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Abstract

Background: Facing the diversity of omics data and the difficulty of selecting one
result over all those produced by several methods, consensus strategies have the
potential to reconcile multiple inputs and to produce robust results.

Results: Here, we introduce ClustOmics, a generic consensus clustering tool that we
use in the context of cancer subtyping. ClustOmics relies on a non-relational graph
database, which allows for the simultaneous integration of both multiple omics data
and results from various clustering methods. This new tool conciliates input clusterings,
regardless of their origin, their number, their size or their shape. ClustOmics imple-
ments an intuitive and flexible strategy, based upon the idea of evidence accumulation
clustering. ClustOmics computes co-occurrences of pairs of samples in input clusters
and uses this score as a similarity measure to reorganize data into consensus clusters.

Conclusion: We applied ClustOmics to multi-omics disease subtyping on real TCGA
cancer data from ten different cancer types. We showed that ClustOmics is robust to
heterogeneous qualities of input partitions, smoothing and reconciling preliminary
predictions into high-quality consensus clusters, both from a computational and a bio-
logical point of view. The comparison to a state-of-the-art consensus-based integration
tool, COCA, further corroborated this statement. However, the main interest of Clus-
tOmics is not to compete with other tools, but rather to make profit from their various
predictions when no gold-standard metric is available to assess their significance.

Availability: The ClustOmics source code, released under MIT license, and the results
obtained on TCGA cancer data are available on GitHub: https://github.com/galadrielb
riere/ClustOmics.

Keywords: Disease subtyping, Multi-omic data, Data integration, Consensus
clustering

Background

Recent advances in biological data acquisition have made it possible to measure a wide
range of data. Polymorphism data, DNA methylation, RNA expression, and copy num-
ber variations as well as other “omics” data are now routinely observed and analyzed.
Each omics type has the potential to reveal different molecular mechanisms associated
with a phenotype, and making use of all available omics data could decipher complex and
multilevel molecular interactions. Though several integrative tools have been developed,
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with all of them aiming to answer biological questions by using multiple available data
sources, the issue of omics data integration is far from solved. Along with the issue of
omics data heterogeneity and integration, scientists are challenged with the diversity of
strategies and methods available to answer the same biological question, each approach
having its own perks and benefits.

The question of cancer subtyping is particularly representative of this kind of issue.
By performing a clustering analysis, disease subtyping aims at detecting subgroups of
patients (samples) showing similar characteristics. Even in the single-omics context,
such analysis can be challenging, and numerous clustering strategies have been imple-
mented and/or tested to this end: hierarchical clustering strategies, density-, distribu-
tion- or centroid-based strategies, supervised and unsupervised strategies, etc. The
selection of a clustering method as well as of the optimal parameters to use is generally
tricky. Moreover, the various biological mechanisms that are involved may vary from one
patient to another: each tumor is different and has its own characteristics, both in the
tumor cells themselves and in their interaction with their environment. As these mecha-
nisms are not restricted to a single molecular level, the detection of groups of patients
showing similar characteristics across different omics is a key issue to enable personal-
ized medicine, which aims to offer patients a treatment adapted to the characteristics of
their tumors.

This detection of groups of patients showing similar characteristics across different
omics motivated the development of new computational methods implementing dif-
ferent strategies to analyze several omics datasets simultaneously (for detailed reviews,
see [1, 2]). According to the classification proposed in [1], the early integration strat-
egy consists of concatenating omics datasets in a large matrix and applying a cluster-
ing method conceived for single-omics data [3, 4]. However, late integration approaches
first cluster each omics dataset independently and fuse single-omics clusterings into one
multi-omics clustering [5, 6]. Other approaches perform intermediate integration, fusing
sample similarities across omics [7-9], using dimension reduction strategies [10, 11], or
statistical modeling with Bayesian frameworks [12—14].

To tackle both issues mentioned above, i.e., multi-omics and multi-strategy integra-
tion, one may want to apply a particular type of late integration strategy by taking mul-
tiple clustering results (using different data, methods and parameters) and fusing all of
them into one consensus clustering. Such a consensus clustering should benefit from
the complementary information carried by various omics data and capitalize upon the
strengths of each method while fading their weaknesses.

Note that with respect to classical late integration strategies that start from the raw
omics datasets (e.g., PINS [6] uses perturbations of raw omics data to generate the most
stable multi-omics clustering), consensus clustering methods rely solely on clustering
results. This property is essential, as it allows for any clustering algorithm and any clus-
tering result to be used, regardless of the availability of the raw omics dataset and of its
type.

A naive way to compute a consensus clustering would be to perform the intersection of
the clustering results, i.e., by simply taking the associations on which all methods agree.
However, the greater the number of clusterings to fuse, the smaller the intersection is.
Moreover, when clusterings show different numbers of clusters, the question of the
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intersection is not trivial. Therefore, the issue of consensus clustering requires further
methodological developments.

To compute a consensus clustering from a set of input clusterings, two main strategies
exist: object co-occurrence-based approaches and median partition-based approaches
[15]. In the former strategy, consensus clustering is computed from a matrix counting
co-occurrences of objects in the same clusters [5]. The latter strategy focuses on find-
ing a consensus clustering maximizing the similarity with the input partitions. Both
strategies raise several nontrivial questions. The choice of a clustering algorithm and its
tuning is not straightforward when working with a co-occurrence matrix. However, for
the median partition-based approach, the choice of a similarity measure is determinant.
Nevertheless, for consensus clustering in a multi-omics multi-method context, compar-
ing co-occurrences of objects is more pertinent than comparing similarities between
partitions.

Here, we present ClustOmics, a new graph-based multi-method and multi-source
consensus clustering strategy. ClustOmics can be used to fuse multiple input clustering
results, obtained with existing clustering methods that were applied on diverse omics
datasets, into one consensus clustering, regardless of the number of input clusters, the
number of individuals clustered, the omics and the methods used to generate the input
clusterings.

The co-occurrence strategy implemented in ClustOmics (detailed in the “Meth-
ods” section) is based on evidence accumulation clustering (EAC), first introduced by
Fred and Jain [16]. The idea is to consider each partition as independent evidence of
data organization and to combine them using a voting mechanism. Similar to clustering
methods that use a distance or a similarity measure to compare objects, EAC consid-
ers the co-occurrences of pairs of objects in the same cluster as a vote for their associa-
tion. The underlying assumption is that objects belonging to a natural cluster are more
likely to be partitioned in the same groups for different data partitions. Thus, one can
use the counting of the co-occurrences of the objects in clusters as a pairwise similar-
ity measure. We further refer to these co-occurrence counts as the number of supports.
This measure, summarizing the results from the input clusterings, is a good indicator of
the agreement between the partitions and allows production of a new partitioning that
can be qualified as consensual. Although computationally expensive, this strategy allows
exploiting all clustering results, regardless of the number of clusters and their size and
shape.

We designed ClustOmics as an exploratory tool to investigate clustering results in
order to increase the robustness of predictions, taking advantage of accumulating evi-
dence. To allow the user to tackle a specific question and to explore relationship patterns
within input clusterings and generated consensus, we store the data in a non-relational
graph-based database implemented with the Neo4j graph platform [17]. The use of a
graph native database facilitates the storage, query and visualization of heterogeneous
data, hence allowing the development of a solution that is flexible to various integration
strategies. Indeed, by fusing clusterings from different clustering methods, different data
types, different experimental conditions, or several options at the same time, through
the use of what we call integration scenarios, ClustOmics can address a wide range of
biological questions.
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ClustOmics was applied in the context of multi-omics cancer subtyping, with TCGA
data from different cancer types and multiple omics datasets. Input clusterings were
computed with several single and multi-omics clustering methods and then were fused
in a consensus clustering. Further details on the strategy implemented in ClustOmics
are given in “Methods” section. To assess the benefit of this novel method, we further
explored the robustness of our consensus clusterings with respect to the input cluster-
ings, as well as their biological relevance, based on clinical and survival metadata avail-
able for each patient. We compare the ClustOmics results with those of COCA [5], a
well-known co-occurrence-based consensus clustering tool that has already been used

to combine multiple omics datasets to reveal cancer subtypes [18].

