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Abstract
Purpose Inulin-type fructans (ITF) are prebiotic dietary fibre (DF) that may confer beneficial health effects, by interacting 
with the gut microbiota. We have tested the hypothesis that a dietary intervention promoting inulin intake versus placebo 
influences fecal microbial-derived metabolites and markers related to gut integrity and inflammation in obese patients.
Methods Microbiota (16S rRNA sequencing), long- and short-chain fatty acids (LCFA, SCFA), bile acids, zonulin, and 
calprotectin were analyzed in fecal samples obtained from obese patients included in a randomized, placebo-controlled trial. 
Participants received either 16 g/d native inulin (prebiotic n = 12) versus maltodextrin (placebo n = 12), coupled to dietary 
advice to consume inulin-rich versus inulin-poor vegetables for 3 months, in addition to dietary caloric restriction.
Results Both placebo and prebiotic interventions lowered energy and protein intake. A substantial increase in Bifidobac-
terium was detected after ITF treatment (q = 0.049) supporting our recent data obtained in a larger cohort. Interestingly, 
fecal calprotectin, a marker of gut inflammation, was reduced upon ITF treatment. Both prebiotic and placebo interventions 
increased the ratio of tauro-conjugated/free bile acids in feces. Prebiotic treatment did not significantly modify fecal SCFA 
content but it increased fecal rumenic acid, a conjugated linoleic acid (cis-9, trans-11 CLA) with immunomodulatory prop-
erties, that correlated notably to the expansion of Bifidobacterium (p = 0.031; r = 0.052).
Conclusions Our study demonstrates that ITF-prebiotic intake during 3 months decreases a fecal marker of intestinal inflam-
mation in obese patients. Our data point to a potential contribution of microbial lipid-derived metabolites in gastro-intestinal 
dysfunction related to obesity.
ClinicalTrials.gov Identifier NCT03852069 (February 22, 2019 retrospectively, registered).

Keywords Gut microbiota · Obesity · Prebiotic · Microbial metabolites

Introduction

Recent studies have highlighted the role of gut dysbiosis in 
the etiology and pathogenesis of obesity-related metabolic 
disorders [1]. Despite the controversial role of gut dysbio-
sis as a cause of obesity in humans, numerous animal (and 

also human) studies suggest beneficial metabolic effects 
of gut-derived microbial metabolites that could be used in 
the prevention and treatment of obesity and related meta-
bolic disorders. The analysis of short-chain fatty acids 
(SCFA) allowed to establish for the first time a molecu-
lar link between bacterial activity towards nutrients, and 
host physiology [2, 3]. Notably, acetate, propionate, and 
butyrate, produced upon microbial fermentation of car-
bohydrates and fibre, may influence the production of gut 
hormones (like glucagon-like peptide 1) by enteroendo-
crine L cells, thereby having a beneficial impact on meta-
bolic functions, intestinal epithelial integrity, appetite and 
glucose homeostasis [4–7]. Other bacterial co-metabolites 
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(i.e. metabolites produced from sequential microbial and 
host enzymes activities), like bile acids (BA), may also 
modulate gut endocrine function, metabolism, energy 
homeostasis and inflammation [8]. Obesity is associated 
with gut dysbiosis and changes of BA pool concentration 
and composition [8, 9]. The gut microbiota also produces 
long chain fatty acid (LCFA)-derived metabolites from 
dietary PUFA [10]. Some of these have conjugated dou-
ble bounds (e.g. isomers of linoleic and linolenic acids) 
and can activate nuclear receptors playing key roles in the 
regulation of metabolism and inflammation. Those bac-
terial metabolites were also identified as potential anti-
obesogenic agents [11–13].

