Effects of maternal protein restriction on central and peripheral renin-angiotensin systems in male rat offspring
Résumé
AIMS: We investigated the involvement of the renin angiotensin system (RAS) on the cardiorespiratory control in rats from dams fed with a low-protein diet. MAIN METHODS: Male offspring were obtained from dams fed a normoprotein diet (NP, 17% casein) and low-protein diet (LP, 8% casein) during pregnancy and lactation. Direct measurements of arterial pressure (AP), heart rate (HR) and respiratory frequency (RF) were recorded in awake 90-day-old at resting and after losartan potassium through either intracerebroventricular (ICV) microinjections or intravenous (IV) administration. Cardiovascular variability was evaluated by spectral analysis. Peripheral chemoreflex sensitivity was assessed through the potassium cyanide (KCN; 40 μg/0.1 ml/rat, IV). Gene expression was evaluated by qPCR, and MAPK (Mitogen Activated Protein Kinase) expression was evaluated by western blot. KEY FINDINGS: The LP offspring had higher mean AP (MAP) and RF than NP offspring. In the spectral analysis, the LP rats also showed higher low frequency of systolic AP (NP: 2.7 ± 0.3 vs. LP: 5.0 ± 1.0 mmHg). After ICV losartan, MAP and RF in LP rats remained higher than those in NP rats, but without changes in HR. The peripheral chemoreflex was similar between the groups. LP group had lower gene expression of Rac1 (Ras-related C3 botulinum toxin substrate 1) (NP: 1.13 ± 0.06 vs. LP: 0.88 ± 0.08). Peripherally, LP rats had larger delta of MAP after IV losartan (NP: -9.8 ± 2 vs. LP: -23 ± 6 mmHg), without changes in HR and RF. SIGNIFICANCE: In rats, the RAS participates peripherally, but not centrally, in the maintenance of arterial hypertension in male offspring induced by maternal protein restriction.