Results

Consensus clustering for disease subtyping in a multi-omics context can be imple-
mented as an a priori solution making a consensus of omics-specific input clusterings
or by a posteriori computing a consensus from multi-omics input clusterings. To better
understand the perks and benefits of fusing omics data in one way or another, ClustOm-
ics was tested in these two contexts based on two integration scenarios.

First, we used ClustOmics to fuse multi-omics clusterings computed with existing
integrative methods. In this scenario (multi-to-multi, MtoM), the integration of omics
is performed by various existing clustering tools, and ClustOmics computes a consensus
result of the different multi-omics clusterings produced. The second scenario (single-to-
multi, StoM) involves both methods and omics integration, as only single-omics cluster-
ings computed from various methods are fused into one consensus clustering. See Fig. 1
for a visual representation of these two scenarios.

Below, we analyze and compare ClustOmics and COCA consensus multi-omics clus-
terings (produced using the same set of input clusterings) for the two integration sce-
narios, on TCGA data from ten different cancer types, three omics datatypes (gene

Multi-omic clusterings to multi-omic multi-method clustering
Integration of multi-omic clusterings from multiple multi-omic methods

Multi-omic
clustering methods [>

Omics [>

Single-omic
clustering methods D

g
Single-omic clusterings to multi-omic multi-method clustering
Integration of single-omic clusterings from multiple single-omic methods

Fig. 1 Two integration scenarios: multi-to-multi consensus clustering and single-to-multi consensus
clustering. Arrows are dashed according to the omics considered by each input clustering method
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expression, miRNA expression and methylation) and various input clustering strategies
(described in “Methods - Datasets and tools used for computing input clusterings” sec-
tion). We further focus on breast cancer and analyze the ClustOmics results for the sin-
gle-to-multi scenario on the breast dataset.

Results overview of the ten cancer types for the two integration scenarios

Running ClustOmics and COCA on the ten cancer datasets with respect to the different
integration scenarios implies starting by computing single- and multi-omics input clus-
terings to group patients according to their single- and multi-omics profiles.

For the multi-to-multi (MtoM) scenario, multi-omics input clusterings were obtained
with existing multi-omics clustering tools: PINS [6], SNF [7], NEMO [8], rMKL [9] and
MultiCCA [10] (see Table 6).

For the single-to-multi (StoM) scenario, the same tools listed above were applied,
except for the MultiCCA tool, which can only be used in a multi-omics context and was
replaced with the simple yet robust state-of-the-art method, K-means clustering [19]. In
this scenario, the tools were applied to each omics dataset independently. Moreover, to
evaluate the benefits of including patients with missing data (that were not measured for
all of the three omics), two different runs were performed. In the first run, referred to as
StoM OnlyMulti, only patients measured for the three omics were considered, that is,
patients with no missing data. For the second run, named StoM All, all available patients
for each omics were kept, implying that in this scenario the set of patients clustered in
input clusterings was different across omics.

A survival and clinical label enrichment analysis was conducted on ClustOmics and
COCA multi-omics consensus clusterings, as well as on the single-omics and multi-
omics input clusterings (see “Methods - Biological metrics” section for more details on
the biological metrics used). An overview of the results for the ten cancer types is dis-
played in Fig. 2.

In terms of clinical label enrichment in clusters, the number of clinical labels signifi-
cantly enriched varies from 19 to 26 (for a total of 79 enrichment p values computed
from 32 distinct clinical labels), depending on the clustering tool. The majority of clinical
labels found enriched in ClustOmics consensus clusters were also found enriched for at
least one input clustering as well as in the corresponding COCA consensus, and clinical
labels stably enriched in input clusterings were also found enriched in ClustOmics and
COCA consensus clusterings. For details with respect to the distribution of the clinical
labels found enriched in input and consensus clusterings for the MtoM and StoM sce-
narios, see Additional file 1: Figure S1.

The survival analysis results show high heterogeneity, supporting the idea of comput-
ing a consensus clustering, especially when no gold-standard metric or ground-truth
data are available. In this sense, it is important to stress out that ClustOmics succeeded
to compute biologically relevant consensus partitions from input clusterings of variable
quality. Indeed, in the multi-to-multi case, ClustOmics managed to find 4 out of 10 sig-
nificant log-rank p values, counterbalancing the PINS and MultiCCA mitigated results,
although they were part of the input clustering results used for this integration scenario.
For the same set of input clusterings, COCA MtoM yielded to a 3 survival-wise signifi-
cant consensus result.
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Fig. 2 Overview of survival and clinical label enrichment results for the ten cancer types analyzed. The x-axis
represents the number of significant survival p values (< 0.01) found for each clustering, over all the ten
cancer types. The y-axis represents the total number of significantly enriched clinical labels (p values < 0.0),
all cancer types included. In total, 79 enrichment p values were computed from 32 distinct clinical labels

Interestingly, for the single-to-multi scenario, Fig. 2 clearly shows that considering
individuals with missing data (StoM All) greatly improves the consensus clusterings,
both in terms of clinical label enrichment and survival analysis, for ClustOmics as well
as for COCA. For the StoM All scenario, COCA found 4 additional enriched clinical
labels with respect to ClustOmics but yielded only 2 out of 10 survival-wise quality clus-
terings, compared to 4 for ClustOmics. The quality results for omics-specific input clus-
terings used for this scenario do not appear in Fig. 2 but are further detailed in “Results
- Integration of single-omics clusterings” section.

Detailed results for the MtoM and StoM integration scenarios are given in the follow-

ing two sections.

Integration of multi-omics clusterings (multi-to-multi scenario)

Input multi-omics clusterings were computed with the five multi-omics clustering meth-
ods presented in “Methods - Datasets and tools used for computing input clusterings”
section using default parameters and following recommendations of the authors. The
clusterings were produced using the multi-omics patients exclusively (those for which all
three omics data are available). To make all input clusterings comparable, we ran NEMO
in the same way, though compared to the other five tools, NEMO is able to handle par-
tial data.

ClustOmics was run with the min_size_cluster parameter arbitrarily set to 8 nodes
for all cancer types, meaning that clusters of size below 8 were removed from the con-
sensus clustering, with the corresponding individuals being reassigned to consensus
clusters exceeding the size threshold. We also set the min_size_consensus parameter
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to 95% of the population to ensure that less than 5% of individuals are being reas-
signed to consensus clusters, either because of the number of support thresholds on
the integration graph or because of the filter on the size of the clusters. The quantita-
tive global measures on the ClustOmics consensus clusterings are detailed in Table 1.

Note that the maximum number of supports promoting the association of two
patients in the same consensus cluster is bounded to 5, as five input clusterings (com-
puted from five integrative clustering tools) were used for this integration scenario.
After testing all possible thresholds on the number of supports, the optimal filtering
threshold was obtained for each cancer type (2, 3 or 4, depending on the cancer type),
meaning that only pairs of patients clustered in the same multi-omics cluster by at
least 2 to 4 clustering methods were considered to compute the consensus clustering.

