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a b s t r a c t 

The study of local cortical folding patterns showed links with psychiatric illnesses as well as cognitive functions. 

Despite the tools now available to visualize cortical folds in 3D, manually classifying local sulcal patterns is a time- 

consuming and tedious task. In fact, 3D visualization of folds helps experts to identify different sulcal patterns but 

fold variability is so high that the distinction between these patterns sometimes requires the definition of complex 

criteria, making manual classification difficult and not reliable. However, the assessment of the impact of these 

patterns on the functional organization of the cortex could benefit from the study of large databases, especially 

when studying rare patterns. In this paper, several algorithms for the automatic classification of fold patterns are 

proposed to allow morphological studies to be extended and confirmed on such large databases. Three methods 

are proposed, the first based on a Support Vector Machine (SVM) classifier, the second on the Scoring by Non-local 

Image Patch Estimator (SNIPE) approach and the third based on a 3D Convolution Neural Network (CNN). These 

methods are generic enough to be applicable to a wide range of folding patterns. They are tested on two types 

of patterns for which there is currently no method to automatically identify them: the Anterior Cingulate Cortex 

(ACC) patterns and the Power Button Sign (PBS). The two ACC patterns are almost equally present whereas PBS 

is a particularly rare pattern in the general population. The three models proposed achieve balanced accuracies of 

approximately 80% for ACC patterns classification and 60% for PBS classification. The CNN-based model is more 

interesting for the classification of ACC patterns thanks to its rapid execution. However, SVM and SNIPE-based 

models are more effective in managing unbalanced problems such as PBS recognition. 
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. Introduction 

The surface of the brain is divided into many convolutions, called

yri, delimited by folds, called sulci. The study of these cortical folds

resents two major interesting aspects. First, the morphometry of the

ortical folding patterns can be performed with a number of geometric

eatures like depth, length or widening. These features change during

he whole life span, for instance during adolescence because of myelin

evelopment ( Alemán-Gómez et al., 2013 ), or during aging because of

trophy ( Le Guen et al., 2019 ). Therefore, they are very useful to de-

ne biomarkers of pathologies occurring late in life ( Bertoux et al.,

019 ). However, this article does not address this aspect of cortical fold

orphometry but focuses on the second aspect which concerns their
Abbreviations: ACC, Anterior Cingulate Cortex; PBS, Power Button Sign; CNN, Conv

mage Patch Estimator; SVM, Support Vector Machine. 
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patial organisation. Indeed, most of the folding process occurs dur-

ng the second half of the pregnancy and the spatial pattern of some

ortical sulci do not change after birth ( Cachia et al., 2016; Im and

rant, 2019 ). Therefore, they can be used to detect early events at the

rigin of a specific local brain function. For instance, several studies

ave reported a correlation between visually recognized sulcal patterns

nd some cognitive characteristics — e.g. cognitive control efficiency

 Cachia et al., 2014; Fornito et al., 2004 ) or handedness ( Sun et al.,

012 ) - and neuropsychiatric illnesses - e.g. epilepsy ( Mellerio et al.,

014 ) or schizophrenia ( Plaze et al., 2015 ). 

The impact of this anatomical characteristic on brain function is still

oorly understood today. Indeed, the number of works focusing on the

ariability of the cortical folding pattern is rather low, probably because
olutional Neural Network; ROI, Region Of Interest; SNIPE, Scoring by Non-local 
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Fig. 1. Two folding patterns identified in the cingulate region. The “single ” pat- 

tern is characterized by the presence of the cingulate sulcus alone. The “double 

parallel ” pattern has an additional paracingulate sulcus, which must be parallel 

to the cingulate sulcus and long enough to be identified. Figure reprinted from 

( Cachia et al., 2014 ). 

p  

i  

p  

b  

s  

A  

d  

d  

h  

l  

d  

h  

t  

f  

b  

p

 

H  

O  

S  

P  

e  

n  

p  

a  

t  

b  

o  

s  

t  

a  

c  

s  

e  

T  

c  
he methodological paradigm of the field of neuroimaging, spatial nor-

alization, is not very useful for this kind of exploration. Aligning dif-

erent folding patterns is not necessarily helping to disentangle them.

herefore, classifying local patterns often requires browsing simultane-

usly across each individual subject to try to understand how individuals

iffer. In addition, to discover whether different folding patterns corre-

pond to different functional architecture, a variety of folding configu-

ations have to be matched with a variety of noisy individual functional

RI maps. This difficult task has been carried out in several studies.

ight relationships between folding patterns and functional architecture

ave been discovered ( Amiez et al., 2006; Amiez and Petrides, 2009;

014; Bodin et al., 2018; Crosson et al., 1999; Derrfuss et al., 2012;

rosbras et al., 1999; Lopez-Persem et al., 2019; Segal and Petrides,

013; Watson et al., 1993; Weiner et al., 2014; Zlatkina et al., 2016 ).

uch results suggest that each local folding pattern may be the indica-

or of a specific functional organization. This predictive power would

esult from the impact of architecture on the dynamics of folding dur-

ng development ( Foubet et al., 2019; Llinares-Benadero and Borrell,

019; Mangin et al., 2019; Van Essen, 1997 ). Our goal in this paper is

o deliver a tool helping to exploit massively the rare findings of the

ast, using already annotated databases of patterns. We hope that this

ill motivate the search for new patterns of interest, and later on the

evelopment of new methodologies to automate this quest. 

In this article, we propose and compare three different methods al-

owing the automatic recognition of folding patterns, based on the 3D

rganization of sulci. The input to our algorithm is a negative print of

he cortex entering the folds to their bottom. The methods are tested

n two types of sulcal patterns for which there is currently no method

o automatically label them: first, the classification of the Anterior Cin-

ulate Cortex (ACC) patterns, and second, the recognition of a specific

re-central pattern called Power Button Sign (PBS). 