The manipulation of the  gut microbiome, which is 
largely influenced by the diet, appears as an innovative 
therapeutic tool to prevent or control obesity and related 
diseases. Of particular interest, some non-digestible die-
tary fibre (DF) called prebiotics, are fermented by the 
gut microbiota, thereby conferring potentially beneficial 
health effects [14, 15]. On the basis of numerous studies 
in animals and humans, it has been proposed that ferment-
able prebiotic DF might increase satiety, improve obesity-
related metabolic disorders, and modulate gut-related 
immunity [16–20]. The mechanisms proposed to explain 
such effects often involve the bacterial metabolites such 
as SCFA. Inulin-type fructans (ITF) are prebiotic DF that 
promote Bifidobacterium spp. and produce SCFA upon 
fermentation; their administration may improve health out-
comes, especially in the context of obesity [14, 21]. We 
previously conducted the multicenter FOOD4GUT inter-
vention trial in obese patients with co-morbidities to better 
understand how ITF present in food could play a role on 
gut microbiota homeostasis and health [22]. More recently, 
in the context of the FiberTAG project, we set out to estab-
lish a set of biomarkers of bacterial co-metabolites and gut 
barrier function and link DF intake and gut-microbiota 
related health effects [23]. For this purpose, we explored 
a FOOD4GUT subcohort to study the link between prebi-
otic intake, gut microbial signature in terms of bacterial 
composition, the profile of key gut-derived metabolites, 
and fecal biomarkers related to gut barrier function and 
gut inflammation such as fecal zonulin and fecal calpro-
tectin, respectively [24, 25]. Of particular interest, fecal 
zonulin was validated as a marker for gut permeability 
in the course of the FiberTAG project (unpublished data) 
whereas fecal calprotectin is widely used to assess gut 
inflammation [26].

Materials and methods

Intervention

The FOOD4GUT study was a 3-month-long, multicentric, 
single-blind, placebo-controlled trial. Recruitment, enroll-
ment, randomization, sample size determination, inclusion 
and exclusion criteria, and outcomes have been previously 
described [22]. Participants were included for a period of 
3 months and randomized to consume either 16 g/d native 
inulin (extracted from chicory root, Cosucra, Belgium) or 
16 g/d maltodextrin (Cargill, Belgium). During the first 
week, patients were asked to ingest half the dose to allow 
adaptation to the fibre. Patients in the prebiotic and pla-
cebo arms were asked to prepare and consume recipes with 
vegetables rich in ITF or poor in ITF, respectively, in addi-
tion to dietary caloric restriction [22]. The participants met 
a dietitian before and monthly during the intervention. At 
baseline, the dietitian calculated energy expenditure of the 
participants in order to prescribe a hypocaloric diet corre-
sponding to −30% of the calculated energy expenditure. At 
all visits, one-week recall questionnaires were completed 
to evaluate dietary intake. This 1-week recall questionnaire 
has been designed to include vegetables particularly rich 
in fructans, as previously reported [27]. As compared to 
24 h-recall method or food diaries, this questionnaire is 
more rapid and easy to complete and meets the objective to 
focus on fructan and DF intake [28]. Participants received 
a cookbook with recipes based on vegetables either rich or 
poor in fructans and were advised to consume at least one 
meal proposed in the recipe per day. According to a previ-
ous study [27], we selected a list of vegetables enriched 
in fructans, including artichoke, asparagus, black radish, 
Brussels sprouts, butternut, cauliflower, celeriac, celery, 
endive, garlic, Jerusalem artichoke, leek, onion, parsnip, 
pumpkin, salsify, shallot, spaghetti squash, tuberous pars-
ley, turnip and zucchini; artichokes, Jerusalem artichokes, 
onions and salsify being the most enriched vegetables. 
Patients in the placebo arm were asked to consume daily 
recipes based on vegetables poorly enriched in fructans 
including beans, cress, cucumber, eggplant, lettuce, lamb’s 
lettuce, mushroom, peas, pepper, spinach, Swiss chard and 
tomato. Participants prepared their own meals. All par-
ticipants and research staff (excepted dietitians who pro-
vided dietary advices and recipes books) were blinded to 
the treatments. Fresh stool samples were available for 24 
patients from the St Luc subcohort at baseline and after 
3 months of dietary intervention and were stored immedi-
ately at −80 °C until analyses of SCFA, LCFA, BA, zonu-
lin, calprotectin and gut microbiota. The measurement of 
fecal microbial-derived metabolites, markers related to gut 
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integrity and inflammation were not initially scheduled 
in the trial design (NCT03852069-FOOD4GUT study). 
We evaluated those parameters a posteriori in the con-
text of the FiberTAG project [23], after approval by the 
“Comité d’éthique Hospitalo-facultaire de Saint-Luc” and 
in accordance to the written informed consent provided 
by participants (leaving the possibility to use biological 
material for future research outside the context of the 
FOOD4GUT study).This study has been carried out in 
accordance with followed the ethical guidelines set out 
in the Declaration of Helsinki. All participants provided 
written informed consent in compliance with the European 
law 2001/20/CE guidelines, before inclusion. All authors 
had access to the study data and reviewed and approved 
the final manuscript. The trial protocol was published on 
protocols.io (dx.doi.org/10.17504/protocols.io.baidica6) 
and the trial was registered at ClinicalTrials.gov under 
identification number NCT03852069.