When comparing input and ClustOmics consensus clusterings, we observe a cer-
tain consistency in terms of the number of clusters. COCA, however, resulted in 2 to
3 clusters independently from the cancer type, which suggests a lower sensitivity to
input clustering dissimilarities compared to ClustOmics.

Two cancer datasets, COAD and LUSC, showed the lower consistency between
the input predictions and clustered with a number of supports of 2. For LUSC cancer
type, the consensus clustering resulted in only 2 clusters, despite the large size of the
available cohort (341 individuals). The computation of the adjusted Rand index (ARI)
[20] between input clusterings, a measure of similarity between partitions, showed
that for these two cancer types, SNF and NEMO clusterings were very similar (with
an ARI value of 0.7 for COAD SNF and NEMO clusterings and of 0.9 for LUSC; see
Additional file 1: Figure S2) while the 3 other input clusterings showed high pair-
wise dissimilarity (ARI < 0.4). The resulting consensus clusterings for both Clus-
tOmics and COCA were very similar to SNF and NEMO and dissimilar to the other
input clusterings, failing to compute an actual consensus of all input partitions. For
the other cancer types, similarities between input clusterings were more balanced,
enabling ClustOmics to reconcile predictions. ARI heatmaps comparing input and

Table 1 Multi-to-Multi Scenario: Number of patients initially clustered by ClustOmics, number of
patients reassigned to consensus clusters, number of supports used to filter the integration graph,
number of consensus clusters generated by ClustOmics and COCA, and average number of clusters
in input clusterings

Cancer # patients # patients # supports # clusters # clusters Avg #
clustered reassigned threshold ClustOmics COCA clusters
inputs
AML 165 5 4 6 3 4.6
BIC 619 2 4 5 2 4.0
COAD 220 0 2 3 3 52
GBM 267 7 4 3 3 34
KIRC 176 7 3 3 3 4.2
LIHC 363 4 4 5 2 32
LUSC 341 0 2 2 2 34
oV 285 2 4 5 2 34
SARC 257 0 3 3 3 34
SKCM 351 0 3 5 3 4.8
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consensus clustering similarities for the ten cancer types in the MtoM scenario are
available in Additional file 1: Figure S2.

Unsurprisingly, from Table 1, we remark that filtering the integration graph with a
higher number of supports generally results in reassigning individuals (from 2 to 7) to
consensus clusters. The predictions regarding these reassigned patients do not neces-
sarily meet the number of supports threshold for which the consensus clusters were
computed.

Figure 3 presents survival analysis results for the various multi-omics clusterings given
as input to ClustOmics and COCA MtoM and for the resulting consensus clusterings.
When looking at the input clustering survival results, we can differentiate two cases:

+ For AML, LIHC, SARC and SKCM, the input clusterings show a quite high heteroge-
neity in terms of survival quality

+ For BIC, COAD, GBM, KIRC, LUSC and OV cancer types, the input clusterings
show relatively homogeneous survival quality

For the first group of cancer types, the heterogeneity of input clustering survival quali-
ties indicates how the choice of one clustering method can drastically impact the results.
For these cancer types, ClustOmics produced consensus clusterings of a survival-wise
quality approaching the median quality value, considering the input clusterings. Indeed,
from input clusterings of various quality, ClustOmics was able to extract the most stable
patterns across the input partitions.

When input partitions show homogeneous survival quality, ClustOmics gives similar
results, which is an expected behavior. The largest deviation from the median is found

@e
4
*
—_ ;f Method
[0}
% 3 © PINS
|
T @ @ SNF
%‘ u @ rMKL
% @ O MCCA
3 2f-mmmmemmmmmmm oo =4 TR IR Z_-]-4----1 o Nemo
§ 5 B ClustOmics MioM
= ® @ COCA MtoM
kel ©
] - °
)
1 £ *
® o 'L
3 =
° $ %
o] e % e
AML  BIC COAD GBM KIRC LIHC LUSC OV  SARC SKCM
Cancer
Fig. 3 Survival analysis results for ClustOmics and COCA multi-to-multi consensus clustering and for each
input multi-omics clustering. The horizontal dashed line indicates the threshold for significantly different
survival rate (p value < 0.07). Boxplots were computed considering input clusterings only
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for the KIRC cancer type, for which both COCA and ClustOmics consensus clusterings
produced a partition of higher quality than could have been expected.

Consensus clusterings were also investigated for clinical labels enriched in clusters.
For the ten cancer types, ClustOmics and COCA found 20 common clinical labels as
being enriched, of which 19 were also found enriched in at least one input clustering.
However, 16 labels were found as enriched in at least one input clustering but not in the
consensus clusterings (see Additional file 1: Figure S1B). Table 2 give complete details on
the clinical labels enriched in ClustOmics consensus clusterings for the ten cancer types.

For AML, for example, ClustOmics computed clusters enriched for the CALGB
cytogenetics risk category, a risk classification based on the Cancer and Leukemia Group
B clinical trial [21], and for the French—American—British (FAB) morphology code, a
clinical classification for AML tumors [22]. Reassuringly, BIC consensus clustering was
found enriched for the PAMS50 classification, a widely used breast-cancer subtype pre-
dictor [23].

Integration of single-omics clusterings (single-to-multi scenario)
To assess ClustOmics performance when fusing simultaneously input clusterings com-
puted from different omics data and with different clustering methods, we investigated
a second integration scenario, combining single-omics clusterings produced indepen-
dently on each omics dataset. The overall cancer consensus results for this scenario are
displayed in Fig. 2 and discussed in detail in this section.

As stated above, single-omics clusterings were computed using the following five clus-
tering tools: PINS [6], SNF [7], NEMO [8], rMKL [9] and K-means clustering [19] (with
an optimal number of clusters computed with the Silhouette index [24]).

Table 2 Clinical labels found enriched in multi-to-multi (MtoM) scenario consensus clusters, in
single-to-multi (StoM All) scenario consensus clusters, and for both scenarios

Cancer Scenarios Enriched clinical labels

AML Both Age at initial pathologic diagnosis
CALGB cytogenetics risk category
Leukemia French—-American-"British Morphology Code
BIC Both Age at initial pathologic diagnosis, PAM50 call
Pathologic N, Pathologic Stage, Histological type
Estrogen receptor status, Progesterone receptor status

StoM All Pathologic M, Pathologic T
COAD MtoM Histological type
StoM All Age at initial pathologic diagnosis
GBM Both None
KIRC Both Pathologic M, Neoplasm histologic grade
StoM All Pathologic T
LIHC Both Gender, Age at initial pathologic diagnosis, Fetoprotein outcome value
LUSC Both None
oV Both None
SARC Both Gender, Age at initial pathologic diagnosis, Histological type
MtoM New neoplasm event type

SKCM MtoM Age at initial pathologic diagnosis
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To assess the benefit of including individuals with missing data (not measured for
all omics), two analysis were performed for this scenario:

« For StoM OnlyMulti, input clusterings were computed using exclusively multi-
omics patients. Given that this is the same set of individuals as in the MtoM
integration scenario, the same parameters were used for all cancer types, i.e.,
min_size_consensus = 95% and min_size_cluster = 8.

+ For StoM All, omics clusterings were computed using all available patients. As the
proportion of missing data varies between cancer types (up to 66% partial data
for KIRC; see Table 5) and between omics, input clusterings do not apply to the
same set of patients as in the scenarios previously described. To account for this
increase in the number of patients to be clustered, min_size_cluster was set to 5%
of the multi-omics population. The min_size_consensus parameter was set to 95%
of the multi-omics population.

