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Abstract: Vulnerable carotid atherosclerotic plaques are characterised by several risk factors, such as 
inflammation, neovascularization and intraplaque haemorrhage (IPH). Vulnerable plaques can lead to 
ischemic events such as stroke. Many studies reported a relationship between IPH, plaque rupture, and 
ischemic stroke. Histology is the gold standard to evaluate IPH, but it required carotid endarterectomy (CEA) 
surgery to collect the tissue sample. In this context, several imaging methods can be used as a non-invasive 
way to evaluate plaque vulnerability and detect IPH. Most imaging studies showed that IPH is associated 
with plaque vulnerability and stroke, with magnetic resonance imaging (MRI) being the most sensitive and 
specific to detect IPH as a predictor of ischemic events. These conclusions are however still debated because 
of the limited number of patients included in these studies; further studies are required to better assess risks 
associated with different IPH stages. Moreover, IPH is implicated in plaque vulnerability with other risk 
factors which need to be considered to predict ischemic risk. In addition, MRI sequences standardization is 
required to compare results from different studies and agree on biomarkers that need to be considered to 
predict plaque rupture. In these circumstances, IPH detection by MRI could be an efficient clinical method 
to predict stroke. The goal of this review article is to first describe the pathophysiological process responsible 
for IPH, its histological detection in carotid plaques and its correlation with plaque rupture. The second 
part will discuss the benefits and limitations of imaging the carotid plaque, and finally the clinical interest of 
imaging IPH to predict plaque rupture, focusing on MRI-IPH.
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Background

Stroke is the second most frequent cause of death in the 
world and the primary cause of long-term disabilities 
in western countries (1). At least 80% of all strokes are 
ischemic and 20% of them are the consequence of the 
rupture of a vulnerable carotid atherosclerotic plaque 

located at the carotid bifurcation (1). As strokes resulting 
from carotid plaque rupture are known to be linked to 
embolism (2), plaque vulnerability assessment is likely an 
essential element in the detection of patients at risk for 
ischemic stroke and should be a factor when considering 
carotid endarterectomy (CEA) surgery (3). Currently, the 
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decision to perform CEA surgery is only based on the 
degree of carotid stenosis and cerebrovascular medical 
history (4). The link between stenosis degree and stroke 
risk has been widely demonstrated (5), and many national 
guidelines still claim that stenosis should remain the 
main criteria to classify plaques and thus the decision of 
CEA (6) even if evidence has been provided otherwise for 
asymptomatic patients (7,8) thus this sole factor may be 
insufficient to evaluate the risk-benefit ratio of CEA surgery 
in these patients (3,9). A meta-analysis showed that for most 
asymptomatic patients, a very few ischemic events happened 
after CEA, thus the risk-benefit ratio resulting from the 
CEA might be unfavourable (3,7,10). Moreover, the 10 years  
risk of stroke is only 4.6%, suggesting that 95% of the CEA 
performed on asymptomatic patient are unnecessary (11,12). 
Thus, it appears that management of CEA in asymptomatic 
patients need to be rethought and in vivo identification 
of vulnerable plaque has to be improved to be commonly 
used in a clinical setting for the decision of CEA surgery. 
In this context, non-invasive imaging methods and more 
specifically magnetic resonance imaging (MRI) appear to 
be the most sensitive and specific to identify IPH in vivo 
(13,14), especially in a clinical perspective to predict stroke 
risk (15-17). In this regards, ESVS guidelines encourage 
surgeons to use imaging to identify plaque with vulnerable 
factors in particular intraplaque haemorrhage (IPH) that 
needs CEA surgery (18). Several vulnerability factors were 
reported: thin fibrous cap, large lipid-necrotic core volume, 
monocytes infiltration (19) and IPH (19,20) resulting from 
immature neovascularization (21). It has been shown that all 
these factors are unequally involved in plaque destabilisation 
(19,22,23). Since 1936, IPH has been described as a risk 
factor of plaque rupture (24). During the 1980s several 
studies have demonstrated a relationship between carotid 
IPH and history of ischemic events (25,26). IPH is more 
prevalent in symptomatic stroke patients, regardless of the 
time since the event, than in asymptomatic patients (27-30). 
Carotid IPH has been documented by histological studies 
over the last 20 years, now it is likely an important factor to 
consider when classifying vulnerable plaques (26). Currently 
no drug treatment targeting specifically IPH is available; 
however statin use is associated with lower prevalence of 
plaque with neovascularisation (31) and IPH (32). On the 
contrary, platelet antiaggregant is associated with higher 
prevalence of IPH (32). In this context, in vivo detection of 
IPH appears to be one of the most reliable factors to predict 
cerebral ischemic events (15-17). 