Energy and nutrient intakes

Energy and nutrient intakes were calculated from the 1-week 
recall using the Nubel Pro program (Nubel asbl, Brussels, 
Belgium). Fructan intake as well as fructan content of the 
recipes were calculated using the FiberTAG repertoire 
detailing prebiotic (oligo) saccharides (including fructans) 
in food products [28].

Fecal microbiome sequencing and analysis

Bacterial DNA was extracted from fecal samples using the 
QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, Germany), 
as previously described [29]. The V5-V6 regions of the 16S 
rRNA gene of all samples were sequenced in the same run 
via by the MiSeq platform. The sequences and alpha and 
beta diversity indexes were calculated using QIIME2 [30]. 
An even depth of 10,769 sequences per sample was used to 
conduct microbiome diversity. Principal coordinates analysis 
(PCoA) plots of beta-diversity indexes were visualized using 
R software (ade4 package). Raw sequences are deposited 
into the Sequence Read Archive (SRA) of NCBI (http://
www.ncbi.nlm.nih.gov/sra) and can be assessed with the 
accession number PRJNA669275.

Markers of gut barrier and gut inflammation

Zonulin and calprotectin were measured in fecal sam-
ples using enzyme-linked immunosorbent assays (K5600; 
K6927; Immundiagnostik AG, Bensheim, Germany) as pre-
viously described [29].

SCFA and LCFA analysis

SCFA and LCFA were analysed in fecal samples using gas 
chromatography with flame ionization detector as previously 
described [29].

Bile acids analysis

BA were analyzed in fecal samples using a LTQ-Orbitrap 
mass spectrometer (ThermoFisher Scientific) coupled to an 
Accela HPLC system (ThermoFisher Scientific) as previously 
described [29].

Statistical analysis

Data are expressed as mean ± SEM. Baseline data and 
between-group differences were analyzed by Mann–Whitney 
test. Within-group analyses were evaluated using a Wilcoxon 
paired test (from baseline to 3 months of intervention). Mixed 
model ANOVA followed by Sidak’s multiple comparisons 
test were performed for gastrointestinal symptoms to com-
pare effects over time. For gut microbiota analysis, relative 
abundances performed in Qiime2 are expressed as percentage 
of mean of relative abundance and SEM, and were calculated 
on R for each taxon. At the genus level, if there were multiple 
taxa groups that all had the same genus name and belonged 
to the same family, we combined them together. The p value 
of the Wilcoxon test was adjusted for multiple testing with a 
5% false discovery rate according to the Benjamini–Hochberg 
procedure (q value, significant if q < 0.05) [31]. Beta-diversity 
indices were evaluated on Qiime2 and visualized with a PcoA 
performed on R software, using ade4 package. A Monte Carlo 
rank test was assessed for beta-diversity based PcoA. Associa-
tions between the changes of bacteria significantly (Wilcoxon 
matched-pairs signed-rank tests) regulated by prebiotic inter-
vention and the changes of gut-derived metabolites between 
month 3 and baseline were assessed by Spearman’s correlation 
tests. A significance level of p < 0.05 was adopted for all analy-
ses. Heatmaps of correlation were visualized with the corrplot 
package on R software. Power estimations were calculated for 
the main outcome of the study (Bifidobacterium genus) and for 
the exploratory fecal parameters (including calprotectin) using 
the JMP Pro 14 software and taking into account the difference 
(change after 3 months from baseline value), standard devia-
tion and sample size.