As shown in Fig. 2, fully exploiting the available data (including patients with missing
data) greatly improved the consensus clusterings, for both ClustOmics and COCA.
Moreover, for 3 cancer types, BIC, GBM and LUSC, capitalizing on all available indi-
viduals resulted in increasing the number of supports used to filter the integration
graph. The largest increase in the number of supports threshold was observed for
BIC, i.e., from 7 supports in the StoM OnlyMulti up to 11 in the StoM All run. For
LIHC, OV and SKCM, however, we observe a decrease of —2, —1 and —1, respectively,
in the number of supports. For the other cancer types, the threshold on the number
of supports is identical between the two runs. In the follow-up of this study, we will
focus on the results of the StoM All run.

In this scenario, the maximum possible number of supports is 15 as the five cluster-
ing methods were run on three omics datasets for each cancer. Note that for this sce-
nario, the threshold on the number of supports used to filter the integration graph has
great influence on the capacity of ClustOmics to produce consensus clusters across
omics and on the interpretation of the results. Indeed, the threshold has to be greater
than 5 to ensure that all the conserved integration edges rely on an association that
is consistent across at least two different omics (one omics type being represented
by five input clusterings). To ensure that all integration edges are built upon all three
omics, the threshold must be 11 or higher. One should estimate an acceptable thresh-
old depending on the experimental design and the biological question to address.

In our case, as we did not wish to bring any a priori preconceptions on which omics
should have a stronger impact on the results (indeed, one omics data type could par-
ticularly well explain the disparities in molecular profiles of patients for a cancer type
but not for the others), we considered a number of supports of 7 to be sufficient to
ensure that selected integration edges are either moderately consistent across the
three omics or strongly consistent in one omics type.

Together with the constraint to preserve at least 95% of the multi-omics popula-
tion (min_size_consensus parameter), this gave a number of supports used to filter the
integration graph ranging from 7 to 11. The results for this scenario are displayed in
Table 3.
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Table 3 Single-to-Multi All Scenario: Total population size (which are multi-omics), number of
patients clustered or reassigned to consensus clusters (which are multi-omics), number of supports
used to filter the graph, number of clusters generated by ClustOmics, number of clusters generated
by COCA, and average number of clusters in the input clusterings

Cancer Total (multi-omics) Clustered Reassigned  # supports # clusters # Avg #
(multi- (multi- threshold ClustOmics clusters clusters
omics) omics) COCA inputs

AML 197 (170) 176 (163) 21(7) 8 7 4 6.60

BIC 1096 (621) 600 (600) 496 (21) 11 6 2 3.87

COAD 303 (220) 276 (220) 27 (0) 7 6 4 347

GBM 578 (274) 434 (262) 144 (12) 9 M 2 413

KIRC 534 (183) 316 (174) 218(9) 9 9 2 407

LIHC 377 (367) 363 (354) 14 (13) 8 5 2 473

LUSC 501 (341) 337(321) 164 (20) 8 4 2 4.73

ov 591 (287) 393 (272) 198 (15) 9 9 2 347

SARC 261 (257) 261 (257) 0(0) 8 3 3 433

SKCM 368 (351) 345 (329) 23 (22) 8 6 4 467

One of the major benefits of this integration scenario (in addition to the fact that
single-omics clusterings are easier to compute) is its ability to cluster individuals that
did not appear in all input partitions. Interestingly, although multi-omics patients have
better chances to show high numbers of supports (as they appear in all input cluster-
ings), some proportion of those multi-omics patients had to be reassigned to consensus
clusters, while other individuals who were not measured for the 3 omics were clustered
immediately, which suggests a good agreement between the input clusterings for the
classification of these individuals.

Input clusterings can show great similarity for a given omics type. If this omics type
allows differentiation of groups of individuals in a clear-cut way, it will drive consen-
sus clustering. However, if the omics type is less relevant to partition patients, input
clusterings are more likely to show different patient associations. Such clusterings add
noise-like integration edges in the integration graph, with low number of supports on
edges. Therefore, we expect each omics to have a different impact on the final consensus
clustering. To evaluate the impact of omics-specific input clusterings on the consensus
result, we used the adjusted Rand index (ARI) [20].

In Fig. 4, ClustOmics and COCA consensus clusterings were compared to each of
the input clusterings. The relative proximity of a clustering consensus to the different
input clusterings, as measured by the ARI, indicates the ability of the tool to produce a
partition that can genuinely be considered as reconciling the input predictions. In that
respect, the ARI of a consensus clustering in relation to its inputs should be maximized
for a maximum of input clusterings, including for those coming from different omics.
The highest similarity between consensus and input clusterings from different omics
sources is observed for the SARC cancer dataset (see Fig. 4), with ARI values ranging
from 0.4 up to 0.9 for at least one input clustering computed from each of the three
omics datasets, suggesting similar associations at different molecular levels. For the
other cancer types, the agreement between omics sources is less straightforward. Inter-
estingly, for all cancer types, COCA and ClustOmics consensus clusterings resemble the
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same input clusterings (computed from the same set of omics sources), thus suggesting
that some omics are more appropriate to explain molecular differences between indi-
viduals. Unsurprisingly, gene expression impacts consensus clustering on most cancer
types, but miRNA and methylation data also guided consensus clusterings, especially in
COAD, LIHC and OV. Figure 4 also shows that the dispersion of ARI values is much
greater for COCA consensus clusterings than for ClustOmics. While COCA consensus
clusterings are very similar (if not identical) to a few input clusterings but very dissimilar
to the others, ClustOmics produces a consensus that is closer in average to all inputs.
Survival analysis for this integration scenario (see Fig. 5) shows two groups of cancer
types, as already noted for the multi-to-multi scenario. For BIC, COAD, LUSC and OV,
gene expression, methylation and miRNA input clusterings show homogeneous survival
p values. For these cancer types, ClustOmics computed a consensus clustering with sim-
ilar quality scores. For the cancer datasets showing higher heterogeneity among input
clusterings survival quality, ClustOmics found significant survival p values for AML,
KIRC, LIHC and SKCM, despite some low-quality clusterings that were given as input.
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Clinical labels found enriched in consensus clusters are listed in Table 2. AML clusters
were found enriched for both CALGB and FAB classifications, KIRC clusters for histo-
logic grade and pathologic M and T (referring to the TNM classification of tumors [25]),
LIHC clusters for gender, age at diagnosis and fetoprotein outcome value, while SKCM
clusters showed no enriched clinical parameters. While BIC consensus clustering did
not show good survival-wise results, pathologic M, N and T labels were found enriched
in clusters, as well as pathologic stage, histological type, PAM50 call, and estrogen and
progesterone receptor status.

In the following section, we further explore the single-to-multi consensus clustering
for BIC dataset.

Study case: BIC single-to-multi consensus clustering
In this section, we focus on the consensus clustering of the 15 single-omics clusterings
for the BIC dataset (five clustering methods, listed in the previous section, applied on
three omics data types) and analyze these results in parallel to the PAMS50 classification.
As the PAM50 classification is computed from the expression of 50 specific genes, while
in this work, we capitalize on three different omics, a certain heterogeneity in the clus-
ters when compared to the PAMS50 prediction is expected. Moreover, this heterogeneity
is to be further explored, as it could reveal subtypes that are not distinguishable when
considering only PAM50 genes but that are heterogeneous when integrating other data
sources.