From a clinical point of view, the choice of these two types of sulcal

atterns is justified by previous morphological studies demonstrating

heir links with brain pathologies and cognition. Regarding the ACC

atterns, a link has been demonstrated between these patterns and

chizophrenia: schizophrenic subjects tend to have symmetric patterns

etween their right and left hemispheres, unlike controls ( Le Provost

t al., 2003; Yücel et al., 2003 ). Later, it was also shown that children

ith the same lack of asymmetry have poor inhibitory control ( Borst

t al., 2014; Cachia et al., 2014 ). Thus this pattern is not only related to

 psychiatric disease but also to the healthy brain function. Regarding

he PBS, this pattern is related to epilepsy. This disease is often due to

 focal cortical dysplasia, which corresponds to a disruption of the early

tages of embryogenesis leading to abnormal cortical lamination and the

resence of dysmorphic neurons. This dysplasia is sometimes linked to

bnormal fold patterns ( Besson et al., 2008; Mellerio et al., 2014; Régis

t al., 2011; Roca et al., 2015 ), even when the dysplasia is invisible on

RI. Here, we are interested in the automatic detection of one of these

atterns: the PBS, present in about 60% of patients with a dysplasia in

he vicinity of the motor area, whereas in the general population, this

attern is so rare that we do not know its frequency ( Mellerio et al.,

014 ). 

From a computational point of view, the identification of these two

ypes of sulcal patterns is a challenging task because of their complex

tructure and great variability. While a template pattern can be drawn or

nferred from an averaging process, the actual shapes in individual sub-

ects may correspond to complex distortions of this template. Regard-

ng the sulcal pattern of the ACC, it can be classified with structural

RI ( Cachia et al., 2016; 2014 ) in two different types ( Fig. 1 ): a “single ”

ype, with only the cingulate sulcus, and the “double parallel ” type, with

n additional paracingulate sulcus. Automating the recognition of these

atterns is particularly difficult because of their high variability ( Fig. 2 ).

or this purpose, we have a database of 348 hemispheres, including 207

ith the double parallel pattern, of which the cingulate and paracingu-

ate sulci have been manually labeled, by one of the team investigat-

ng the meaning of these alternative patterns. Although the size of the
2 
aracingulate sulcus is variable, precise criteria on its size were used

n order to robustly distinguish the two patterns (i.e. with or without a

aracingulate sulcus). Regarding the PBS, this pattern is characterized

y the interposition of a precentral sulcal segment between the central

ulcus and one of its hook-shaped anterior ascending branches ( Fig. 3 ).

utomating PBS recognition is particularly challenging because, in ad-

ition to the extreme variability of this pattern ( Fig. 4 ), the training

atabase is limited (19 controls and 38 patients with dysplasia, i.e. 114

emispheres) and the proportion of hemispheres with a PBS is particu-

arly unbalanced (22 subjects, including 1 control and 21 patients with

ysplasia, have at least one of the two hemispheres with PBS, i.e. 28

emispheres with PBS in the database). Thus, these two types of pat-

erns allow us to see the performances of the proposed methods in two

undamentally different cases: for one, the training database is large and

alanced, for the other, it is small and unbalanced, which is a recurrent

roblem when studying rare patterns. 

Many other cortical folding patterns exist ( Germann et al., 2005;

otier et al., 2017; Huntgeburth and Petrides, 2012; Kim et al., 2008;

chiai et al., 2004; Plaze et al., 2015; 2009; Segal and Petrides, 2012;

nyder et al., 2019; Sprung-Much and Petrides, 2018; Zlatkina and

etrides, 2010 ) and the methods proposed in this article are generic

nough to be applied to them. Note that the two chosen patterns are

ot considered as more interesting than these other patterns but our

revious studies had delivered the two annotated datasets used in this

rticle, providing the opportunity to design an automatic method to use

he findings on a larger scale. More importantly, these two patterns have

een chosen because they are instances of the two very different kinds

f situations faced when exploring the cortical folding patterns: 1) the

tratification of the whole population using a small number of patterns,

wo subgroups in the case of ACC; 2) the detection of a rare pattern, usu-

lly considered has the signature of a rare developmental event, in the

ase of the PBS. Nevertheless, it should be noted that while numerous

ets of alternative local folding patterns have been described in the lit-

rature, few of them have been linked with pathologies as PBS and ACC.

he framework proposed in this article to allow the automatic identifi-

ation of folding patterns that have previously been manually annotated
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Fig. 2. Illustration of ACC patterns variability. The upper part 

of the table shows the single patterns and the lower part shows 

the double parallel patterns. We observe that the position, size 

and number of components of the paracingulate sulcus are 

variable. It is sometimes difficult to distinguish with the naked 

eye between a large paracingulate sulcus and a double cingu- 

late sulcus (see ∗ ∗ ). Additionally, small paracingulate sulci can 

sometimes be confused with other small sulci (see ∗ ). (For in- 

terpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 3. Typical Power Button Sign (PBS): a fold pattern related to Type 2 Focal 

Cortical Dysplasia. (A), Sulcal graph on a 3D reconstruction of the brain surface 

of a 17-year-old male patient shows a typical PBS, with, (B), magnification of 

the PBS on (A). The PBS, by analogy to, (C), the power symbol, corresponds to 

interposition of a precentral segment (green) between the central sulcus (red) 

and a hook-shaped anterior ascending branch (also red). Figure reprinted from 

( Mellerio et al., 2014 ). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Illustration of PBS variability. The first two lines represent hemispheres 

without PBS and the last two lines with PBS. The middle line represents hemi- 

spheres with an intermediate pattern. In this study these intermediate patterns 

are considered as PBS. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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n a training set, consists of four main steps: (1) the cortical folds are

utomatically represented in 3D from structural MRIs, (2) the patterns

re manually identified and labeled from this representation in order to

xtract the features necessary for (3) the training of different machine

earning algorithms allowing (4) the automatic classification of the fold-

ng patterns. Note that model training requires steps (1), (2) and (3),

hile model application only requires steps (1) and (4) which are fully-

utomatic. Three different machine learning approaches are proposed:

he first one based on a Support Vector Machine (SVM) classifier, the

econd one on the Scoring by Non-local Image Patch Estimator (SNIPE)

roposed in ( Coupé et al., 2012 ) and the last one on 3D Convolutional

eural Network (CNN). 