Results

Subject characteristics

One hundred and fifty subjects were randomized in the 
entire FOOD4GUT cohort [22]. Twenty-four patients 
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from the St Luc hospital subcohort provided fresh fecal 
samples immediately frozen and stored at -80 °C (pla-
cebo n = 12, prebiotic n = 12). At baseline, the groups 
were similar in terms of clinical outcomes (Table S1). 
Anthropometric and cardiometabolic risk parameters 
were not significantly affected by the intervention in this 
subcohort.

Nutrient intake

Both prebiotic and placebo interventions reduced energy 
and protein intake (Fig. S1, Table S2). Although carbo-
hydrate intake was globally not affected by the interven-
tion, we observed a lower sugar intake for the placebo 
group and a lower starch intake for the prebiotic group 
(between-variation p < 0.05). The lower fat intake (result-
ing from lower intake of SFA, n-3 PUFA, n-6 PUFA and 
trans-FA) was significant only in the placebo group. Of 
note, the baseline values of MUFA and PUFA (in particu-
lar n-6 PUFA) were not the same between both groups. 
Cholesterol intake was lower only with ITF treatment. 
The DF intake assessed by questionnaires (that does not 
consider the native inulin supplement) was not signifi-
cantly modified in this subcohort. We calculated the aver-
age fructan content of recipes from both cookbooks using 
the FiberTAG repertoire detailing fructan content in food 
products [28]: it reached 11.2 ± 1.7 g per portion for the 
cookbook designed for prebiotic group versus 0.4 ± 0.1 g 
per portion for the cookbook designed for placebo group. 
Importantly, fructan intake estimated by using 1-week 
recall questionnaire was 3 times larger in the prebiotic 
group than the placebo group (independently of inulin 
supplement). Altogether, those results confirmed that 
the patients followed the dietetic advices throughout the 
intervention.

Markers of gut barrier and gut inflammation

We analyzed the impact of the intervention on gut barrier 
by measuring zonulin in feces, known to regulate tight junc-
tions. High zonulin levels are associated with increased gut 
permeability [24]. We did not observe any change in fecal 
zonulin (Fig. 1a). Interestingly, calprotectin, a fecal marker 
for gut inflammation, decreased of 50% (p = 0.019, Wilcoxon 
test; statistical power = 0.70) after prebiotic intervention 
(Fig. 1b).

Fecal short chain fatty acids

Both interventions increased the total amount of SCFA in 
fecal samples (but not significantly, p > 0.05). Acetate being 
the major SCFA, significantly increased in the placebo 
group (statistical power = 0.14) (Fig. 2). Fecal propionic, 
(iso) butyric and (iso)valeric acid remained unchanged after 
prebiotic or placebo treatments.

Fecal bile acids

ITF intake induced minor changes in fecal BA concentra-
tions (Table 1). Although tauro-conjugated BA represented a 
small proportion of total identified BA (< 1%), an increase in 
the ratio of tauro-conjugated versus free BA occurred in both 
placebo and prebiotic groups (statistical power = 0.85 for the 
prebiotic group); this increase being linked to a higher pro-
portion of taurodeoxycholic acid (TDCA) and taurocheno-
deoxycholic acid (TCDCA) in the prebiotic group. Of note, 
we observed a different proportion of TCDCA between both 
groups before intervention (at baseline).

Fecal long‑chain fatty acids

The basal proportion of linolenic acid (C18:3) was different 
between the groups before intervention (Table 2). Its level 

Fig. 1  Fecal concentration of zonulin  (a) and calprotectin  (b) in 
obese patients receiving prebiotic or placebo for 3 months. Individual 
values and means are presented (placebo: n = 9; prebiotic: n = 11). 
Baseline data were analyzed by Mann–Whitney test (p > 0.05). 