From the 1096 patients available in the BIC dataset (of which only 621 patients are
measured for the three omics), ClustOmics succeeded in primarily classify 600 multi-
omics patients in consensus clusters, with a number of supports threshold of 11 (see
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Table 3). The remaining 21 multi-omics individuals were reassigned to consensus clus-
ters, as well as the 475 individuals with missing data. The consensus clustering resulted
in a partition with 6 clusters, with sizes ranging from 115 to 254 individuals (the mini-
mum allowed size for a cluster min_size_cluster being set to 5% of the multi-omics popu-
lation, that is, 31 individuals for BIC).

As the PAMS50 clinical labels were missing for 255 patients, we applied the original
classifier introduced by Parker et al. [23] to call the missing labels. To estimate the qual-
ity of reassessed PAM50 labels, we evaluated the concordance between available PAM50
labels and recomputed PAM50 labels. The Fl-scores showed the Basal, Luminal A,
Luminal B and Her2 PAM50 labels to be well predicted (F1-score of 0.89, 0.75, 0.74 and
0.64, respectively). Predictions for the Normal-like class are less reliable (F1-score of
0.27) due to the small size of the class (23 individuals).

We further mapped the PAM50 calls to ClustOmics consensus clusters and observed
significant concordance, as depicted in Fig. 6.

Indeed, Luminal A samples are overrepresented in the consensus clusters B and E,
Luminal B samples in A and D, Her2 samples in A, and Normal-like samples in con-
sensus cluster C (see Fig. 6 and Table 4). The vast majority of basal-like samples were
classified in consensus cluster F, which gathers 190 of the 197 basal samples, with the
remaining 7 being clustered in consensus clusters B, C and D.

This mapping of PAMS50 calls on consensus clusters, which seems fuzzy at first
glance, is not surprising as it has been shown that separation of Luminal A and B

. Luminal A sample .
.Basal-llke sample

(Ona

’Consensus cluster node

OLuminaI B sample
.Her2 sample
.Normal-like sample

Fig. 6 BIC consensus clustering with patients colored according to the PAMS50 prediction. Annotated
screenshot from the Neo4j browser for graph visualization
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Table 4 Over- and underrepresented clinical labels within BIC consensus clusters. ER+/ER— and
PR+/PR—, respectively, correspond to estrogen receptor status and progesterone receptor status,
positive and negative. M, N, and T stages refer to the TNM staging system

Cluster Over-represented labels Under-represented labels
A Infiltrating Ductal Carcinoma Infiltrating Lobular Carcinoma
Her2, Luminal B Basal, Normal-like
ER+ ER—
B MX, N3, T3 MO
Stage lll
Infiltrating Lobular Carcinoma Infiltrating Ductal Carcinoma
Luminal A Basal
ER+, PR+ ER—, PR—
C MX, T3 MO, T2
Infiltrating Lobular Carcinoma Infiltrating Ductal Carcinoma
Normal-like Basal, Luminal B
ER+, PR+ ER—, PR—
D Stage X
Mucinous Carcinoma Infiltrating Lobular Carcinoma
Luminal B Basal, Normal-like
ER+, PR+ ER—, PR—
E T1
Stage |
Luminal A Basal, Luminal B
ER+, PR+ ER—, PR—
F NO
Stage I Stage lll
Infiltrating Ductal Carcinoma, Medullary Carcinoma, Infiltrating Lobular Carcinoma
Metaplastic Carcinoma
Basal Luminal A, Luminal B
ER—, PR— ER+, PR+

samples was not reconstructed by RNA-seq unsupervised analysis [26]. Several stud-
ies also reported that the separation between Luminal subtypes was not consistent,
suggesting that Luminal A and Luminal B samples may represent part of a continuum
rather than distinct subgroups [26-28].

Moreover, clinical label enrichment analysis and additional tests applied to describe
the clusters show good mapping between ClustOmics clusters and key biological clin-
ical labels such as estrogen receptor and progesterone receptor status (ER/PR) or his-
tological type of tumor (see Table 4).

Finally, we investigated the biological relevance of ClustOmics consensus cluster-
ing by comparing gene expression profiles between clusters. We computed the top
1000 genes differentially expressed across groups by applying the Kruskal-Wallis test
[29] and selecting FDR adjusted p values below 0.001 (see Additional file 1: Figure S3).
We clustered the top 1000 genes in 6 clusters using hierarchical clustering and for
each gene list, we looked for overrepresented biological process (BP)-related Gene
Ontology terms (GO terms). One of the gene clusters showed no significant results
(FDR adjusted p values > 0.05), but the other 5 gene lists were found enriched for
cilium organization and assembly, response to transforming growth factor , tissue
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migration, T-cells activation, mitotic nuclear division or other biological processes
(see Additional file 1: Figure S4).

More precisely, we found that the gene cluster X2, associated with cilium organization
and assembly, microtubule bundle formation and regulation of intracellular steroid hor-
mone receptor signaling pathway, was downregulated in consensus cluster F (composed
mainly of Basal-like samples), compared to other consensus clusters. Gene cluster X3
was associated with response to transforming growth factor j, extracellular organiza-
tion, transmembrane receptor protein serine/threonine kinase signaling pathway and
regulation of muscle cells. Those genes appear downregulated in consensus clusters A
(Her2, Luminal B samples), D (Luminal B samples) and F (Basal-like samples). Gene
cluster X4, associated with epithelium migration and astrocyte differentiation, was found
downregulated in consensus clusters A and D (both enriched in Luminal B samples) and
upregulated in consensus cluster F (Basal-like samples). Gene cluster X5 is associated
with T-cell activation, lymphocyte and leukocyte differentiation, membrane raft organi-
zation and regulation of peptidase activity and is downregulated in consensus clusters A
and D (Luminal B samples). Finally, gene cluster X6, related to chromosome segregation
and mitotic nuclear division, was found upregulated in consensus cluster F (Basal-like
samples) and downregulated in consensus clusters B (Luminal A), C (Normal-like) and E
(Luminal A).

Discussion

The novel method that we present in this paper deals with two key issues raised by the
present context in biology and medicine and, in parallel, in bioinformatics. Indeed, these
domains are witnessing an actual revolution in the acquisition of molecular data and
thus facing a flood of various types of omics data. The ultimate goal is to benefit from
the diversity and complementarity of these omics data (data on DNA methylation, copy
number variations, polymorphism, etc.) by analyzing them simultaneously. However,
multi-omics data integration is only one facet, as we also face an outburst of biocom-
putational approaches meant to deal with this unprecedented variety and quantity of
data, and the choice of a method or of the optimal parameters is generally challenging.
In this paper, both simultaneous integration of multiple omics and of various methods
are tackled in an innovative manner through an original integration strategy based on
consensus.

More specifically, in this work, we address the cancer subtyping problem from a per-
sonalized medicine-related perspective, which is gaining increasing attention. To treat
patients according to their disease profile, one should be able to distinguish between
disease subtypes. These disease subtypes can be predicted from omics data (tradition-
ally gene expression but also methylation, miRNA, etc.) by performing patient clustering
(hierarchical clustering, density-based clustering, distribution-based clustering, etc.).
Our novel graph-based multi-integration method can fuse multiple input clustering
results (obtained with existing clustering methods on diverse omics datasets) into one
consensus clustering, regardless of the number of input clusters, number of objects clus-
tered, omics and methods used to generate the input clusterings.

To compute a consensus clustering, our method, implemented in a tool called Clus-
tOmics, uses an intuitive strategy based on evidence accumulation. The evidence
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accumulation counts (i.e., the number of supports on the integration edges) make the
consensus clustering results easier to interpret, as they provide insight into the extent
to which the consensus clustering can be considered multi-source (issued from multiple
omics) and to the overall agreement of input partitions.