. Databases 

The Morphologist pipeline of the BrainVISA toolbox, freely available

t www.brainvisa.info , was used to segment and provide 3D graphical

epresentation from raw MRI data. This 3D reconstruction of cortical

olds was used to manually visualize and label brains. Intra- and inter-

ater reproducibility of ACC and PBS pattern labelling have been de-

cribed previously in ( Cachia et al., 2016 ) and ( Mellerio et al., 2014 )

espectively. The two databases studied are described below. 
3 
.1. Anterior cingulate cortex (ACC) pattern 

The T1w MRIs of 174 subjects (including 71 healthy controls, 59

chizophrenia patients and 44 healthy siblings) were selected from the

tudy detailed in ( Chakravarty et al., 2015 ). The 71 healthy controls (45

en) had a median age of 21 years (minimum 10; maximum 33). The

9 schizophrenia patients (39 men) had a median age of 21 years (mini-

um 13; maximum 32). The 44 healthy siblings (23 men) had a median

ge of 20 years (minimum 11; maximum 29). T1w MRI data were ac-

uired with a 1.5-T MR system (Signa 1.5T; GE Healthcare, Milwaukee,

is), using a 3D spoiled gradient echo with contiguous 1.5 mm slices

n the axial plane (echo time, 5 ms; repetition time, 24 ms; flip angle,

http://www.brainvisa.info
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Fig. 5. Extraction of patterns-of-interest from manual labeling. The voxels ex- 

tracted from the manual labels represent the pattern-of-interest in red and the 

sulcus to which it is attached in black. Left: Paracingulate sulcus, labeled in 

blue, corresponds to red voxels while cingulate sulcus, labeled in yellow, cor- 

responds to black voxels. Right: The central sulcus is manually labeled in red, 

the ascending branch of the central sulcus in blue and the pre-central sulcus, 

wedged between the blue and red sulci, in yellow. As these manual labels are 

insufficient to properly delimit the PBS, the extraction of red voxels requires 

additional processing. 1. The yellow point corresponds to the intersection be- 

tween the blue and red sulci. 2. The red point is the point of the yellow sulcus 

closest to the yellow point. 3. The blue point is in the centre of the segment 

joining the red and the yellow points. 4. The radius of the blue sphere, with 

the blue point at its centre, corresponds to 𝑚𝑎𝑥 ( 𝑑, 20 𝑚𝑚 ) with 𝑑 being the dis- 

tance between the blue point and the furthest point of the blue sulcus. 5. All 

the voxels contained in the blue sphere and belonging to the red/yellow/blue 

sulci define the red voxels. The black voxels correspond to the central sulcus 

voxels that do not belong to the red voxels. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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5 (DEG); acquisition matrix, 256 × 192 ; number of excitations, 1; field

f view, 24 cm). 

The ACC sulcal pattern was visually identified for each individual

emisphere, following the procedure described in ( Cachia et al., 2014 )

nd previously used to label a part of this study’s database, as published

n ( Cachia et al., 2016 ). The learning base was composed of 348 identi-

ed ACC sulcal patterns, including 141 “single ” types and 207 “double

arallel ” types. The cingulate and paracingulate sulci were manually

abeled by one of the team investigating the meaning of these patterns.

Further details on this database has been described previously

 Cachia et al., 2016; Chakravarty et al., 2015; Giedd et al., 1999 ). The

tudy was approved by the National Institute of Mental Health review

oard. Written informed consent was obtained from parents and con-

rols older than 18 years, and written informed assent was obtained

rom minors. 

.2. Power button sign (PBS) 

The T1w MRIs of 57 subjects (including 20 normal controls,

7 epileptic patients) were selected from the study detailed in

 Mellerio et al., 2014 ). The 37 patients (18 men; 28 right handed) had a

edian age of 24 years (interquartile range, 19–32 years). The 20 con-

rol subjects (10 men; 20 right handed) had a median age of 26 years

interquartile range, 25–31 years). T1w MRI data were acquired by us-

ng a 1.5-T MR system (Signa 1.5T; GE Healthcare, Milwaukee, Wis) with

n inversion-recovery 3D T1-weighted fast spoiled gradient-recalled ac-

uisition (repetition time msec/echo time msec, 10/2; flip angle, 15 ◦;

cquisition matrix, 256 × 256; section thickness, 1.2 mm; no gap; in-

lane resolution, 0 . 93 × 0 . 93 mm; acquisition time, 6 min 14 s). 

The PBS was visually identified for each individual hemisphere ac-

ording to the criteria described in the same study. In addition to the

5 PBS identified by the experts (including one belonging to a control

ubject), some hemispheres have been identified as having an interme-

iate pattern when they show a similar pattern which is not sufficiently

ronounced to be classified as such. In order to slightly rebalance the

umber of samples in each class, intermediate patterns are considered as

BSs in this study. Among the 114 hemispheres in the database, 28 have

he PBS (including 13 intermediate patterns, all belonging to epileptic

ubjects). We manually labeled the central sulcus, its ascending branch

nd the pre-central sulcus forming the PBS. 

Further details on this database has been described previously

 Mellerio et al., 2014 ). This study was found to conform to generally

ccept scientific principles and ethical standards by the Ethics Review

ommittee of Ile de France III. Written informed consent was waived

or patients and was obtained from control subjects. 

. Method 

In this section, the first part will be devoted to the method used to

epresent cortical folds from structural MRIs. Then, the second part will

escribe several algorithms that automatically classify the folding pat-

erns from the folds representation described in the previous part. In this

tudy, three different approaches are proposed: the first one based on a

upport Vector Machine (SVM) classifier, the second one on the Scoring

y Non-local Image Patch Estimator (SNIPE) proposed in ( Coupé et al.,

012 ) and the last one on 3D Convolutional Neural Network (CNN). Fi-

ally, the third part will describe how the three obtained models are

valuated and compared. 

The code implementing the methods described in this section is avail-

ble here: https://github.com/brainvisa/morpho-deepsulci . 

.1. Fold representation 

The BrainVISA/Morphologist pipeline, used to visualize the sulci in

D and manually identify the patterns, is also used for data preprocess-
4 
ng ( Mangin et al., 2004 ). This pipeline, applied on all subjects, i.e. 114

emispheres for the PBS and 348 for the ACC patterns, represents the

olds by a set of voxels corresponding to a skeleton of the cerebrospinal

uid filling the fold. The representation of the folds therefore corre-

ponds to a negative mold of the brain. In addition to facilitating man-

al identification of sulcal patterns, the skeleton representation enables

o normalize the data optimally. Indeed, the data are particularly influ-

nced by the type of MRI sequence, the age of the subject (which has a

ignificant impact on the opening of the sulci) or even pathologies. The

old skeletons are affinely registered in the MNI space ( Collins et al.,

994 ). Note that we have preferred an affine registration to a non-linear

egistration because it could deform the folding patterns enough to make

hem unrecognisable (which can easily happen given their complex or-

anisation) and that a global registration seems sufficient for the meth-

ds presented. 

When manually classifying the ACC and PBS patterns, the same

orphological criteria were used for the right and left hemispheres.

herefore, for the three approaches presented in this article, the right

emispheres have been flipped in order to be superimposable with the

eft hemispheres. This significantly increases the size of the training

atabase. However, this manipulation is questionable when applying

he methods presented in this article to other folding patterns, as it may

ctually decrease the performance of the models due to the natural hemi-

pherical asymmetry that can unnecessarily increase the variability of

he patterns. 