Carotid IPH 

Pathophysiology

IPH is defined by the accumulation of blood components 
within the atheromatous plaque (26). IPHs are closely linked 
to the microcirculation within the plaque. McCarthy et al. 
showed that symptomatic plaques showed more, larger and 
more irregular neo-vessels than asymptomatic plaques (33).  
Indeed an increased neo-vessels density is associated 
with IPH and rupture of the plaque (33). In advanced 
atherosclerotic lesions, hypoxia, along with macrophages 
triggering inflammation and oxidative stress promoting 
low density lipoprotein (LDL) oxidation into oxidized 
LDL (Ox-LDL) processes are merged. All these factors 
lead to the chronic secretion of vascular endothelial 
growth factor (VEGF) increasing pathological impaired  
neoangiogenesis (19). Neo-vessels originating from the vasa 
vasorum develop through the medium and large arteries 
from adventitia to the intima (19). These neo-vessels, which 
lack smooth muscle cells and endothelial gap junctions, 
are disorganized and incomplete (21,34), and thus are 
prompt to leak. This results in IPH formation (20) and 
expansion (35) and the transfer of blood cells that promote 
plaque rupture (36). IPH carries inflammatory cells (37) 
that increase the necrotic core volume (38) also indirectly 
leading to vulnerable plaques rupture and subsequent clinic 
ischemic events (39). 

During IPH, leucocytes, platelets and erythrocytes 
are released. The leaked erythrocytes break down into 
iron, cholesterol, glycophorin A and ceroids (24). The 
erythrocytes and leucocytes (37) extravasated from the 
lumen of neo-vessels into the atherosclerotic plaque, 
self-sustain inflammation and pro-oxidant mechanisms 
(19,40) (Figure 1). Indeed, in the hypoxic environment of 
the plaque, IPH-released neutrophils secrete angiogenic 
factors such as VEGF and lipid peroxidation by-products, 
(41,42) known risk-factors for future ischemic events (43). 
Neutrophils also abundantly express myeloperoxidase, 
which produce hypochlorous acid and H2O2, leading to a 
decrease in NO bioavailability thus enhancing endothelial 
dysfunction (44,45). Ultimately, the lysis of neutrophils 
release highly pro-oxidant materials, such as DNA  
histones (46). Moreover, the activation of NAD(P)H 
oxidases and myeloperoxidases in macrophages are known 
to produce superoxide (O2

•-) enhancing a pro-oxidant 
environment. To reduce IPH, the leaked erythrocytes 
are phagocyted mainly by macrophages. This results in 
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the release of haemoglobin and iron which are highly 
pro-oxidant (24) and pro-inflammatory through the 
conversion of H2O2 into the highly toxic hydroxyl (OH•). 
In addition, the erythrocytes plasma membrane, which is 
composed of 40 percent cholesterol, is the primary source 
of necrotic core expansion during phagocytosis (20,24,47). 
Therefore regulation mechanisms are implemented to 
reduce IPH, such as the anti-inflammatory, cytoprotective 
shift in macrophages phenotype and the recruitment of 
haptoglobin that metabolise haemoglobin and recycle  
iron (48). Unfortunately, they are quickly depleted and 
become inefficient. Consequently, these closely integrated pro-
inflammatory and pro-oxidant processes persist which not only 
enhances IPH but also promotes the growth of the necrotic 
core (19,49), increasing the risk of ischemic event (36).