The original EAC strategy as proposed by Fred and Jain [16] uses input partitions
obtained by running the K-means algorithm multiple times (= 200) with random ini-
tialization of cluster centroids. From these partition results, a co-occurrence matrix is
computed, and a minimum spanning tree algorithm is applied to find consensus clusters,
by cutting weak links between objects at a threshold ¢ defined by the user. The authors
recommend that clusterings obtained for several values of ¢ should be analyzed. In Clus-
tOmics, we developed a weighted modularization optimization strategy to automatically
select the best filtering threshold. Additionally, rather than generating input clusterings
from running the same algorithm multiple times as proposed by Fred and Jain, here, we
benefit from using various clustering strategies, each searching for different patterns
and giving different insights to the data. This approach also allows the use of algorithms
that are specialized for one omics type. Moreover, by taking as input a high number
of clusterings obtained with a same tool with varying parameters, the convergence of
the consensus clustering, especially in a single-omics context, can be improved, and
this improvement can also be achieved by ClustOmics by giving the appropriate input
clusterings.

Though our method does not formally weight input datasets (e.g., according to their
level of confidence), one can artificially enhance the impact of one or several omics
sources by providing supplementary single-omics input clusterings. In the same way,
when dealing with missing data, patients measured with all omics are more likely to
accumulate supports and therefore more likely to cluster together. In a context of multi-
source integration, favoring individuals with the least quantity of missing data makes
it possible to highlight the predictions supported by several data sources, which is the
desired behavior. In a context of single-source integration, the same set of objects is usu-
ally used in all input clusterings (apart from a few specificities of the input clustering
tools used).

TCGA real datasets from three different omics and ten cancer types were analyzed
with respect to two integration scenarios: (1) fusing multi-omics clusterings obtained
with existing integrative clustering tools and (2) fusing omics-specific input clusterings.
In both cases, ClustOmics succeeded in computing high-quality multi-omics consen-
sus clusterings, with clusters showing different survival curves and enriched for clinical
labels of interest, coherent with what could be found in the cancer literature. Moreover,
the results indicate that ClustOmics is robust to heterogeneous input clustering qualities
(reconciling and smoothing the disparities of partition) and in comparison with a state-
of-the-art consensus-based integration method, COCA.

The overall results show that the rMKL tool outperformed the other tools when con-
sidering the survival and clinical label enrichment metrics. However, our method is not
meant to compete with existing single or integrative omics clustering methods, as it
implements a more generic strategy. While “classical” tools take raw omics data as input,
ClustOmics starts from classification results, thus allowing fusing any type of data, as
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the classification results may correspond to clustering results (obtained from the analy-
sis of one or several omics), to biological annotations, to clinical data, etc.

In contrast, ClustOmics aims at capitalizing on the preliminary input predictions to
increase their robustness by taking advantage of accumulating evidence to reveal sharper
patterns in the data. This selection of robust patterns across input partitions renders
ClustOmics stable when facing heterogeneous input clusterings and is particularly use-
ful when no gold-standard metric is available to assess the quality of the results. Hence,
with a sufficient number of input clusterings, no prior analysis of the input is needed,
given that low-quality clusterings, likely to add noise to the integration graph, play a
smaller part in the evidence accumulation. Omics for which the separation of samples
is clear-cut will drive the consensus clustering, while omics that do not show interest-
ing patterns across samples will be faded via the integration graph filtering step. For the
same reason, it is important to highlight that as long as the signals in the available omics
are strong, ClustOmics is able to cluster samples that do not appear in all omics datasets,
making use of available data and addressing the issue of partial data.

Finally, though presented in a disease subtyping context, one should grasp that our
method is not limited to this application case. ClustOmics is generic and adaptable to
a wide range of biological questions, as one can use any kind of partitioning of the data,
including clinical labels, groups of genes of interest, etc., as an input clustering. A major
strength of ClustOmics resides in its exploratory aspect, resulting both from a flexible
intrinsic model that gives the user complete power on the integration scenario to inves-
tigate and from the use of the graph-oriented database Neo4j. All input data and meta-
data are stored in this kind of database, which may easily be queried and visualized by a
nonspecialist with the Neo4j browser.

Conclusion

Facing the diversity and heterogeneity of omics data and clustering strategies, one might
want to make profit from all available data to compute a consensus clustering. Clus-
tOmics is able to fuse any set of input clusterings into one robust consensus, which can
easily be interpreted based on the number of supports evidence accumulation scores.
ClustOmics can be adapted to answer a wide range of biological questions. The use of
integration scenarios allows users to explore various integration strategies, by adding or
discarding data sources and/or clustering methods.

Methods

In this section, we detail the strategy implemented in ClustOmics. We then describe
the datasets and the metrics that were used to evaluate our new method. For the sake
of simplicity as, in this paper, ClustOmics was applied in the context of cancer subtyp-
ing, we will further refer to objects of interest as Patients. However, ClustOmics can be
applied to different biological entities such as genes or cells.

ClustOmics integration strategy
The ClustOmics integration strategy, depicted in Fig. 7, starts from a set of input cluster-
ings generated with various clustering methods and/or from different omics sources.
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Fig. 7 An overview of the strategy implemented in ClustOmics

First, from a patient metadata file and from available input clusterings, a support graph
(SQ) is instantiated. In this graph, each Patient (P) corresponds to a node and shares a
support edge with another patient when classified in the same cluster (co-clustered) in
at least one input clustering. One support edge relates to one input clustering tool, and
each support edge displays one or multiple attributes to indicate the omics sources sup-
porting the co-clustering of the patients.

Next, given an integration scenario, meaning a list of omics and methods to integrate,
the corresponding integration graph (IG) is computed. Then, the integration graph is
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filtered and clustered to produce a consensus clustering according to the given integra-
tion scenario.

Below, we detail the integration graph computation, filtering and clustering steps,
resulting in a ClustOmics consensus clustering.

Compute the integration graph (IG)

Given an Integration Scenario (defined by a set of input clusterings), ClustOmics exploits
the information on the support edges to compute the so-called number of supports, by
counting the considered input clusterings sustaining the association of patients. The
numbers of supports are reported on the Integration Edges and so, for a given integra-
tion scenario, a pair of patients may share at most one integration edge. In this way, het-
erogeneous data is aggregated into co-occurrence counts that are used as a similarity
measure to perform evidence accumulation clustering (EAC) [16].

Filter and cluster the integration graph
Integration graphs are generally densely connected, as each pair of nodes may have been
clustered together at least once over the set of omics and methods. However, as inte-
gration edges are weighted with the number of supports agreeing on the corresponding
associations, the most robust integration edges can be distinguished from predictions
that are not consistent across omics and methods. Hence, ClustOmics filters the graph
according to the number of supports by removing non-consistent integration edges.
The goal is to obtain a filtered graph foreshadowing natural clusters that correspond
to a consensus. The choice of a threshold to filter the integration edges is therefore
determinant.

Figure 8 depicts the impact of an increasing number of support-filtering thresholds
on the internal structure of the integration graph. One can observe that two issues arise
from this filtering process:

« First, increasing the threshold generates smaller graphs. Indeed, pairs of nodes that
do not share any integration edge with a sufficient number of supports are removed,
leading to a partial classification of the input set of patients.

+ The second issue is the loss of structure in the filtered integration graph: when filter-
ing at a high threshold, the resulting graph may become too sparse to be considered
informative, like the graph in Fig. 8c with numerous small connected components.