With regard to ACC patterns, the single and double parallel types are

espectively characterized by the absence and presence of the paracingu-

ate sulcus. Thus, the objective is to detect the presence of the paracingu-

ate to perform the classification. Similarly, for PBS, the algorithm must

etect its presence in the area around the central sulcus. Paracingulate

ulcus and PBS will be considered as the “patterns-of-interest ”. In both

atabases, the patterns-of-interest were extracted from manual labeling,

s described in Fig. 5 . 

https://github.com/brainvisa/morpho-deepsulci
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Fig. 6. Illustration of the SVM-based method. For each hemi- 

sphere of the training set with a paracingulate sulcus/PBS, 

the patterns-of-interest (in red) and their attached sulcus (in 

black) are registered on the fold skeleton of the hemispheres 

of the test set using the Iterative Closest Point (ICP) algorithm. 

Once they have been registered, the average distance (from 

the points of the pattern-of-interest in red to their nearest 

points in the hemisphere to be classified) is used as a feature 

for the SVM classifier. Note that only the hemispheres of the 

training set with the pattern-of-interest are used as features 

of the SVM classifier. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web 

version of this article.) 
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.2. Classification approaches 

.2.1. Support vector machine (SVM) 
The idea of this first approach is to use the distances from the

atterns-of-interest of the training database to the image to be classi-

ed to train a SVM classifier ( Fig. 6 ). 

Registration In order to realign the patterns-of-interest to the hemi-

phere to be classified, the Iterative Closest Point algorithm ( Besl and

cKay, 1992 ), with the robust implementation of Holz et al. (2015) ,

s used. The voxels of the fold skeleton, extracted by the Brain-

ISA/Morphologist pipeline, are used as point clouds to perform the

egistration. 

In order to constrain the registration of the patterns-of-interest,

hey are registered with their attached sulcus (i. e. cingulate sulcus for

aracingulate sulcus, and central sulcus for PBS), which has been man-

ally labeled. This constraint with large sulci increases the specificity

f the pattern and prevents the registration of the patterns-of-interest to

e trapped in a spurious local minimum. 

Since the Iterative Closest Point algorithm is particularly sensitive to

he initial positions of the point clouds to be registered, several initial-

zations are compared in order to avoid local minima. From the initial

osition of the point clouds, the pattern to be registered and its attached

ulcus are translated before applying the Iterative Closest Point algo-

ithm. The amplitude of the translations tested is determined by inner

ross-validation. The registration minimizing the distance from the pat-

ern and its attached sulcus to the hemisphere to be classified is selected.

Feature extraction Once registered, the distances between the

atterns-of-interest and the hemisphere to be classified are calculated.

his distance corresponds to the average Euclidean distance from the

oxels of the pattern-of-interest to their nearest voxels in the new hemi-

phere. The distance is low if the hemisphere to be classified also has

he pattern-of-interest. 

Classifier The calculated distances are used to train a Support Vector

achine (SVM) algorithm to classify hemispheres with or without the

attern-of-interest. A vector containing the distances to the hemisphere

o be classified is used to train the classifier: each feature corresponds to

 pattern-of-interest in the training database. Thus, this vector can con-

ain up to 28 features for the PBS and 207 for the ACC. Note that during

ross validations, the patterns-of-interest being in the group of subjects

or testing are removed from the vector (e.g. for the 10-fold cross vali-

ation, the vector therefore contains 25 or 26 features for the PBS and

87 or 188 for the ACC). The Radial Basis Function is used as a kernel.

enalty parameter 𝐶 of the error term and kernel coefficient 𝛾 are deter-

ined by inner cross validation. The SVM algorithm used corresponds to

he one implemented in the scikit-learn library ( Pedregosa et al., 2011 ).

n this implementation, a weight 𝑤 𝑖 is assigned to each class 𝑖 in order to

alculate the value of the parameter 𝐶 of the class 𝑖 such as 𝐶 𝑖 = 𝑤 𝑖 ∗ 𝐶.

n order to compensate for the potential imbalance of the classes in the

p  

5 
nput data, these weights are automatically adjusted to be inversely pro-

ortional to class frequencies. Thus, the number of elements 𝑛 𝑖 belong-

ng to class 𝑖 among the 𝑁 elements of the training database is used to

alculate the weight 𝑤 𝑖 such that 𝑤 𝑖 = 𝑁∕(2 ∗ 𝑛 𝑖 ) . 
Hyperparameters The hyperparameters are optimized by 3-fold cross-

alidated grid-search over a parameter grid. Three hyperparameters are

oncerned: the translations used to optimize the registration and the 𝛾

nd C parameters of the SVM classifier corresponding respectively to the

ernel coefficient and the penalty parameter of the error term. 

Concerning the first hyperparameter, several translations are ap-

lied to the patterns to be registered from their initial position. Each

f these translations allows us to test a new initialization before ap-

lying the Iterative Closest Point algorithm. Three translation ampli-

udes are considered, 𝐴 = [5] , 𝐴 = [10] and 𝐴 = [20] , as well as the

ombinations 𝐴 = [5 , 10] and 𝐴 = [10 , 20] . All translations [ 𝑡 𝑥 , 𝑡 𝑦 , 𝑡 𝑧 ] with

 𝑡 𝑥 , 𝑡 𝑦 , 𝑡 𝑧 ) ∈ (− 𝐴 ∪ [0] ∪ 𝐴 ) 3 are tested. 

Concerning the classifier parameters, the values [0.0001, 0.001,

.01, 0.1] are tested for the 𝛾 parameter and [0.1, 1, 10, 100, 1000]

or the C parameter. 

.2.2. Scoring by non-local image patch estimator (SNIPE) 
The second approach is based on the Scoring by Non-local Image

atch Estimator (SNIPE) proposed in ( Coupé et al., 2012 ). In order to

lassify images, SNIPE uses a grading measure based on a nonlocal

atch-based framework. This measure estimates the similarity of the

atches surrounding the voxels in the image under study with all the

atches present in different training populations. In this study, the train-

ng database contains two “populations ”: hemispheres with the pattern-

f-interest and those without it ( Fig. 7 ). 