Matched-pairs Wilcoxon signed-rank tests were performed to com-
pare changes from baseline (within-group variations;*p ≤ 0.05). 
Between-groups variations were analyzed by Mann–Whitney U tests 
(p > 0.05)
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increased significantly after ITF treatment whereas it slightly 
decreased in the placebo group leading to a statistically sig-
nificant between-variation. More importantly, ITF supple-
mentation significantly increased the levels of rumenic acid 
(cis-9, trans-11–18:2) (statistical power = 0.60). Of note, we 
observed a lower proportion of this conjugated linoleic acid 
(CLA) in the prebiotic group at baseline.

Gut microbiota composition

The alpha-diversity indices related to bacterial richness 
(Observed species), evenness (Pielou) or both (Shannon), 
were not significantly affected by the intervention (Fig. S2a). 
The beta-diversity characterizing overall gut microbiota 
composition was modified by prebiotic treatment as shown 
by the PcoA of the Weighted UniFrac distance considering 
the fraction of branch length in a phylogenic tree (Fig. S2b). 
In fact, important changes in gut microbiota composition 
were observed after the prebiotic intervention (Table 3, Fig. 
S2c). We observed a significant increase in Actinobacteria 
phylum at the expense of Firmicutes after ITF intake ver-
sus placebo. At the family level, it corresponded mostly to 
changes in abundance of Bifidobacteriaceae and Lachno-
spiraceae, respectively to their phyla. Relative abundance 
of Lactobacillaceae also increased after ITF supplemen-
tation but to a lesser extent. At the genus level (Table 3), 
prebiotics largely increased Bifidobacterium (statistical 
power = 0.98), with the change still being significant after 
adjusting it for multiple testing (p = 0.0005, q < 0.05). Other 
weaker changes (at the p values) are detailed in Table 3. 

Among them, placebo intervention increased the relative 
abundance of Enterorhabdus, Eubacterium and Dialister and 
decreased Senegalimassilia. Prebiotic intervention signifi-
cantly increased Anaerostipes and Catenibacterium whereas 
it decreased Actinomyces, Erysipelotrichaceae (UCG003) 
and also 3 unclassified bacteria from family XIII, Lachno-
spiraceae and Enterobacteriaceae, respectively. Those gen-
era were not affected by the placebo.

Bacterial genera associated with fecal metabolites

Changes in fecal calprotectin were negatively correlated 
with changes in Dialister (Fig. 3a). More interestingly, 
decreased fecal calprotectin was correlated with decreased 
Actinomyces and Erysipelotrichaceae (UCG003) (r = 0.68 
and r = 0.45, respectively). We observed that Erysipel-
otrichaceae (UCG003) was the sole bacteria negatively 
correlated with changes in fecal acetate and positively cor-
related with changes in THCA, a precursor of cholic acid 
synthesis (Fig. S3). Importantly, we found that increased 
rumenic acid (cis-9, trans-11–18:2) correlated with 
decreased genera belonging to Enterobacteriaceae and 
higher abundance of Catenibacterium and Bifidobacterium 
(r =  − 0.49, p = 0.04; r = 0.60, p = 0.01; and r = 0.52, p = 0.03 
respectively, Fig. 3b).

Discussion

We have previously shown that improvement of anthro-
pometric and cardiometabolic risk parameters of obese 
patients after prebiotic intervention may be related to spe-
cific changes in gut bacteria (i.e., a decrease in Desulfovi-
brio and Clostridium sensu stricto) in the whole FOOD-
4GUT cohort [22]. Here, although their caloric intake was 
significantly reduced in both groups (by 14% and 12% for 
placebo and prebiotic groups, respectively), anthropometric 
and cardiometabolic risk parameters were not significantly 
affected by the intervention, probably due to the limited 
number of patients in this subcohort. We cannot exclude 
that dietary intake reporting has been underestimated, an 
effect frequently observed in obese patients and that can 
explain discrepancies between energy intake ad body weight. 
Such discrepancy has already been observed in similar study 
[32]. Interestingly, we observed that fructan intake was much 
higher in the patients receiving cookbook based on ingredi-
ents rich in fructan (prebiotic group).