Therefore, producing a relevant classification requires finding the best compromise for
the support threshold. For this effort, ClustOmics tests all possible configurations by
iteratively filtering the integration graph with increasing support thresholds. At each
iteration, ClustOmics uses state-of-the-art graph clustering methods (see the subsec-
tion below) to compute consensus clusterings for the corresponding filtered integration
graph.

The resulting consensus clusterings should be analyzed with respect to the number of
supports used to filter the graph prior to clustering. This number of supports indicates
the level of agreement between the input clusterings and gives insight on the extent to
which the resulting consensus clustering can be considered as being truly multi-omics.
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Fig. 8 An integration graph filtered with increasing threshold values: 1, 3,and 5 (the maximum number of
supports for an integration edge being 5 in this example). Screenshots from the Neo4j browser for graph
visualization

Moreover, to deal with the two issues described above and to keep merely informative
results, each integration graph consensus clustering result goes through an additional

filtering step with the two following parameters:

o the min_size_cluster parameter indicates the minimum accepted size for a clus-
ter that is part of the consensus clustering. Clusters with less than min_size_cluster
nodes are removed from the analysis.

«+ the min_size_consensus parameter indicates to what extent ClustOmics is allowed to
discard nodes, i.e., patients. ClustOmics will further consider only consensus cluster-
ing results having at least min_size_consensus nodes.

Finally, a quality metric, i.e., the weighted MQ index, is computed for all consensus clus-
terings that passed the filtering steps.

Optionally, one may want to reconsider the individuals that were discarded during the
filtering steps (either when filtering-out integration edges or small clusters) and analyze
them with respect to the consensus clusters. With this in mind, ClustOmics is able to
reassign filtered-out individuals with respect to the mean number of supports shared
with patients from consensus clusters, though such additional predictions do not neces-
sarily meet the threshold with which the consensus clusters were originally computed.

Below, we give insights on the graph clustering algorithms that are used to compute
the consensus clusters, as well as on the quality metric employed for the identification of
a robust consensus clustering, the weighted modularization quality.

Graph clustering algorithms

ClustOmics filters the integration graph for each possible threshold on the number of
supports and, for each filtered graph, ClustOmics computes two consensus cluster-
ings with two state-of-the-art, complementary graph clustering algorithms: the Lou-
vain community detection (LCD) algorithm, based on modularity optimization [30],
and the Markov clustering (MCL) algorithm, based on the simulation of stochastic
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flow in graphs [31]. MCL and LCD are unsupervised clustering algorithms and do not
require the number of clusters to be estimated in advance.

Modularity optimization is one of the most popular strategies in graph cluster-
ing algorithms [32], while MCL/MCL-based methods have proven highly efficient in
various biological network analyses (protein-protein interaction networks [33, 34],
protein complex identification [35], detection of protein families [36]). Moreover,
modularity optimization algorithms have been shown to present a resolution issue
[37, 38]: a tendency to fuse small clusters (even for those that are well defined and
have few interconnections), thus favoring the formation of larger clusters than those
computed by MCL [39]. Small clusters predicted by MCL can be an issue in the Clus-
tOmics case, as it removes clusters smaller than the user-defined min_size cluster
parameter, considering them to be non-informative.

Selection of the best consensus clustering based on the weighted MQ index

The modularization quality (MQ) was first defined by Mancoridis et al. in the context
of software engineering [40]. Compared to the popular modularity measure [41] opti-
mized in graph clustering algorithms, which compares the distribution of edges with
respect to a random graph with the same number of vertices and edges as the original
graph, the modularization quality (MQ) evaluates the quality of a clustering as the
difference between internal and external connectivity ratios; that is, the ratio between
the number of connections observed within a given cluster and between two given
clusters, and the maximum possible number of such edges. An optimal clustering for
this measure should maximize the intraconnectivity ratio (every two nodes belonging
to the same cluster share an edge) and minimize the interconnectivity ratio (nodes
classified in different clusters do not share edges). Indeed, in the context of consensus
clustering based on evidence accumulation, it makes more sense to compare the dis-
tribution of the edges in the integration graph to the case where all nodes would have
been partitioned in the same optimal way in all input clusterings, i.e., a graph where
all intracluster nodes are connected, and all intercluster nodes are disconnected.

Moreover, we adapted the original MQ index for weighted undirected graphs with
no self-loops (in our case, a Patient node cannot share an integration edge with itself).
We denote this adaptation of the modularization quality as the weighted modulariza-
tion quality (wMQ).

Let G = (V, E) be a graph where V denotes the set of nodes and E the set of edges of
G. Let C = (Cy,..., Cy) be a consensus clustering with K clusters and |C;| the number of
nodes classified in cluster C;. Let us also note w(e) the weight of a given edge, W (e;;)
the sum of weights of the edges internal to C; cluster (connecting vertices from C;),
W (e;7) the sum of weights between clusters C; and C; (connecting a vertex from C; to a
vertex from C;) and max(wjg) the maximum possible weight on the edges of the given
integration graph (the maximum possible number of supports, also corresponding to
the number of input clusterings being fused). We therefore define the wMQ index
computed for a consensus clustering C obtained on the integration graph /G as:
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The first term of the sum corresponds to the weighted internal connectivity ratio for a
cluster C;. Indeed, the sum of the internal edges weights W (e;;) is adjusted with the max-
imum possible value of the sum of the edges linking a set of |C;| nodes, which would be
reached if all C; nodes were connected with max(wjg) weighted edges. Note that for an
undirected and no self-loop graph, the maximum number of edges in a subgraph of |C;]|

C‘
nodes is (' 2L|>. Similarly, the second term of the sum represents the weighted external

connectivity ratio of a cluster C;, given by the sum of the weights of the edges linking a
node from cluster C; to a node belonging to a cluster C; ( C)).

The wMQ values range from —1 to 1, where a wMQ of —1 corresponds to the case
where there is no intracluster edge and all intercluster pairs of vertices are connected
with edges of weight max(wjg). A wMQ of 1 corresponds to the case where no interclus-
ter vertices are connected, and all pairs of intracluster vertices are connected with edges
of weight max(wjg). A high-standard consensus clustering should maximize this index.

ClustOmics computes the wMQ for the LCD and MCL consensus clusterings obtained
with various numbers of support-thresholds and having passed the filtering steps, and it
returns the clustering that maximizes this quality measure.

Datasets and tools used for computing input clusterings

We used ClustOmics to predict cancer subtypes from gene expression, microRNA
expression and DNA methylation datasets available in The Cancer Genome Atlas
(TCGA) [42]. Our case-study is based on the same datasets as in Rappoport and
Shamir’s review on multi-omics clustering methods [1]. The data cover ten cancer types:
leukemia (AML), breast (BIC), colon (COAD), glioblastoma (GBM), kidney (KIRC), liver
(LIHC), lung (LUSC), ovarian (OV), sarcoma (SARC) and skin (SKCM). For each cancer
type, from 197 and up to 1098 patients were measured for at least one of the three omics
(expression, miRNA and methylation), of which 170 to 621 patients were measured for
all three. More details on missing data per cancer type are given in Table 5.

To generate input clusterings to be fused by ClustOmics, we used five state-of-the-
art integrative clustering tools, summarized in Table 6: PINS [6], SNF [7], NEMO (8],
rMKL [9] and MultiCCA [10]. The first four tools can be used in a single-omics context
as well as in a multi-omics context, for which they were all designed. Though NEMO is
the only tool that can handle partial data, for comparability purposes, this functionality
was not used in the analyses we conducted. Each tool has been run with default param-
eters and based on recommendations of the authors. For the single-to-multi scenario, we
also computed single-omics input clusterings with K-means clustering [19], for which
the optimal number of clusters K was determined using the Silhouette index [24], with

values of K ranging from 2 to 20.