Region Of Interest (ROI) delimitation For this approach, the hemi-

pheres to be classified are represented by binary volumes of 2 ∗ 2 ∗ 2 mm

esolution, containing the fold skeleton. Although the SNIPE method

as originally developed to search for matching patches not locally but

hroughout an entire image, here the patterns-of-interest are specific to

ocal areas of the brain. Thus, it is possible to search for them only on

 predefined ROI. This avoids false positives and limits the computing

ime. Thus, a masking is performed on these volumes in order to extract

he ROI. The mask is calculated from the location of the patterns-of-

nterest in the training database. To avoid omitting a pattern-of-interest

hose position would be slightly different from those in the training

atabase, all voxels within 1cm of one of the patterns-of-interest in the

raining database belong to the ROI. Note that the calculation of the

ask is based on the location of the patterns-of-interest in the training

atabase, so it is recalculated for each cross-validation fold, but on av-

rage it includes about 2100 voxels of the fold skeleton for the PBS, and

700 for the ACC patterns. 

Optimized PatchMatch algorithm Once the ROI has been extracted,

atches with central voxels belonging to the fold skeleton are associated
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Fig. 7. Illustration of the SNIPE-based method. The column 

on the left represents the classification of a hemisphere with 

the pattern-of-interest (ACC study), while the column on the 

right represents the classification of a hemisphere without 

the pattern-of-interest (PBS study). For each voxel in the Re- 

gion Of Interest (ROI) of the hemisphere to be classified, 

its patch is associated with several similar patches (here 3) 

in the training database by using the OptimizedPatchMatch 

(OPM) algorithm. The distance of the similar patches to the 

patch and their location in a hemisphere with the pattern-of- 

interest (+) or without it (-), are used to calculate the grade. 

All grades associated with ROI voxels are averaged to obtain 

the grade of the hemisphere. A positive grade predicts the 

presence of the pattern-of-interest and vice versa for a nega- 

tive grade. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 8. Illustration of the CNN-based method. The binary volumes of resolution 

2 ∗ 2 ∗ 2 mm containing the fold skeleton are given as inputs to the neural network. 

The volume sizes are calculated to contain all the patterns-of-interest of the 

training database. The neural network used is an 18-layer 3D ResNet. Two values 

are obtained at the output, one for each class. The highest value determines the 

predicted class. 
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ith similar patches in the training database. To do this, the Optimized

atch Match algorithm ( Giraud et al., 2016; Ta et al., 2014 ) is used. This

lgorithm searches for similar patches in an atlas library using a cooper-

tive and random strategy resulting in a very low computational burden.

ompared to the PatchMatch algorithm ( Barnes et al., 2009 ) from which

t is inspired, Optimized PatchMatch is adapted to 3D anatomical atlases

y taking into account the rough alignment of images. 

Here, the adapted version of the Optimized PatchMatch algorithm

mplemented in ( Borne et al., 2020 ) is used. This adapted version has

een developed specifically for the study of cortical sulci and makes it

ossible to take advantage of their organisation in the form of meshes. In

ddition, to manage the unbalanced presence of populations in the train-

ng database, the under-represented population is made proportionately

ore probable to be selected during the initialization by weighting their

robabilities. Thus, the probabilities 𝑝 ( ℎ 𝑖 ) of selecting the hemisphere ℎ 𝑖 
mong the hemispheres { ℎ 1 , … , ℎ 𝑛 } of the training set during the initial-

zation is: 𝑝 ( ℎ 𝑖 ) = 

𝑤 ( ℎ 𝑖 ) ∑
𝑗∈{1 , …,𝑛 } 𝑤 ( ℎ 𝑗 ) 

, with 𝑤 ( ℎ 𝑘 ) = max (1 , 𝑛 𝑘 

( 𝑛 − 𝑛 𝑘 ) 
) and 𝑛 𝑘 being

he number of hemispheres belonging to the class of ℎ 𝑘 in the training

et. 

To obtain several similar patches, the Optimized PatchMatch algo-

ithm is run several times. The patch sizes and the number of similar

atches selected are determined by inner cross-validation. 

Grading calculation As in ( Coupé et al., 2012 ), in order to estimate the

roximity of each voxel in the hemisphere to be classified to both pop-

lations, the selected similar patches are used to calculate the degree of

roximity to one of the populations. To do so, for each voxel in the hemi-

phere to be classified, a robust weighted average of the distances of the

atches selected to the patch surrounding the voxel is calculated based

n the non-local average estimator proposed by Buades et al. (2005) . In

ur case, a negative (respectively positive) classification value indicates

hat the neighbourhood surrounding the voxel is more specific to hemi-

pheres without the pattern-of-interest than with it. The ROI grades are

hen averaged to obtain the hemisphere grade. 

Hyperparameters The hyperparameters are optimized by 3-fold cross-

alidated grid-search over a parameter grid. Three hyperparameters are

oncerned: number of approximate nearest neighbors selected (5, 10,

5, 20, 25, 30), patch sizes (18, 26 or 34mm) and their combinations

all combinations of 1, 2, and 3 different patch sizes are tested). Note

hat two parameters were set a priori: the size of the search window

t 14 ∗ 14 ∗ 14 mm and the number of iterations of the propagation and

andom search steps at 4. 

(

6 
In summary, several adaptations have been made compared to

 Coupé et al., 2012 ): 

• The search for similar patches is performed using the adaptation

of the Optimized PatchMatch algorithm proposed in ( Borne et al.,

2020 ) and not using an exhaustive search. 
• In order to manage the unbalanced databases, the initialization of

the algorithm is weighted to compensate. 
• The average of the grades is done on the ROI instead of on a simulta-

neously segmented region. In fact, since the patterns-of-interest are

often missing, it is impossible to define an area to be segmented for

the hemispheres without the pattern-of-interest. 

.2.3. Convolutional neural network (CNN) 
The last proposed approach uses a 3D Convolutional Neural Network

CNN) ( Fig. 8 ). 
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Preprocessing The input data of the neural network corresponds to a

D volume of resolution 2 ∗ 2 ∗ 2 mm containing the fold skeleton. Voxels

hat belong to the fold skeleton are 1; the others are 0. The volume size is

alculated to contain all the patterns-of-interest in the training database.

ote that unlike the SNIPE-based method where a mask was calculated

rom the position of the patterns-of-interest to determine the ROI, here

t is a parallelepipedic bounding box that is calculated for each fold of

he cross validation. 

In order to augment the training database, a rotation in a ran-

om direction with a random angle (following a Gaussian distribution

 (0 , 𝜋40 
2 ) ) and a random translation (each coordinate following a Gaus-

ian distribution  (0 , 2 2 ) ) are applied successively to the volumes at

ach epoch. 