Typically the presence of blood in the atherosclerotic 
plaque is due to leaky neovessels localized to the plaque 
shoulder (50).  However,  in different areas,  other 
mechanisms can lead to the presence of blood within 
the plaque. Cholesterol crystals due to eryptosis can 
mechanically break neovessels, which bleed into the 
atheromatous plaque (51,52). Moreover, cholesterol 
crystal content are independent predictors of thrombus 
and cardiovascular events (52). Intraplaque blood can also 
originate from the integration of a luminal erythrocyte-

rich thrombus with the plaque (24,53) or entry of luminal  
blood (20). Plaque fissures are observed even in plaques 
with an intact fibrous cap and those that are co-localised 
with fresh IPH (54). In this case, the thrombus is entrapped 
into extracellular matrix leading to a narrow lumen, yet it 
also appears to be a healing process. Histologically, this 
healing process can be hard to discriminate from IPH (24).

Histology

IPH determination by histology
Histology is the gold standard in studying plaque 
components like IPH, lipid rich necrotic core (LRNC) and 
inflammation. Usually, the surgically removed atheromatous 
plaque also includes the middle part of the media and 
internal part of the media. In clinical context, surgical 
pathologists generally evaluate IPH on plaque slices after 
hematoxylin-eosin (H&E) or Masson trichrome stains, 
which are non-specific staining for haemorrhage (25,55).

To improve the histological IPHs identifications, several 
biomarkers are used. The most frequently used is iron, as 
it links to haemoglobin and is released during erythrocyte 
phagocytosis; it is highlighted in the adventitia by the 
Perls technique with Prussian blue stain (Figure 1). Red 
blood cell (RBC) membrane specific protein cholesterol 

Figure 1 Inflammation and oxidative implications of IPH. IPH, intraplaque haemorrhage; LRNC, lipid rich necrotic core; MPO, 
myeloperoxidase; NADPHox, nicotinamide adenine dinucleotide phosphate oxidase; RBC, red blood cell; VEGF, vascular endothelial 
growth factor; WBC, white blood cell. 
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crystals are detected by immunohistochemistry with 
glycophorin A, allowing the discrimination of lipid-rich 
and erythrocyte-rich parts of the necrotic core (Figure 1).  
Ceroids (56,57) are often co-localised with haem (24) 
and are markers of senescent RBC but are less specific of 
IPH than cholesterol crystals (24). They are identified by 
Raman or fluorescence spectroscopy and are completed 
by other peroxidation markers. Neutrophils markers 
such as matrix metallopeptidase-9 (MMP-9), neutrophil 
gelatinase-associated lipocalin/MMP-9 (NGAL/MMP-9), 
elastase, CD66b, proteinases 3, myeloperoxidase (MPO) or 
α-defensins are colocalised with IPH (58). Neutrophils are 
predictors of recurrent ischemic events.

As these markers are specific to different forms and 
localisations of RBC, multiple consecutive slice staining 
could elucidate RBC trafficking and IPH. Moreover, in 
vulnerable plaques, neo-angiogenesis-derived IPH could be 
difficult to discriminate from integrate coagulum which is a 
sign of plaque regression (24). CD34 immunostaining allows 
for a precise quantification of the micro-vessels density (59). 
Plaque neo-vascularisation can also be visualised by H&E 

staining of endothelial cells (60) or von Willebrand factor 
(factor VIII) staining (61). To characterise leaky neo-vessels, 
SMC should also be stained for smooth muscle antibody 
(SMA), as the presence of factor VIII and absence of SMA 
indicates that the vessel is leaky. 

IPH and vulnerable carotid atherosclerotic plaques in 
histology
Vulnerable carotid atherosclerotic plaques are composed of 
various components (Figure 1). The lipid-rich necrotic core 
harbours lipid content such as cholesterol crystals, but also 
calcifications and haemorrhagic components. As vulnerable 
plaques continually evolve, different classifications have 
been established (Table 1) (62-64) in order to stratify the 
associated plaque instability and thus the subsequent 
ischemic risk. 