Intestinal microbiota alterations in obese subjects have 
already been associated with local and systemic inflam-
mation, suggesting that obesity-related microbiota have a 
proinflammatory effect [33]. Despite the limited number of 
patients per group, our data revealed that prebiotic interven-
tion decreased fecal calprotectin of obese patients with a 

Baseline 3 months Baseline 3 months
0.0

0.5

1.0

1.5

2.0

SCFA

Acetic acid
Propionic acid
Butyric acid
Iso-butyric acid
Valeric acid
Iso-valeric acid

✱

Placebo Prebiotic

Fig. 2  Fecal SCFA profile (% identified SCFA) in obese patients 
receiving prebiotic or placebo for 3 months. Values are means (pla-
cebo: n = 10; prebiotic: n = 12). Baseline data were analyzed by 
Mann–Whitney test (p > 0.05). Matched-pairs Wilcoxon signed-rank 
tests were performed to compare changes from baseline (within-
group variations;*p ≤ 0.05). Between-groups variations were analyzed 
by Mann–Whitney U tests (p > 0.05)
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substantial statistical power. Although ITF supplementation 
does not influence serum markers of inflammation [22], our 
results suggest that it decreases local gut inflammation, an 
effect which could be interesting in patients presenting co-
morbidities like diverticulosis associated with overweight or 
obesity [34]. It is interesting that the statistical drop in one 
species of Erysipelotrichaceae in the prebiotic group was 
associated with lowered calprotectin. Erysipelotrichaceae, 
belongs to the Firmicutes phylum and was correlated with 
gastrointestinal tract inflammation in patients with colorectal 
cancer or inflammatory bowel disease [35]. Higher levels of 
Erysipelotrichaceae have been found in obese individuals, 
their levels being dependent on the type of dietary fat [35].

SCFA are major products of bacterial fermentation of 
ITF. There are controversies concerning their link with 
obesity [1, 36–38]. In our previous study performed in 
obese women, SCFA significantly decreased after the 
prebiotic ITF treatment and acetate (among other SCFA) 

positively correlated with BMI, fasting insulinemia and 
HOMA index, suggesting that SCFA might be involved 
in body weight increase and insulin resistance [39]. In 
view of data comparing lower body weight evolution and 
fat mass development in germ-free mice with convention-
alized animals, the energy harvest hypothesis has been 
developed, leading to the idea that SCFA may promote 
adiposity by different mechanisms [2]. The lack of effect 
on fecal SCFA in obese patients after prebiotic intake in 
this exploratory study may be linked to the small num-
ber of fecal samples available for SCFA analysis leading 
to a too low statistical power. Despite this limitation, we 
observed that acetate levels increased significantly in the 
placebo group. It is important to consider that majority of 
SCFA (up to 95%) are rapidly absorbed by the colonocytes 
resulting in decreasing concentrations from the proximal 
to distal colon. Therefore, only a minor fraction of SCFA 
(about 5%) is excreted in faeces [40]. Thus, we cannot 

Table 3  Bacterial taxa significantly regulated after 3 months of dietary intervention

Data are expressed as mean percentage of relative abundance and presented as mean ± SEM. Baseline data were analyzed by Mann–Whitney 
U tests (p > 0.05). Within-groups variations were analyzed by Wilcoxon matched-pairs test (* p < 0.05, FDR correction; qq<0.05); between-
groups variations were analyzed by Mann–Whitney U tests (#p < 0.05, FDR correction; qq<0.05). Uncl, unclassified

Placebo Prebiotic

Phylum Baseline 3 months Change Baseline 3 months Change

Actinobacteria 12.56 ± 1.37 11.15 ± 1.29 −1.41 ± 0.87 12.02 ± 1.32 19.54 ± 1.65 *q 7.52 ± 1.53 #q

Firmicutes 69.34 ± 2.66 69.51 ± 2.167 0.17 ± 2.07 70.61 ± 2.21 64.71 ± 2.28 *q −5.90 ± 1.48 #

Family
 Actinomycetaceae 0.36 ± 0.09 0.35 ± 0.06 −0.01 ± 0.11 0.69 ± 0.31 0.35 ± 0.17 * −0.33 ± 0.16
 Bifidobacteriaceae 3.56 ± 1.13 2.81 ± 0.83 −0.75 ± 0.83 4.39 ± 1.06 12.15 ± 1.60 *q 7.76 ± 1.33 #q