Network architecture Concerning the classification of 2D images, spec-

acular progress has been made in the last decade. This is particularly

ell illustrated by the ImageNet Large Scale Visual Recognition Chal-

enge, which saw the emergence of several network architectures that

re now widely used for image classification. However, for the clas-

ification of 3D images, there is currently no such challenge to assess

he advantages and disadvantages of several architectures. In the study

 Hara et al., 2018 ), the authors evaluate the performance of adapta-

ions to 3D spatiotemporal images of neural networks used for 2D im-

ge classification during the ImageNet Large Scale Visual Recognition

hallenge. Based on this study, the architecture of the 3D ResNet was

hosen for our problem. The parameters of the architecture used cor-

espond to those of the initially proposed 2D architecture ( He et al.,

016 ), with 3D convolutional layers, a single input channel and 18 lay-

rs. In order to be able to manage variable input volume size (since

t depends on the folds of the cross-validation), the adaptive average

ooling proposed by the Pytorch library ( Paszke et al., 2017 ) is used.

daptive pooling works like standard pooling, with the stride and ker-

el size being calculated from the input size ( 𝑖𝑛𝑝𝑢𝑡 _ 𝑠𝑖𝑧𝑒 ) and the de-

ired output size ( 𝑜𝑢𝑡𝑝𝑢𝑡 _ 𝑠𝑖𝑧𝑒 ). Specifically, the following parameters

re used: 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑓𝑙𝑜𝑜𝑟 ( 𝑖𝑛𝑝𝑢𝑡 _ 𝑠𝑖𝑧𝑒 ∕ 𝑜𝑢𝑡𝑝𝑢𝑡 _ 𝑠𝑖𝑧𝑒 ) ; 𝑘𝑒𝑟𝑛𝑒𝑙 _ 𝑠𝑖𝑧𝑒 = 𝑖𝑛𝑝𝑢𝑡 _ 𝑠𝑖𝑧𝑒 −
 𝑜𝑢𝑡𝑝𝑢𝑡 _ 𝑠𝑖𝑧𝑒 − 1) ∗ 𝑠𝑡𝑟𝑖𝑑 𝑒 ; 𝑝𝑎𝑑 𝑑 𝑖𝑛𝑔 = 0 . 

The neural network outputs two values, one for each class (i.e. with

r without pattern-of-interest). The higher value determines the pre-

icted class. 

Training The weight initialization of the convolutional layers fol-

ows the method described in ( He et al., 2015 ), using a normal dis-

ribution. The stochastic gradient descent with Nesterov momentum

 Sutskever et al., 2013 ) is used for training, with a batch size of 10 sam-

les and a learning rate and momentum determined by an 3-fold inner

ross validation. The loss function corresponds to the cross entropy loss,

eighted by the inverse of the number of samples of each class in the

raining database. The learning rate is halved when the loss function has

ot improved for five consecutive epochs. In accordance with the early

topping strategy, the training is stopped after ten consecutive epochs

ithout improvement. The selected neural network corresponds to the

poch at which the balanced accuracy is the highest. 

Ideally, in order to perform early stopping, part of the hemispheres

n the training set should be reserved to evaluate the performance of

he neural network at each epoch, and train on the others. In this study,

n order to maintain a training set of sufficient size during 3-fold inner

ross-validation, the validation fold is used to test the model at each

poch and the 2 others folds are used for training. 

Hyperparameters In order to choose the hyperparameters (learning

ate and momentum), several 3-fold cross-validation loops are per-

ormed in turn to adjust the hyperparameters one after the other. First,

he momentum is set at 0.9 and the learning rates 1e-2, 1e-3 and 1e-4

re tested in turn. Second, once the learning rates have been tested on

ll inner cross-validation folds, the learning rate is refined around the

alue 𝑙𝑟 that obtained the best balanced accuracy: the values 𝑙𝑟 ∕4 , 𝑙𝑟 ∕2 ,
𝑟 ∗ 2 and 𝑙𝑟 ∗ 4 are tested in turn. Finally, the best learning rate ob-

ained is then tested with momentum 0.8, 0.7 and 0.6 to select the best

e  

7 
alue. We have chosen not to test values above 0.9 in order to reduce

he risk of divergence due to excessive gradient memory. 

.3. Performance evaluation 

Cross validation The evaluation of the performance of the trained

odel was estimated using a double loop of cross validation: one in-

er 3-fold cross validation loop to select the best hyper-parameters and

ne outer 10-fold cross validation loop to evaluate classification perfor-

ances. In order to define the folds of the two cross-validations, special

ttention was paid to ensure that two hemispheres of the same subject

ere not separated, one in the training set and the other in the test set. In

ddition, the hemispheres were distributed so that each fold contained

pproximately the same proportion of patterns-of-interest. 

Classification score Balanced accuracy is used to evaluate the perfor-

ance of each model ( Brodersen et al., 2010 ). This score is more appro-

riate than average accuracy in the case of unbalanced databases. It is

efined as the average of recall 𝑅 𝑐 obtained on each class 𝑐: 

 𝑐 = 

𝑇 𝑃 𝑐 

𝑇 𝑃 𝑐 + 𝐹 𝑁 𝑐 

(1)

ith 𝑇 𝑃 𝑐 and 𝐹 𝑁 𝑐 , respectively the number of true positive and false

egative samples. 

Note that the recall of the class with the pattern-of-interest is called

ensitivity, while the recall of the class without the pattern-of-interest is

alled specificity. These two measures are also reported in the results. 

Model comparison In order to compare the models in pairs, a paired

-test was performed between the balanced accuracy lists of each cross

alidation fold. Note that this comparison method has good repeatability

ompared to other methods and a modest Type II error but has a high

ype I error ( Dietterich, 1998 ). Thus, the results obtained by this test

ill be questionable if the performances of the models are considered

ignificantly different ( 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0 . 05 ), which could correspond to a Type

 error, but not if they are considered similar ( 𝑝 𝑣𝑎𝑙𝑢𝑒 ≥ 0 . 05 ). 
In order to determine whether the average balanced accuracy ob-

ained is significant or not, it is compared with chance, i.e. the classifi-

ation obtained with a Binomial distribution of success probability 0.5

nd with a number of samples corresponding to the number of hemi-

pheres to be classified in the database. Since the binomial test used is

n exact, two-sided test of the null hypothesis, the 𝑝 𝑣𝑎𝑙𝑢𝑒 can be divided

y 2 as we test that the accuracy is superior to the chance level. 

