by apoptosis was assessed on human co
1mmol/L) for 20 hours (A) and the indicated time (B), without or w
permeability measured in Ussing chambers by sulfonic acid flu
tients after the mentioned treatment (A). Data represent mean
different patients. Quantification of cleaved caspase-3 staining r
(B). Two-way ANOVA followed by Bonferroni post hoc tests. ***P
effects), or #P < .05 (for ILO factor effects). (C–F) Epithelial apo
patients by Western blot analysis, immunostaining, or qPCR. R
death M30 from CT, CD, and UC patients (C; scale bar: 200 mm
expression observed by Western blot (D). Measurement of BAX
SEM of mucosa lysates from CT (n ¼ 20), CD (n ¼ 20), and UC (
(G and H) Quantification of ZO-1 (H) and occludin (I) expression
biopsies from control, quiescent CD, and active CD HA and UH
(n ¼ 12), active CD (n ¼ 16), and quiescent CD (n ¼ 9) patients

FLA 5.6.0 DTD � JCMGH800 proof �
Dulbecco modified Eagle medium containing 4.5 g/L glucose
(Gibco, Life Technologies, Carlsbad, CA) supplemented with
10% heat-inactivated fetal calf serum, 2 mmol/L glutamine,
100 IU/mL penicillin, and 100 mg/mL streptomycin. For
TEER and permeability experiments, 100,000 Caco-2 cells
were seeded onto 24-well Transwell filters coated with
collagen I. The metabolite 6-ketoPGF1a (10 mmol/L; Cayman
Chemical Co, Ann Arbor, MI) or 10 mmol/L iloprost (Cayman
Chemical Co), 100 ng/mL epoprostenol (GlaxoSmithKline,
Brentford, UK, or Panpharma, Luitre-Dompierre, France), or
solvent was added the following day in the basolateral
compartment. To determine the effect of 6-ketoPGF1a or
iloprost on IEB resistance, the TEER was measured 1 day
after treatment with an epithelial voltohmmeter (EVOM;
World Precision Instruments, Inc, Sarasota, FL). To deter-
mine the effect of these same drugs on IEB permeability, 50
mL of the apical medium was replaced by 50 mL fluo-
rescein–5.6 sulfonic acid (1 mg/mL; Invitrogen, Carlsbad,
CA). The fluorescence level of basolateral aliquots (150 mL)
was measured every 30 minutes for a period of 180 minutes
using a fluorimeter (Varioskan; Thermo SA, France). Para-
cellular permeability was determined by averaging the slope
change in fluorescence intensity over time by linear
regression fit model.
DSS-Induced Colitis and In Vivo Permeability
Assessment

Colitis was induced in 8-week-old male C57BL/6NRJ
mice (Janvier Labs, Le Genest-Saint-Isle, France) by adding
4% (w/v) DSS (MP Biomedicals, Santa Ana, CA) to the
drinking water, which was renewed every day for 4 days.
For in vivo assessment of PGI2 effect, epoprostenol (1 mg/
mL in phosphate-buffered saline [PBS]) or vehicle (PBS;
given in 3 intraperitoneal injections of 100 mL at the
beginning, middle, and end of the light cycle) (Figure 3A).
Four mice per cage were subjected to a 12-hour light/12-
hour dark cycle with free access to food (Safe, Augy,
France) and water. Animals were weighed daily; on the
last day, animals received 120 mL of a solution containing
300 mg red carmine, 50 mg fluorescein–5.6 sulfonic acid,
50 mg horseradish peroxidase (HRP) (Sigma-Aldrich, St
Louis, MO), and 5 mL 0.5% carboxymethylcellulose by
ts human IEB breakdown ex vivo, and mucosa from IBD
din expression. (A and B) Potential of PGI2 to block IEB
lon explants treated without (CT) with staurosporine (Stauro,
ith 4-hour 10 mmol/L iloprost pretreatment (ILO). Paracellular
x through human mucosal colonic samples from control pa-
s ± SEM of 6 explants per condition and per patient with 4
elative to mucosal area was quantified in 5 explants per group
< .001 (for Stauro factor effects), **P < .05 (for Stauro factor