After surgery, histopathological classifications assess the 
vulnerability of the carotid atherosclerotic plaque. The 
American Heart Association classification was the first that 
aimed to graduate plaque vulnerability (62,63), and more 
recently, Lovett proposed his own classification, adding 

Table 1 Histological classifications to determine plaque vulnerability

Classification Reference Application Goal Features Stages

American Heart 
Association 
classification

Stary 1994; 
Stary 1995 
(62,63)

Histology Graduate  
atherosclerosis 
severity

Isolated macrophages foam cells Type 1 (initial) lesion

Mainly intracellular lipid accumulation Type 2 (fatty streak) 
lesion

Type 2 changes & small extracellular lipid pools Type 3 (intermediate) 
lesion

Type 2 changes & core of extracellular lipid Type 4 (atheroma) 
lesion

Lipid core & fibrotic layer, or multiple lipid cores & 
fibrotic layers or mainly calcific or mainly fibrotic

Type 5 (fibroatheroma) 
lesion

Surface defect, hematoma-haemorrhage,  
thrombus

Type 6 (complicated) 
lesion

Lovett  
classification

Lovett 2004 
(64)

Histology Graduate  
atherosclerosis 
severity

Definitely stable, e.g., predominantly fibrous,  
few inflammatory cells, intact cap

Grade 1

Probably stable, e.g., one feature of instability  
such as small haemorrhage or inflamed

Grade 2

Probably unstable, e.g., inflammation, thin cap,  
and large core but no rupture

Grade 3

Definitely unstable, e.g., rupture, thrombus, large  
haemorrhage, thin inflamed cap

Grade 4
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the inflammation item (64). IPH is an evolving process 
due to the different pathophysiological processes that are 
chronologically involved and the subsequent progression of 
ischemic risk. 

In the preclinical setting, mice (ApoE-/- and LDLR-/- 
under high cholesterol diet) are the most commonly used 
animals to study atherosclerosis. However, they are poor 
experimental models of IPH, neovascularisation and plaque 
rupture. Therefore, IPH data essentially originate from 
human clinical studies (24) or from other animal species that 
develop vulnerable carotid atherosclerotic plaques similar 
to human plaques. For example, annexin V (which is highly 
released during eryptosis) injection in aortic atheromatous 
plaque of de-endothelialized rabbits under cholesterol 
diet leads to the necrotic core growth, free cholesterol 
crystals formation and higher macrophage recruitment (65) 
suggesting the role of eryptosis in unstable atherosclerotic 
plaques. This suggests that in addition to a direct increase 
in plaque rupture risk (15), IPH might participate in a 
pathophysiological vicious circle leading to plaque rupture.

Analysing the plaque components, IPH presence is 
generally associated with a thin fibrous cap and a large 
necrotic core (19). Pelisek et al. found in symptomatic and 
asymptomatic patients that neo-vessels were present in 
93.8% of the plaques with over 70% stenosis and 97.1% 
of these neo-vessels were immature and leaky leading to 
IPH (66). A histological study (n=526) led by Redgrave 
et al. on patients with symptomatic carotid plaques who 
underwent CEA reported that 64.6% of the plaques showed 
IPH (67). This study also demonstrated that IPH was 
associated with fibrous cap rupture, independent of other 
risk factors [OR =3.00 (1.64–5.51)] suggesting that IPH is a 
contributing factor to plaque vulnerability (67). Vrijenhoek’s 
team reported that IPH was more frequent in men (67%) 
than in same aged post-menopausal women (54%), while 
micro-vessels density was not significantly different (68). 

Moreover, in the same study IPH leads more often to plaque 
rupture in men than in women [HR =1.5 (1.1; 2.1)] (68).  
In most cases, IPH presence was associated with other 
known risks factors of rupture: necrotic core expansion (19),  
leaky neo-vessels (20), macrophages accumulation and 
oxidative stress (19,26).

An Anglo-Dutch group published a histochemistry 
analysis on symptomatic patients with moderate stenosis. 
They studied the link between risk factors traditionally 
associated with plaque rupture and cerebral cardiovascular 
outcomes (69). Statistical analysis of 1,087 carotid plaques 
revealed that macrophages infiltration, thrombosis and 
micro-vessels density [OR (micro-vessels density) 1.49 (1.05; 
2.11)] was significantly correlated with plaque vulnerability. 
On the contrary, no relationship was observed between 
plaque vulnerability and fibrous cap, lymphocyte infiltration 
or IPH [OR (IPH) 1.15 (0.84; 1.59)]. The authors suggested 
that the contradictory findings of neovascularization and 
IPH could be explained by a blood leakage only present 
during early IPH in organised stages (Table 2). Nevertheless, 
this hypothesis was not experimentally tested. Another 
explanation could be that IPH and thrombosis are hardly 
discriminable. 