S score A 𝑆 score has been defined for each model in order

o assess its confidence in the classification of a given hemisphere.

or the SVM-based model, the probabilities of presence/absence of a

attern-of-interest is calculated according to the procedure proposed in

 Platt, 1999 ). The proposed 𝑆 score is the difference between these two

robabilities. For the SNIPE-based model, the value of the estimator is

irectly used as the 𝑆 score. For the CNN-based model, two scores are

btained at the output of the network, one for each pattern. The 𝑆 score

sed corresponds to the difference between these two outputs. In or-

er to determine whether the 𝑆 score significantly distinguishes fold

atterns, the Mann-Whitney test ( Mann and Whitney, 1947 ) is used. In

rder to compare the effectiveness of the S score in distinguishing be-

ween the two classes, we will use it to calculate the Area Under the

eceiver operating characteristic Curve (AUC). 

Looking for rare patterns In order to test the possibility of searching

or rare patterns, such as PBS, using the models presented in this study,

hese were used to search for PBS on an external database: the Human

onnectome Project database ( Van Essen et al., 2013 ). This database is

omposed of healthy volunteers and the T1w structural scans were de-

aced using the algorithm reported in ( Milchenko and Marcus, 2013 ).

he three models proposed were trained on the full training database

i.e. 114 hemispheres, including 28 with a PBS) by fixing the hyperpa-

ameters thanks to a 3-fold cross validation. They were then applied to

he Human Connectome Project database, containing 1023 subjects, i.

. 2046 hemispheres. In order to see if these models can identify some
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Fig. 9. Balanced accuracies for the 10 folds 

of the cross-validation by model. The SVM- 

based model is in red, the SNIPE-based model 

in blue and the CNN-based model in green. 

The values of the balanced accuracies obtained 

for each fold of the cross-validation were com- 

pared by paired T-test. The 𝑝 𝑣𝑎𝑙𝑢𝑒𝑠 obtained are 

indicated below the compared models. The red 

stars above the models indicate that the model 

is better than chance (one star for 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0 . 05 , 
two for 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0 . 02 , three for 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0 . 001 ). 
The box extends from the lower to upper quar- 

tile balanced accuracy values, with a line at the 

median. The whiskers extend from the box to 

show the minimum and maximum values. 

Fig. 10. 𝑆 score distribution per model. The 

𝑆 scores shown in this figure correspond to 

the scores obtained in the test folds from the 

10-fold cross-validation. Each graph contains a 

histogram representing the number of samples 

as a function of the S score. Each color cor- 

responds to a different class, data are stacked 

on top of each other. The 𝑝 𝑣𝑎𝑙𝑢𝑒 of the Mann- 

Whitney test are indicated in the title of each 

graph. Note that only the 𝑝 𝑣𝑎𝑙𝑢𝑒 of the CNN- 

based model for PBS recognition is more than 

0.05. (For interpretation of the references to 

colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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Table 1 

Mean balanced accuracy (standard deviation) in % of the 10 

folds of the cross-validation for each model presented. The best 

test scores are highlighted in bold. 

ACC PBS 

Train Test Train Test 

SVM 78.9 (1.0) 77.9 (5.4) 70.0 (2.4) 60.3 (11.5) 

SNIPE 79.7 (1.3) 80.6 (4.5) 66.4 (3.3) 61.4 (12.3) 

CNN 84.4 (1.9) 82.7 (6.0) 70.3 (2.6) 59.0 (12.8) 
BSs on this new database, the 9 hemispheres with the highest S score

ill be examined visually. 

. Results 

.1. Which is the best model? 

When analysing the balanced accuracy by model ( Fig. 9 , Tables 1 , 2 ),

e observe that whatever the fold pattern studied, all models are better

han chance and that none of them is significantly better than the other
8 
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Table 2 

Mean specificity/sensitivity/AUC (standard deviation) in % of the 10 folds of the cross- 

validation for each model presented. The best score per measure is highlighted in bold. 

ACC PBS 

Spec. Sens. AUC Spec. Sens. AUC 

SVM 75.5(9.9) 80.3(7.1) 85.9(4.0) 69.0(27.5) 51.7(26.3) 61.9(22.0) 

SNIPE 71.3(6.6) 89.8(8.7) 89.5(3.8) 64.4(13.3) 58.3(25.0) 63.9(13.1) 

CNN 81.8(7.8) 83.6(14.0) 90.6(3.3) 71.3(21.5) 46.7(37.1) 60.5(17.5) 

Fig. 11. Looking for PBSs with the SVM-based method. The hemispheres pre- 

sented are those with the highest 𝑆 scores on the Human Connectome Project 

database (score decreasing in the reading direction). Hemispheres with a PBS, 

or an intermediate pattern, are zoomed. The right hemispheres are flipped for 

this image. 
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Fig. 12. Looking for PBSs with the SNIPE-based method. 

Fig. 13. Looking for PBSs with the CNN-based method. 
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nes. Thus, the balanced accuracy of the ACC patterns classification is

bout 80% and that of the PBS about 60%. Models therefore have more

ifficulty managing rare patterns where the training database is lim-

ted and unbalanced. With the current implementation, the CNN-based

odel requires only a few seconds to determine whether a hemisphere

ontains a pattern of interest, whereas models based on SNIPE and SVM

equire at least several minutes (even more without parallelization of

he registration of the patterns-of-interest or of the search for similar

atches). Concerning training times, these are about several hours (or

ven days), but they are difficult to compare because they depend heav-

ly on available resources. 

Regarding the distribution of the 𝑆 score defined in section 3.3., the

ann-Whitney test indicates that, except for the CNN-based model, the

scores significantly separate the hemispheres with and without a PBS

 Fig. 10 ). Thus, the CNN-based model does not provide sufficiently reli-

ble scores to assist in the search for PBSs, while the other two models

an be used to find PBSs on a new database and enrich the current train-

ng database. 

.2. Looking for PBSs 

Concerning the search for PBSs on the Human Connectome Project

atabase, the models identified that 30% (for the CNN-based model)

o 75% (for the SVM-based model) of the hemispheres presented PBS,

hich is largely overestimated given the rarity of this pattern in the

ealthy population. In order to see if these methods can identify some

BSs on this new database, the 9 hemispheres with the highest 𝑆 score

re examined ( Figs. 11 , 12 and 13 ). Note that we do not know the pro-

ortion of PBSs in the healthy population, so it is difficult to estimate

ow many PBSs are actually present in the Human Connectome Project

atabase. However, the three models proposed make it possible to find

ome of them, which is already promising, in particular for SVM and

NIPE-based models that allow us to find more PBSs than the CNN-based
9 
odel. Indeed, the first two models identify respectively four and three

BSs out of the nine hemispheres examined, while the CNN-based model

dentifies only one. Note that the PBSs identified with the most confi-

ence by the SVM and SNIPE-based models are different and are not

lways classified as such by the other model. These methods therefore

eem to be complementary for PBSs research. Therefore, by illustrat-

ng the usefulness of the proposed models in a particular practical case

the search for a rare pattern in a large database of healthy subjects),

hese results confirm that the models allow us to meet one of the main

otivations of this study. 