ptosis was evaluated in mucosa from control (CT), CD, or UC
epresentative immunostaining of cleaved caspase-3 or cyto-
). Quantification of cleaved caspase-3 normalized to b-actin
(E), BCL2 (F), and PTGIR (G) mRNA. Data represent means ±
n ¼ 16) patients. Nonparametric Mann-Whitney test, *P < .05.
normalized to b-actin expression observed by Western blot of
A. Data represent means ± SEM of mucosa lysates from CT
. Nonparametric Mann-Whitney test, *P < .05. Q13
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Figure 11. PGI2 analog iloprost reduces permeability and induces occludin membrane location of biopsies from IBD
patients. (A) Paracellular permeability of biopsies from IBD patients measured by sulfonic acid (SA) flux in Ussing chambers
after 1-hour pretreatment with 10 mmol/L iloprost (PGI2) or without (CT). IBD patient (n ¼ 9) data represent the mean SA flux of
2 biopsies per condition per patient. *P < .05 paired t test. (B) Quantification of ZO-1 and occludin expression normalized to
villin expression observed by Western blot of biopsies from IBD patients with or without ILO treatment. (C) Occludin membrane
(mb) and cytosolic (cyto) expressions were assessed by Western blot after cell fractionation (C) and quantified (D). Data
represent means ± SEM of 4 pools of 2 biopsies per group. Nonparametric Mann-Whitney test, *P < .05. (E) Representative
occludin (OCLN) or DAPI staining of human biopsies with or without ILO treatment (scale bar: 50 mm).
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Table 1.Main Clinical Features of Patients Used for Biopsy Supernatant Analyses

Patient (n) Explant location (n) Age at surgery, y (minimum–maximum) Sex (M/F)
Treatment received the month

before surgery (n)

Control (16) Colon (16) 45.9 (29–73) 6/10 None (16)

CD (27) Colon (27) 36.3 (20–48) 16/11 None (2)

Anti-TNF (7)

Anti-TNF þ othersa (8)

Othersa (10)

UC (19) Colon (19) 40.6 (21–57) 12/7 None (2)

Anti-TNF (3)

Anti-TNF þ othersa (3)

Othersa (11)

CD, Crohn’s disease; TNF, tumor necrosis factor; UC, ulcerative colitis.
aImmunosuppressors and/or anti-inflammatory.

18 Pochard et al Cellular and Molecular Gastroenterology and Hepatology Vol. -, No. -

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100
gavage and were placed in individual cages. The DAI was
calculated on the basis of stool consistency observed
during the 4 hours after gavage (0 ¼ hard stool, 1 ¼ soft
or liquid stool) and gross bleeding (0 ¼ no blood, 1 ¼
blood) and was composed of scores from 0 to 2. After 4
hours, blood was collected from the tail vein, and para-
cellular permeability was evaluated by collecting 5 mL of
plasma. The fluorescence of each sample was measured
using an automatic microplate reader (Varioskan; Thermo
Fisher Scientific, Carlsbad, CA). Transepithelial perme-
ability to HRP was measured by an enzymatic activity
assay with 3,3’,5,5’-tetramethylbenzidine reagent (BD
Bioscience, San Jose, CA). Mice were euthanized, and colon
fragments were collected and fixed 1 hour in 4% para-
formaldehyde in PBS or snap frozen for further analyses
(immunostaining or qPCR). All experiments were
approved by the Ethics Committee for Animal Experi-
mentation of Pays de la Loire (study no. 01953.01).
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qPCR Analysis
Mucosal fragments from control and IBD patients or

colon samples from mice were lysed in RA1 buffer
(Macherey-Nagel, Hoerdt, France), and total RNA was
extracted with a Nucleospin RNAII kit according to the
manufacturer’s recommendations (Macherey-Nagel). Puri-
fied mRNA (1 mg) was denatured and processed for reverse
transcription using Superscript III reverse transcriptase
(Invitrogen). PCR amplifications were performed using the
Absolute Blue SYBR green fluorescein kit (Roche, Carlsbad,
CA) or the Taqman Gene Expression Assay (Life
Table 2.Main Clinical Features of Patients Used for Explants

Patient (n)
Explant

location (n)
Age

Control, cancer at a distance from tumor
(2), other (2)

Colon (4) 63 (48–

FLA 5.6.0 DTD � JCMGH800 proof �
Technologies) and run on a StepOnePlus system (Life
Technologies). The following primers from Life Technolo-
gies were used for Taqman assays: IL22 (Mm01226722_g1),
IL17a (Mm00439618_m1), IL4 (Mm00445259_m1), IFN-g
(Mm01168134_m1), and ribosomal protein S6
(Mm02342456_g1). Sequences of primers (Sigma-Aldrich)
used for SYBR green assays are mentioned in Table 5.