IPH histological classifications
None of the previous classif ication of vulnerable 
atherosclerotic plaques (62-64) take into account 
the evolution of IPH, thus several IPH histological 
classifications were established (70-72). These classifications 
(71,72) are not commonly used anymore because the 
classification of Derksen is the most complete and is 
currently used in anatomopathology. This classification 
distinguishes four stages of IPH (Table 2) based on 
histological H&E stain.

According to Derksen’s histological classification, 
organised IPHs are more vulnerable to breakdown than 

Table 2 IPH stages according to Derksen’s classification (70)

IPH stages Characteristics IPH age 

Recent IPH Contains unorganised fibrin, intact and some debris of erythrocytes <2 weeks

Organised IPH Contains an increased concentration of fibrin, some peripherical capillary and smooth 
muscle cells as well as a mixture of intact and debris of RBC

Between 2 and 6 weeks

Amorphous IPH Characterized by disorganized materials and a lack of well delimitated cells >6 weeks

Amorphous IPH with 
calcifications

Characterized by disorganized materials and a lack of well delimitated cells and  
calcifications

>6 weeks

IPH, intraplaque haemorrhage; RBC, red blood cell. 
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amorphous and recent IPHs, mainly due to macrophages 
presence in organised IPHs zones (70). Derksen et al. 
reported that 81% (over 794 studied) of carotid plaques 
showed an IPH spreading over an average of 5% of the total 
plaque volume (70). Among these IPHs, 2% were recent, 
11% organised, 75% amorphous, and 9% amorphous with 
calcifications. 

However, so far there is no method that can allow in-
vivo diagnosis or follow-up (i.e., imaging) of IPH stages 
since it is currently only assessable after CEA by histology. 
Moreover, this criterion is currently not suitable for the 
clinical decision, because plaque rupture is multifactorial 
(19,73,74) and other biomarkers need to be taken into 
account to stratify the ischemic risk (16).

All plaque risk factor of rupture should be evaluated 
in order to predict future ischemic event, but particular 
attention should be given in IPH stages assessment 
especially in the CEA decision for asymptomatic patients.

Imaging

Over the last several years, several imaging techniques have 
been developed to reliably analyse carotid atherosclerotic 
plaques composition. In a clinical context, Doppler 
ultrasonography (75) and computed tomography (CT) 
(9,10,76) of the supra aortic trunks are commonly used to 
accurately assess the degree of stenosis. Magnetic resonance 
angiography (MRA) is being increasingly used (13,77) 
because it is non-radiant, less nephrotoxic compared to CT, 
and more accurately examines the cerebral parenchyma.

Ultrasound and contrast enhanced ultrasound

Ultrasounds (US) are the best method to assess the carotid 
stenosis by imaging (75) but is highly operator dependent. 
They allow to study the morphologic and hemodynamic 
features of the plaque by assessing tissues echogenicity. 
Without contrast medium IPH is hard to discriminate 
from LRNC only based on carotid plaque echogenicity 
(78,79). Contrast enhanced US (CEUS) are able to assess 
neovascularisation in vivo in real time (80). IPH can be 
indirectly visualised in ultrasonography through the vasa 
vasorum and neovessels analysis by CEUS (80-82); if results 
of the sole US examination are inconclusive, presence of 
neovessels observed with CEUS in the carotid plaque might 
underline IPH presence. Contrast enhanced microbubbles 
allow for the visualization of vascularized lesions in hyper 
echogenicity (82). Results on carotid ultrasound with 

contrast agent attest that an increased vasa vasorum (83) 
and microvessels (80) density can enhance the IPH risk. 
Most of the plaques harbouring an heterogeneous pattern 
(mixed echoes and anechoic areas) presented IPH at the 
histological analysis (84). 