. Conclusion 

In this study, three methods were proposed for the automatic clas-

ification of sulcal patterns. The first method uses the distances of the

atterns of the training database to the hemisphere to be classified to

rain a SVM. The second method is based on the SNIPE patch classifica-

ion approach proposed by Coupé et al. (2012) . The third method uses

n 18-layer 3D recurrent neural network. 
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For the recognition of ACC patterns, the three proposed models have

quivalent performance in identifying individual pattern, with a bal-

nced accuracy of about 80%. However, the fastest model to apply

s the one based on CNN. For PBS recognition, all three models also

ave equivalent identification performance, with a balanced accuracy

f about 60%. Therefore, it appears that these models perform con-

iderably less efficiently when the database is limited and unbalanced,

hus preventing their application for large-scale morphological studies.

owever, the models provide scores to assess their confidence in the

roposed identification, allowing to focus only on the subjects where

he models are most confident. Except for the CNN-based model, these

cores significantly distinguish between hemispheres with and without

BS. Thus, the CNN-based model is less efficient than the others for PBS

dentification. This is probably due to the fact that neural networks usu-

lly require more training data than classical approaches, which is a

roblem for the study of rare patterns like the PBS. 

In conclusion, none of the proposed models is better than the other

wo because their performance in identifying individual patterns is

quivalent and, although the fastest model is the CNN-based model, it

s also the least efficient model for finding rare patterns. It is therefore

omplicated to advise one model over another because it depends on

he pattern-of-interest. However, we believe that these methods perform

ell enough to later help (1) to identify a link between sulcal shapes and

unctional organization of the cortex (e.g. by studying the distribution

f ACC patterns on larger databases) and (2) to understand their role

n neurodevelopmental disease (e.g. by helping to identify rare patterns

uch as PBS in healthy population). Moreover, these methods are generic

nough to be applicable to a wide range of other folding patterns that

re the subject of numerous studies ( Germann et al., 2005; Hotier et al.,

017; Huntgeburth and Petrides, 2012; Kim et al., 2008; Ochiai et al.,

004; Plaze et al., 2015; 2009; Segal and Petrides, 2012; Snyder et al.,

019; Sprung-Much and Petrides, 2018; Zlatkina and Petrides, 2010 ). 

.1. How can the current models be improved? 

In order to improve the test accuracy of the current proposed models,

ne possible approach would be to train a 2D neural network from the

urface projections of the folds on a 2D image representation. Indeed,

D networks are easier to train than 3D networks, thanks to their re-

uced number of parameters to learn. The difficulty of such an approach

ould be to determine an optimal way to project the brain surface on

 2D grid, without excessively distorting the fold patterns. Such projec-

ions have recently been proposed for sulci recognition using a 2D CNN

 Parvathaneni et al., 2019 ). Once this step is completed, it opens the

ay to many promising neural network architectures that have already

roven their worth in 2D image classification, such as for the ImageNet

hallenge ( Russakovsky et al., 2015 ). 

Another possible approach would be to use non-Euclidean neural

etworks ( Bronstein et al., 2017 ) in order to train the network directly

n the surface of the brain and avoid a tricky projection on a 2D grid

hich necessarily leads to a loss of information. 

.2. How to define fold patterns automatically? 

Cortical folds are so variable that manual pattern definition is tricky.

ndeed, it is usually the result of long reflections after visualization and

tudy of a large number of subjects by experts. Moreover, the use of a

imited database, or of the limited human memory, questions the gen-

ralisability of the defined patterns. Thus, many approaches seek to dis-

over folding patterns in an unsupervised manner. These methods define

 region of interest and deduce patterns automatically, using clustering

lgorithms ( Duan et al., 2019; Im et al., 2011; Meng et al., 2018; Sun

t al., 2009; 2007 ). However, in this study, we observed that the classifi-

ation of local patterns is sometimes difficult to carry out because of the

ontinuity between the different configurations. For this reason, in the

tudy of ACC patterns, some subjects were excluded from the study due
10 
o a lack of consensus on their identification. Similarly, different levels

f PBS presence were used when tagging the training database. Also,

ther unsupervised approaches prefer to use manifold based techniques

o better represent the continuity between two extreme configurations

 Sun et al., 2016; 2012 ). Similarly, it would be interesting to predict

 score for the presence of ACC patterns or PBS, rather than attempt

o distinguish them into separate groups. Nevertheless, all these unsu-

ervised approaches are based on the prior labeling of the structures of

nterest, which is sometimes difficult to obtain and may lead to radically

ifferent results depending on the region of interest used. 

Other approaches are not based on the definition of a region of inter-

st but seek to discover patterns of group related anatomical structure

 Takerkart et al., 2017; Toews et al., 2010 ). In the same vein, some of the

roposed methods in this study would be easily adaptable to the search

or new patterns that characterize a group. In fact, we believe that fold

keletons could be used to train a model to distinguish patients from

ontrols. If the model achieves significant classification performance, it

ecomes particularly interesting to look at the patterns that allow it to

erform a correct classification. For example, since the SNIPE method

s based on the similarity of each patch surrounding the voxels of a fold

keleton to both populations in the learning base, it is then easy to vi-

ually identify, for a given skeleton, the sulcal pattern specific to the

ssigned group. Similarly, by training a CNN to make such classifica-

ions, different techniques could help identify areas of the fold skele-

on that allow correct classification, such as the use of saliency maps

 Simonyan et al., 2014 ) or occlusions ( Zeiler and Fergus, 2014 ), already

sed to understand how neural networks work. Such tools would help

euroanatomy experts to identify fold patterns specific to a given group.

Currently, there is no approach to automatically discover folding pat-

erns that gets rid of both a priori definition of region of interest and

roup of interest. In the future, a fully unsupervised approach would

nable the use of the huge databases available today to define patterns

eneralisable to the whole population, which would greatly facilitate

he study and understanding of cortical folds variability. 
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