Computation of COCA consensus clusterings
To assess the performance of ClustOmics with respect to a state-of-the-art integration
method based on consensus clustering, we applied cluster-of-clusters analysis (COCA)
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Table 5 Number of patients measured per omics for each cancer type. Total: Number of patients
measured for at least one omics (of which those having been measured for the three omics);
proportion of partial data; Exp+Met: Patients measured for expression and methylation only;
Exp+miRNA: Patients measured for expression and miRNA only; Met4+miRNA: Patients measured for
methylation and miRNA only; Exp: Patients measured for expression only; Met: Patients measured for
methylation only; miRNA: Patients measured for miRNA only

Cancer Total (multi-omic) % partial data Exp+ Met Exp+ miRNA Met+ miRNA Exp Met miRNA

AML 197 (170) 13.71 0 3 15 0 9 0
BIC 1096 (621) 43.34 159 132 2 181 1 0
COAD 303 (220) 27.39 57 0 0 8 18 0
GBM 578 (274) 52.60 4 245 3 5 4 43
KIRC 534 (183) 65.73 135 71 0 144 1 0
LIHC 377 (367) 2.65 4 0 5 0 1 0
LUSC 501 (341) 31.94 29 1 0 130 0 0
ov 591 (287) 51.44 7 0 166 9 1220
SARC 261 (257) 1.53 2 0 2 0 0 0
SKCM 368 (351) 4.62 16 1 0 0 0 0
Table 6 Methods used to compute input clusterings
Software Multi-omic context Single-
omic
context
PINS [6] Yes Yes
SNF [7] Yes Yes
NEMO [8] Yes Yes
rMKL [9] Yes Yes
MultiCCA [10] Yes No
k-means [19] No Yes

[5] on each integration scenario and from the same set of input clusterings as for Clus-
tOmics. COCA had already been applied to cancer-subtyping in a multi-omics context
(43, 44].

COCA is an integrative clustering tool based on the consensus clustering (CC) algo-
rithm introduced by Monti et al. [45]. The CC algorithm implements a resampling- and
co-occurrence-based strategy to assess the stability of clusters when analyzing a single
dataset. By resampling a single dataset multiple times and applying a clustering algo-
rithm on each perturbed dataset, and from the co-occurrences counts of samples in
clusters, a consensus matrix is computed and used as a similarity matrix to compute
a final consensus clustering. COCA was run using default parameters, under the same
integration scenarios as in ClustOmics, and using the same set of input clusterings.

Clustering pairwise similarity metric

To evaluate the similarity of ClustOmics and COCA consensus clusterings with respect
to their inputs or each other, we used the adjusted Rand index (ARI) [20], a measure of
similarity between two data clusterings. While the ARI has been used to evaluate the
quality of classifications compared to ground-truth data, here, we use it to compare the
similarity of various clusterings, without considering any quality aspect.
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Biological metrics

To explore the biological relevance of input clusterings and consensus clustering results,
we computed the overall survival rate of patients. As cancer acuteness is proved to be
related to its molecular subtype [46—48], we further investigated whether it was signifi-
cantly different across clusters using the exact log-rank test for more than two groups,
introduced in [49]. For each clustering, the p value of the log-rank test was computed
using 100, 000 random permutations of the data.

In addition, we performed an analysis of clinical labels enrichment in clusters, using
32 labels available from TCGA metadata (see Table 7). The idea is that patients affected
by the same cancer subtype should also share, to a certain extent, the same clinical char-
acteristics. The abundance of clinical labels in clusters and their statistical over-repre-
sentation provide information on the biological robustness of clusterings. To perform
this analysis, we used pancancer (e.g., age at diagnosis or pathologic stage of cancer)
and cancer-specific clinical labels for each cancer type (e.g., presence of colon polyps
for colon cancer, or smoking history for lung cancer). Clinical labels that were absent for
more than half of the patients were removed from the analysis. We used the x? test for
independence for discrete parameters and the Kruskal-Wallis test for numeric param-
eters to assess the enrichment of the clinical labels in a cluster. To increase the robust-
ness of the results, we applied a bootstrapping strategy, computing the test on randomly
permuted data to derive an empirical p value (100, 000 permutations).

One must keep in mind that molecular data do not always explain survival or clinical
differences between groups of samples. Therefore, in the discussion of the results, we
consider survival and clinical analysis as ways to interpret patterns captured by the vari-
ous clustering results and do not favor one metric over the other.

Finally, to evaluate differentially expressed genes across consensus clusters gener-
ated using the StoM scenario on the BIC study case, we applied the Kruskal-Wal-
lis test on each gene available from the BIC expression dataset. The p values were
adjusted to control the false discovery rate (FDR) [50], filtered with a 0.001 signifi-
cance threshold, and top 1000 most significant genes were retained for further

Table 7 Pancancer and cancer-specific labels used for clinical label enrichment analysis.
Pathological M, N and T labels refer to the TNM staging system, which describes the anatomical
extent of tumor cancers [25]

Pan-cancer Age at initial pathologic diagnosis, Gender, Pathologic M, Pathologic N, Pathologic T, Pathologic
stage, Histological type, New neoplasm event type, Neoplasm histologic grade

AML CALGB cytogenetics risk category, FAB morphology code

BIC PAM50Call RNAseq, Estrogen receptor status, Progesterone receptor status, ER level cell percentage
category, PR level cell percentage category

COAD Presence of colon polyps, History of colon polyps

GBM Prior glioma

KIRC Hemoglobin result, Platelet qualitative result, Serum calcium result, White cell count result

LIHC Adjacent hepatic tissue inflammation extent type, Albumin result specified value, Creatinine value,
Fetoprotein outcome value, Fibrosis ishak score

LUSC Tobacco smoking history, Number pack years smoked

ov No supplementary clinical label

SARC No supplementary clinical label

SKCM Melanoma Clark level value, Melanoma ulceration indicator
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analysis. Using hierarchical clustering [51], we clustered the top gene list and investi-
gated clusters for enriched Gene Ontology [52] biological process terms with Cluster
Profiler [53]. FDR-adjusted p values were filtered with a 0.05 cutoft.

Implementation

ClustOmics is implemented based on the Neo4j graph database management system
and uses APOC and Graph Data Science Neo4j libraries. Queries on the graph data-
base are performed in Cypher, Neo4j’s graph query language, and are encapsulated in
Python scripts. To facilitate its use, ClustOmics can be run through the Snakemake
workflow management system.

ClustOmics was tested on a desktop-computer with an Intel Xeon processor (2.70
GHz, 62 GB of RAM) running on Ubuntu 18.04. For the TCGA real datasets that it
was applied to, the ClustOmics runtimes range from a few minutes for small datasets
(AML, multi-to-multi scenario) up to 2 h for the largest dataset (BIC, single-to-multi
scenario), with most of the computation time being consumed for the construction of
the integration graph. With the graph stored in a Neo4j database, this step is only to
be performed once for each integration scenario, and parameters for graph filtering
can be further set and tuned without recomputing the graph.

The ClustOmics source code, released under MIT license, and the results obtained
on the ten cancer types with the two integration scenarios described in this paper are
available on GitHub: https://github.com/galadrielbriere/ClustOmics.
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