CT and positron emission tomography (PET) scans

CT is applied in a clinical setting to diagnose morphological 
abnormalities as stenosis (85), aneurysm or carotid 
dissection (86) through the tissues density analysis. 
Computed tomography angiography (CTA) with iodinated 
contrast medium is required to analyse carotid arteries, but 
it is also known to underestimates the degree of stenosis (87). 
However, studies suggest that CTA is able to discriminate 
IPH parts from lipid-rich and fibrous parts in carotid 
atherosclerotic plaques (88,89) even if the densities are 
almost similar (90). Indeed, according to a recent study, IPH 
can be detected with high sensitivity and specificity by CTA 
according to attenuation at 25 Hounsfield units (HU) (88). 
Moreover, calcified rim and soft internal plaques indirectly 
predict IPH actual presence (91). On symptomatic patients, 
intraluminal thrombus can be visualized (92). Thus, CT 
scan is a very specific non-invasive method, but with a 
limited sensitivity (87). U-King-Im et al. compared CT 
scans and MRI techniques and found the MRI is a better 
tool to visualise IPH through plaque ulceration (89). 
Moreover, CT exposes patients to radiation and thus it is 
not the first-choice technique to assess IPH. 

PET scan is an imaging technique with a high sensitivity, 
but also exposes patients to radiation (93). PET scan is 
growing imaging technique that is able to measure metabolic 
activity in different parts of the body. It allows for the 
visualisation of angiogenesis and macrophage infiltration, 
and can discriminate lipid-rich plaque from fibrous  
plaque (94) but failed so far to identify IPH. Several contrast 
agents have been developed, but fluorodeoxyglucose (FDG) 
contrast agents targeting macrophages appear to be the 
most used; they detect inflammation and present good 
association with histology on carotid and aorta (94) giving 
details on plaque metabolism. It remains to be demonstrated 
that the PET signal can reliably predict future long-
term cardiovascular events on carotid imaging. With an 
FDG contrast agent, it is possible to visualise neovessels 
into the intima (95). Moreover, 18F-FDG-PET allows 
the precise visualisation of the plaque anatomy confirmed 
by guided MRI (96,97). Fluorine F 18-sodium fluoride 
(18F-NaF) is a radioactive tracer that can be used in PET-
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MRI, it could be a useful imaging technique to characterise 
vulnerable plaque; tissue sections with high 18F-NaF uptake 
demonstrated calcification, macrophage infiltration and cell 
death (98). New contrasts agents are needed to precisely 
characterise IPH.

MRI

The MRI-IPH imaging is a direct method based on iron 
detection with T1 weighted sequences that produces 
an intraplaque hyperintense signal (99,100), while 
other carotid components are visualised as isointense 
or hypointense signals (101,102). The first sequence 
validated by histology was a T1-weighted sequence called 
Magnetic Resonance Direct Thrombus Imaging which 
is able to detect methemoglobin (103). This sequence 
detects methaemoglobin-rich haemorrhages, with a strong 
relationship to histologically confirmed complicated 
plaques (103). Other sequences were developed, such as 
3D Magnetization-Prepared Rapid Acquisition Gradient-
Echo (104), three-dimensional T1-weighted Turbo-
Spin-Echo sequence (105), Simultaneous Non-contrast 
Angiography and intraPlaque haemorrhage (106), T1 
weigh inversion recovery 3D fast field echo sequence (107) 
or 3D Spoiled gradient recalled echo pulse sequence for 
Hemorrhage assessment using INversion recovery and 
multiple Echoes (3D SHINE) sequences (108). The “black 
blood” sequence needs no contrast agent to discriminate 
a LRNC from a lipid core with IPH, as well as other 
plaque components with a good correlation to histology 
(109,110). These sequences are specific and sensitive to 
detect IPH, but they failed in the identification of IPH 
stages (70). Further sequences such as “black blood” and 
“gradient echo”, “spin echo” or “fast spin echo” sequences 
are currently investigated to identify IPH (107). 