Preparation of Cytosolic and Total Membrane
Fractions

Membrane and cytosolic fractions were obtained as
previously described.89 Briefly, mouse explants or biopsies
were harvested in 400 mL of buffer A (10 mmol/L HEPES,
pH 7.9, 1.5 mmol/L MgCl2, 10 mmol/L KCl, 0.5 mmol/L
dithiothreitol), and after 10 strokes in a syringe with a G25
needle, homogenates were centrifuged for 10 minutes at
2000 rpm. A 0.11 volume of buffer B (0.3 mol/L HEPES, pH
7.9, 0.3 mol/L MgCl2, 1.4 mol/L KCl) was then added to the
carefully decanted supernatants and centrifuged for 60
minutes at 100,000g. The high-speed pellet represents the
“membrane fraction,” and the high-speed supernatant rep-
resents the “cytosolic fraction.” The membrane fractions
were washed twice and resuspended in 1� Laemli buffer.
Then Laemli was added to the cytosolic fractions, and all
fractions were denatured at 95�C for 10 minutes and then
put on ice before Western blotting analysis.

Western Blotting
Mucosal fragments from control and IBD patients or

colon samples from mice were lysed in RA1 buffer
at surgery, y (minimum–

maximum)
Sex (M/

F)
Treatment at time of

surgery (n)

83) 2/2 None (3)
Immunosuppressors (1)
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Table 3.Main Clinical Features of Patients Used for Mucosa Molecular Analyses

Patient (n)
Explant location

(n)
Age at surgery, y (minimum–

maximum)
Sex (M/

F)
Treatment at time of

surgery (n)

Control, cancer at a distance from
tumor (20)

Ileum (4) 61.8 (38–82) 14/6 None (19)
Colon (15) Radiotherapy (1)
Rectum (1)

CD (20) Ileum (8) 37.4 (17–63) 9/11 None (7)

Colon (12) Mesalamine Q10(1)

Rectum (0) IS (4)

MTT þ IS (1)

Anti-TNF (6)

Anti-TNFþIS (1)

UC (16) Ileum (2) 43 (19–60) 8/8 None (11)

Colon (11) Mesalamine (1)

Rectum (3) IS (0)

MTT þ IS (0)

Anti-TNF (4)

Anti-TNFþIS (0)

CD, Crohn’s disease; IS, immunosuppressors; MTT, methotrexate; TNF, tumor necrosis factor; UC, ulcerative colitis.
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(Macherey-Nagel), and total protein extraction was per-
formed with a Nucleospin RNAII kit according to the
manufacturer’s recommendations. For Caco-2 filters, cells
were washed with ice-cold PBS and lysed in ice-cold RIPA
buffer complete with protease inhibitor (Roche) and
serine-threonine phosphatase inhibitor (Sigma-Aldrich)
cocktails. Nuclei and intact cells were removed by
centrifugation at 10,000g for 10 minutes at 4�C. Samples
were processed for electrophoresis using an MES Sodium
Dodecyl Sulfate buffer kit (Invitrogen). Samples were
separated on 4%–12% Bis-Tris or 3%–8% Tris-Acetate
gels (Life Technologies). Proteins were transferred to
nitrocellulose membranes with the iBlot system (Life
Technologies). After blocking with Tris-buffered saline/
0.1% Tween-20/5% nonfat dry milk for 30 minutes, blots
were incubated overnight at 4�C with the following pri-
mary antibodies diluted in Tris-buffered saline/5% nonfat
dry milk: mouse anti-ZO-1 (1:200; Thermo Fisher Scien-
tific), rabbit anti-occludin (1:500; Abcam, Cambridge, UK),
rabbit anti-junctional adhesion molecule-A (1:500; Bethyl
Laboratories, Montgomery, TX), rabbit anti-claudin-2
Table 4.Main Clinical Features of Patients Used for Biopsy Pe

Patient (n) Explant localization (n)
Age at surg

y (minimum–ma

CD (7), UC (2) Ileum (4) 32.7 (17–6

Colon (14)

Rectum (0)