 Lactobacillaceae 0.13 ± 0.09 0.06 ± 0.04 −0.06 ± 0.09 0.13 ± 0.07 1.09 ± 0.47 * 0.96 ± 0.48 #

 Family.XIII 0.56 ± 0.18 0.57 ± 0.23 0.01 ± 0.17 0.38 ± 0.12 0.20 ± 0.06 * −0.18 ± 0.08
 Lachnospiraceae 39.01 ± 2.80 37.48 ± 2.59 −1.53 ± 1.47 38.19 ± 2.52 33.32 ± 2.51 *q −4.87 ± 1.24
 Ruminococcaceae 19.23 ± 1.66 21.12 ± 1.70 * 1.90 ± 0.70 18.38 ± 1.61 17.11 ± 2.29 −1.27 ± 1.86 #

 Enterobacteriaceae 1.75 ± 0.97 1.65 ± 1.18 −0.09 ± 0.33 1.18 ± 0.61 0.52 ± 0.37 * −0.67 ± 0.29
 Erysipelotrichaceae 3.00 ± 0.46 2.53 ± 0.48 −0.47 ± 0.28 2.42 ± 0.40 2.87 ± 0.56 0.47 ± 0.34 #

Genus
 Actinomyces 0.35 ± 0.09 0.34 ± 0.06 −0.01 ± 0.11 0.69 ± 0.31 0.35 ± 0.17 * −0.33 ± 0.16
 Anaerostipes 1.45 ± 0.42 1.40 ± 0.28 −0.05 ± 0.29 1.38 ± 0.39 3.04 ± 0.71 * 1.65 ± 0.53 #

 Bifidobacterium 3.56 ± 1.13 2.81 ± 0.83 −0.75 ± 0.83 4.38 ± 1.06 12.15 ± 1.60 *q 7.77 ± 1.33 #q

 Catenibacterium 0.70 ± 0.31 0.60 ± 0.26 −0.10 ± 0.08 0.56 ± 0.26 1.13 ± 0.41 * 0.57 ± 0.20 #

 Dialister 0.36 ± 0.16 0.23 ± 0.11 * −0.13 ± 0.05 0.13 ± 0.07 0.3 ± 0.12 0.17 ± 0.11 #

 Enterorhabdus 0.39 ± 0.139 0.54 ± 0.16 * 0.15 ± 0.06 0.57 ± 0.24 0.71 ± 0.28 0.13 ± 0.19
 Erysipelotrichaceae.UCG.003 0.67 ± 0.23 0.61 ± 0.18 −0.06 ± 0.12 0.56 ± 0.19 0.37 ± 0.15 * −0.19 ± 0.08
 Escherichia.Shigella 0.59 ± 0.26 0.49 ± 0.24 −0.11 ± 0.19 0.67 ± 0.34 0.31 ± 0.22 * −0.36 ± 0.15
 Eubacterium 3.98 ± 0.48 5.28 ± 0.36 * 1.30 ± 0.50 4.94 ± 0.98 6.01 ± 1.39 1.07 ± 0.69
 Megamonas 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.57 ± 0.35 0.99 ± 0.57 0.42 ± 0.25 #

 Senegalimassilia 0.37 ± 0.09 0.18 ± 0.05 * −0.19 ± 0.07 0.21 ± 0.12 0.14 ± 0.06 −0.08 ± 0.07
 Uncl. Enterobacteriaceae 1.04 ± 0.65 1.03 ± 0.82 −0.01 ± 0.27 0.48 ± 0.27 0.21 ± 0.15 * −0.27 ± 0.13
 Uncl. Family XIII 0.22 ± 0.05 0.23 ± 0.07 0.02 ± 0.06 0.24 ± 0.04 0.09 ± 0.03 * −0.16 ± 0.04
 Uncl. Lachnospiraceae 5.48 ± 0.99 4.06 ± 0.67 −1.42 ± 0.74 5.72 ± 0.78 2.60 ± 0.42 * −3.12 ± 0.75
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conclude that the higher SCFA level strictly reflects SCFA 
production by the gut microbiota.