MRI sensitivity can be enhanced with a dynamic 
contrast agent, via an intravenous bolus (111). Contrast 
enhanced MR angiography (CE-MRA) shows a higher 
sensitivity, specificity, positive predictive value, negative 
predictive value with a shorter acquisition time and less 
artefacts for IPH detection (100). Gadolinium enhancement 
i s  used to v isual ise  f ibrous cap integrity,  plaque  
neovascularization (112), and inflammatory infiltration (113) 
it also helps to confirm IPH visualised in T1 sequences 
(112,113). Dynamic contrast intensification techniques can 
better visualise neovascularisation and inflammation (114). 
New sequences are currently being investigated in order to 
better characterize IPH dating and at the same time identify 

other vulnerable plaque features, in order to be used in a 
clinical setting.

Several studies showed a relationship between histological 
IPH presence and different stages of IPH assessed by MRI 
(77,115). Depending on classifications, a T1 hyperintense 
signal is observed if the IPH is fresh, but this hypersignal 
weakens over time. Limits of this classification may be 
correlated to the signal intensity variation, because of the 
interpersonal chemical composition variation in the plaque. 
Indeed, throughout the brain T1-weighted sequence 
application, the haemorrhage signal can evolve from 
hyperintense to hypointense because of the transformation 
of methemoglobin into hemosiderin (109). Contrary to 
this, carotid IPH signal can remain hyperintense for more 
than 18 months (116). The variability of the signal intensity 
may help in the detection of plaques involved in ischemic 
events (117) and can also coincide with the different IPH 
stages, particularly between amorphous and organised 
stages (70) according to Derksen’s classification (70). 
Nevertheless, this hypothesis is still not validated by any 
study. Methemoglobin signal can mix with other tissues 
signals, such as calcified tissue or hemosiderin, leading to 
false negatives (100). On the contrary, perivascular-derived 
signals of adipocytes can lead to IPH false-positives (100). 
In order to accurately imaging carotid plaque morphology, 
histopathological variability should be taken into  
account (118). Indeed, IPH dating by MRI needs be 
improved and sequences needs to be standardised before 
clinical use (24,26).

IPH and clinical outcomes

IPH evaluated by histology and clinical outcomes

Although IPH consideration is increasing in the clinical 
evaluation of the plaque, it should be analysed together 
with other interrelated clinical and biological factors (i.e., 
Inflammation, neovascularisation, fibrous cap thickness, 
necrotic core volume and composition). 

Redgrave et al. demonstrated on 526 symptomatic 
patients that IPH was associated with a previous stroke, 
transient ischemic attack (TIA) or amaurosis fugax (67).  
Another study showed that IPH is associated with 
cerebrovascular events risk (68) but only in men, which is 
a well-known cardiovascular risk factor. Few histological 
studies demonstrate the importance of identifying carotid 
IPHs on stroke prognosis. A significant study (n=818) by 
Hellings et al. on symptomatic and asymptomatic stroke 
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patients who underwent CEA (25) found that IPH was 
present in 69.9% of asymptomatic plaques and 76.3% of 
symptomatic plaques. Moreover, IPH increases the risk of 
cardiovascular events from 17.2% to 30.6% on a 3-year 
period [HR =1.7 (1.2; 2.5)] independent of perioperative 
events. IPH were also associated with primary outcomes 
(vascular death, nonfatal stroke, non-fatal myocardial 
infarction and vascular intervention), stroke and non-stroke 
vascular events, underlying an overall risk of cardio-vascular 
events. Other plaque features were not associated with any 
cardiovascular event thus IPH presence could improve 
global health care. 

Consequently, imaging methods which are able to 
visualise neo-vessels and IPH should lead to a better 
understanding of the vulnerable plaque evolution. The 
challenge of current research is to be able to diagnose 
in vivo IPH that may cause ischemic events before they 
happened, in order to improve CEA decision. 

Correlation between MRI assessed IPH and clinical events

As previously stated, IPH is an evolving process. The 
different stages of IPH are unequally involved in plaque 
vulnerability affecting the subsequent ischemic risk (70). 
Currently, no imaging technique is precise enough to 
discriminate Derksen’s IPH stages. As blood components 
break down over time, they have a different chemical 
composition and magnetic properties (109) thus MRI might 
be able to identify Derksen’s IPH stages (70). However, 
IPH assessed by MRI (MRI-IPH) appears to be a promising 
tool to predict cerebral ischemic events as stroke, TIA or 
amaurosis fugax. 