CD, Crohn’s disease; IS, immunosuppressors; MTT, methotrex

FLA 5.6.0 DTD � JCMGH800 proof �
(1:200; Life Technologies), rabbit anti-cingulin (1:500;
Santa Cruz Biotechnology, Dallas, TX), mouse anti-
phospho-MLC20 (1:200; Cell Signaling Technology, Dan-
vers, MA), rabbit anti-PCNA (1:500; Abcam), rabbit anti-
phospho-Akt and anti-Akt (1:400; Cell Signaling Technol-
ogy), rabbit anti-cleaved caspase-3 (1:200; Cell Signaling
Technology), and mouse anti-b-actin (1:10,000; Sigma-
Aldrich). Immunoblots were probed with the appropriate
HRP-conjugated secondary antibodies (Life Technologies)
and visualized by chemiluminescence (Bio-Rad, Hercules,
CA) using a Gel-Doc imager and Image Lab Software (Bio-
Rad). The value of protein immunoreactivity was
normalized to b-actin immunoreactivity and expressed as
the fold-increase relative to the average of control values
taken as 1.

Immunohistochemistry and Histopathology
Formalin-fixed human and mice tissues were embedded

in paraffin using an embedding station (LEICA EG1150C,
Wetzlar, Germany) and cut into 3-mm sections using a
microtome (LEICA RM2255).
rmeability Analyses

ery,
ximum) Sex (M/F) Treatment at time of surgery (n)

3) 5/4 None (0)

Mesalamine (1)

IS (1)

MTTþIS (1)

Anti-TNF (3)

Anti-TNFþIS (3)

ate; TNF, tumor necrosis factor; UC, ulcerative colitis.
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Table 5.Sequences of Primers Used for SYBR Green Assays

Prostaglandin I2 Receptor (IP, PTGIR) #NM_000960.3
Forward Primer: 5’-CTCTCACGATCCGCTGCTTC-3’
Reverse Primer: 5’-GAGCTGGGAAAGGGGTGTCT-3’

Tumor necrosis factor alpha (TNFa) # NM_013693.3
Forward Primer: 5’-GAACTTCGGGGTGATCGGTCC-3’
Reverse Primer: 5’-GCCACTCCAGCTGCTCCTCC-3’

Interleukin 1 beta (IL1b) # NM_008361.4
Forward Primer : 5’-GCCTCGTGCTGTCGGACCCATA-3’
Reverse Primer : 5’-TTGAGGCCCAAGGCCACAGGT-3’

Interleukin 6 (IL6) #NM_031168.2
Forward Primer : 5’-TCCAGTTGCCTTCTTGGGAC-3’
Reverse Primer : 5’-AGTCTCCTCTCCGGACTTGT-3’

Ribosomal protein S6 (RPS6) # NM_001010.2
Forward Primer : 5’-CCAAGCTTATTCAGCGTCTTGTTACTCC-3’
Reverse Primer: 5’-CCCTCGAGTCCTTCATTCTCTTGGC-3’
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Fluorescence
Slides were deparaffinized with 2 xylene baths (5 mi-

nutes each) and incubated in 4 ethanol baths (100%, 95%,
70%, and 70%, respectively; 3 minutes each). After a rinse
in distilled water, slides were washed in PBS, and antigen
retrieval was performed using a sodium citrate solution
(2.94 g sodium citrate tribasic, 1 L distilled water, 500 mL
Tween-20, pH 6) at 95�C for 20 minutes. Slides were incu-
bated in 100 mmol/L NH4Cl for 15 minutes before incuba-
tion in PBS/0.5% Triton X-100 for 1 hour and blocking for 2
hours in 10% horse serum in PBS/0.5% Triton X-100. Pri-
mary antibodies for cleaved caspase-3 (1:100; rabbit poly-
clonal, 9661; Cell Signaling Technology), cytodeath M30
(1:100; Roche), or occludin (1:100; rabbit polyclonal,
Abcam) were incubated on slides overnight at 4�C before
incubating with the appropriate secondary antibody for 2
hours at room temperature. Images were acquired with an
Olympus IX 50 or Zeiss Axio Observer fluorescence micro-
scope coupled to a digital camera (model DP71, Olympus,
Tokyo, Japan or Hamamatsu Photonics, Hamamatsu, Japan)
and analyzed with Cell B software (Soft Imaging System;
Olympus) or Zen software. The fluorescence of the mucosal
area was reported to estimate cleaved caspase-3 expression
using ImageJ software (National Institutes of Health,
Bethesda, MD).