We did not detect any differences in primary BA profile 
after prebiotic intake. The BA profile in the colon is mainly 
unconjugated along with secondary BA, notably due to the 
action of bile salt hydrolases (BSH) that hydrolyze conju-
gated BA to free BA and glycine or taurine [41]. BSH may 
be found in Clostridium, Enterococcus, Bifidobacterium, 
Lactobacillus and Bacteroides [42]. Although it concerns 
BA in very low proportion in stool samples (< 1% of total 
BA) as previously described [43], we demonstrated that the 
proportion of tauro-conjugated BA versus free BA increased 
in both groups, in favor of TDCA and TCDCA after prebi-
otic intervention. No correlation was found between bacteria 
modulated by the intervention and those BA. Overall, the 
data obtained in this cohort do not support these metabolites 
as biomarkers reflecting the interaction between prebiotic 
DF and the gut microbiota in obese patients.

PUFA may be also reduced by bacteria, leading to 
trans- and conjugated-fatty acids. We have previously 
shown the ability of the gut microbiota to produce PUFA-
derived metabolites from dietary PUFA germ-free versus 
conventionalized mice [10]. In humans, we demonstrated 
that gut microbial metabolites of PUFA correlate with 

specific fecal bacteria and serum markers of metabolic 
syndrome in obese women [44]. CLA and conjugated lino-
lenic acids (CLnA) derive from the biohydrogenation of 
linoleic acid (C18:2) and linolenic acid (C18:3) of bacteria 
that express linole(n)ic acid isomerase. Of these, rumenic 
acid (cis-9, trans-11–18:2) is most naturally abundant, 
representing approximately 85% of all naturally occur-
ring CLA isomers. It is associated with positive health 
benefits, especially demonstrated in human studies with 
obesity metrics as an endpoint [12, 45, 46]. We observed 
an increase of linolenic acid (C18:3) in fecal material after 
prebiotic intake that may be related to dietary intake of 
n-3 PUFA. More importantly, we observed an increase of 
rumenic acid in parallel to an increase of bifidobacteria 
after 3 months of prebiotic supplementation. In addition, 
the higher proportion of fecal rumenic acid correlated with 
bifidogenic effect after ITF intervention. It was already 
shown in vitro that bifidobacteria incubated with linoleic 
acid in deuterium oxide-enriched medium formed labelled 
rumenic acid [46]. Of particular interest, the improve-
ment of gut barrier (regulation of tight junction proteins) 
and gut inflammation (lower inflammatory cytokines in 
colonic tissues) by CLA (mixture of isomers composed 
50% of cis-9, trans-11 CLA) have been demonstrated (in 

Fig. 3  Heatmap of Spearman’s correlations between significant shift 
in bacteria due to the intervention and the significant shift in fecal 
concentrations of biomarkers of gut barrier/inflammation (a) and of 

the relative proportions of LCFA (b). Orange circles indicate signifi-
cant negative correlations whereas purple circles represent significant 
positive correlations (p < 0.05)
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a dose-dependent manner) in a mouse model of colitis 
[45]. Penedo et al. [47] showed that the intake of a cis-
9, trans-11 CLA-enriched butter by normal-weight sub-
jects induces beneficial changes in immune modulators 
associated with sub-clinical inflammation in overweight 
individuals. Although the contribution of dietary supple-
mentation versus the gut microbial production of rumenic 
acid remains to be established, our results together with 
other studies suggested that the increase of rumenic acid 
could be considered as a biomarker of ITF interaction with 
gut microbiota through its bifidogenic effect.

In conclusion, the drop in fecal calprotectin observed 
after prebiotic intake emphasizes the potential interest 
of prebiotic intake to combat gut inflammatory disorders 
occurring with obesity, an effect that could be related 
to changes in the abundance of bacteria like Erysipel-
otrichaceae. If the increase in Bifidobacterium appears 
as a reproducible signature of inulin intake in the whole 
cohort of obese individuals, other bacteria or bacterial co-
metabolites (like rumenic acid) could be implicated in ITF 
interactions with the gut microbiota and have relevance 
for health.
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