Histologic Score
Hematein Phloxin Safran coloration allowed the visu-

alization of tissue morphology. Tissue damage was scored
in a blinded manner by quantifying destruction of
mucosal architecture, cellular infiltration, muscle thick-
ening, and loss of goblet cells. The extent of destruction of
normal mucosal architecture was scored as 0–3 (0 ¼ no
destruction, 1 ¼ 1/3 basal destruction, 2 ¼ 2/3 basal
destruction, 3 ¼ loss of crypt and epithelium). The pres-
ence and degree of cellular infiltration were also scored as
0–3 when the infiltration was normal, around the crypt
basis, reaching the muscularis mucosae, and reaching the
submucosa, respectively. The extent of muscle thickening
was scored as 0–3 when the thickening was none, mild,
moderate, or massive, respectively. The presence or
FLA 5.6.0 DTD � JCMGH800 proof �
absence of goblet cell depletion was scored as 0 (normal)
or 1 (massive depletion). An extension factor of 1–4 was
applied when the criteria measured reached 25%, 50%,
75%, or 100% of the fragment analyzed.

Mouse Colonic Explants
Colons from C57BL/6 NRJ mice were removed and

washed 3 times in cold Krebs’s solution. For immunostain-
ing, colon pieces were incubated with biopsy medium
(Dulbecco modified Eagle medium containing 4.5 g/L
glucose, 2.5% fetal bovine serum, 100 IU/mL penicillin, 100
mg/mL streptomycin, 20 mg/mL gentamycin, and 1.1 mg/mL
AmphoB) containing 10 mmol/L iloprost at 37�C with 95%
O2 and 5% CO2. After 1 hour, 1 mmol/L staurosporine
(Promocell, Heidelberg, Germany) was added to colon seg-
ments for 2 hours before fixing tissues for 1 hour in 4%
paraformaldehyde in PBS. Apoptosis scores were assessed
on these samples by quantifying cells positive for cleaved
caspase-3 staining. The extent of apoptosis was scored as
0–2 (0 ¼ no positive cells, 1 ¼ 1/2 positive basal cells, 2 ¼
positivity along the entire crypt). An extended score factor
of 1–4 was applied when positivity reached 25%, 50%, 75%,
or 100% of the fragment analyzed, respectively. For the
paracellular permeability measurement, 8 pieces of each
colon were incubated with biopsy medium containing
1–100 mmol/L iloprost (Figure 7) as described earlier. After
4 hours, 1 mmol/L staurosporine was added to colon seg-
ments and incubated overnight. Twenty-four hours after the
start of the incubation process, colon pieces were mounted
in Ussing chambers, and paracellular permeability was
measured as detailed above.

Ex Vivo Permeability Assessment in Ussing
Chambers

Human biopsies and human or mice explants were
mounted in Ussing chambers (0.011 or 0.03 cm2 exposed
surface area, respectively; Physiologic Instruments, San
Diego, CA) as previously described.90 Each chamber con-
tained 2 mL of Ham’s/F12 medium (Invitrogen) maintained
at 37�C and continuously gassed with 95% O2 and 5% CO2.
After 30 minutes of equilibration, 200 mL of apical medium
was replaced by 200 mL of fluorescein–5.6 sulfonic acid (1
mg/mL). The fluorescence level of basolateral aliquots (150
mL) was measured every 30 minutes for a period of 180
minutes to evaluate paracellular permeability using a Vari-
oskan automatic microplate reader. Samples were then used
for preparation of cytosolic and total membrane fractions
and further Western blotting analysis.
Drugs
Iloprost and epoprostenol have different selectivity for

prostanoid receptors. Iloprost can bind to and activate
EP1 with greater affinity than IP, and epoprostenol can
bind to and activate EP3 receptors with 20 times less af-
finity than IP.80 The methyl acetate in which iloprost was
supplied was evaporated under a gentle stream of nitro-
gen and immediately resuspended in dimethyl sulfoxide to
26 May 2021 � 6:10 pm � ce CLR
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obtain a 10 or 100 mmol/L stock solution. The same
dilution of dimethyl sulfoxide alone was always used in
control wells.

Statistics
Except for PUFA-metabolite profiling, all graphics were

drawn and analyzed using GraphPad Prism 5.0 Software
(GraphPad Software, La Jolla, CA). Values are expressed as
means ± standard error of the mean (SEM). The significance
of differences was determined using either 2-way ANOVA
followed by Bonferroni post hoc test or nonparametric
Mann-Whitney test using GraphPad Prism 5.0. Statistical
significance was reached when P <.05. For PUFA-metabolite
profiling, 1-way ANOVA was performed using www.
metaboanalyst.ca with an adjusted P value cutoff of .05
and a Fisher least significant difference post hoc test.
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