Retrospective studies
Several studies have shown that MRI-IPH is an important 
tool to assess the plaque risk of rupture in symptomatic 
patients (119). Retrospective studies have established a 
positive relationship between unstable plaques detected by 
MRI and the latest neurological symptoms (120). MRI-IPH 
was also correlated with prior cardiovascular events (29)  
independent of stenosis degree, age, sex, hypertension, 
and smoking habit (107). Singh et al. [2013] performed a 
multivariable analysis and demonstrated that MRI-IPH 
was associated with the composite cardiovascular event (i.e. 
angioplasty, stenting or bypass graft) (OR =3.26; 1.14–9.37, 
P=0.028) (107). A recent study suggests that IPH detected 
by MPRAGE is a strong indicator of acute focal cerebral 
infarction (121), moreover IPH increased the risk of acute 

cerebral ischemic event from 22% to 47% (122). In another 
study, recent MRI-IPH was associated with ipsilateral stroke 
and TIA but only for symptomatic patients. This same study 
concluded that other risks of plaque rupture might be taken 
into account to predict ipsilateral stroke (15), while another 
study showed that IPH was associated with stroke (123).  
Symptomatic patients had a higher prevalence of 
cerebrovascular events recurrence (107) and an increased risk 
of subsequent cardiovascular event (117,119). In two studies, 
all patients with an MRI T1 hyperintense signal had a greater 
recurrence risk for ischemic ipsilateral events (117,124), as 
IPH is a risk factor for further carotid IPH (116). 

Prospective studies
As some links between cardiovascular, cerebrovascular 
and IPH were suggested by retrospectives studies (29), 
prospective studies were conducted. MRI appears to be an 
interesting tool to assess IPH in asymptomatic patients (16). 
According to Saam et al., the presence of IPH increases the 
risk of cerebrovascular events 5.69 times, with an annualised 
event rate of 17.7 % with IPH and 2.4% without IPH (99). 
Moreover, carotid plaques containing IPH and a ruptured 
fibrous cap are highly prone to develop ischemic events (99). 
Thus, this study showed that IPH diagnosed by MRI is a 
better predictor of stroke than stenosis (99). Other studies 
showed that IPH, in association with other rupture risk 
factors (thin fibrous cap, lipid-rich necrotic core), predicts 
subsequent cerebrovascular events (16) and ischemic events 
(stroke or TIA) (101). Symptomatic and asymptomatic 
patients (101,116,125,126) with carotid MRI-IPH, had an 
increased risk of subsequent cardiovascular events. 

As MRI-IPH appears to predict future cerebrovascular 
ischemic events (68) and is highly discriminative from other 
plaque components such as necrotic core, macrophages 
inflammation and fibrous cap (115,127), it could become a 
valuable target to identify vulnerable carotid atherosclerotic 
plaques, but it is necessary to standardise the sequences and 
validate this technique in both genders in order to establish 
a strong correlation for all populations (68). 

Conclusions

Embolism of vulnerable carotid atherosclerotic plaques is 
a frequent cause of ischemic stroke. Prevention for carotid 
plaques to become vulnerable is challenging. In vivo tools 
to assess reliably the factors of carotid plaque evolution 
are required. It has been demonstrated that IPH is a good 
predictor of plaque vulnerability and stroke incidence. 
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Several techniques have been developed to assess IPH 
such as Doppler ultrasonography and CT. Nevertheless, 
MRI appears to be the most effective way to assess IPH 
in vivo with reduced risk for the patient. Although MRI 
may currently be the best way to determine IPH stage, 
new sequences are required to improve its sensitivity 
before implementation in clinical practice. Reducing the 
examination duration, increasing the specificity of the 
diagnostic alone or in association with other MRI markers 
of plaque vulnerability could be additional challenges. It 
also might be relevant to compare in vivo imaging analysis 
to serum biomarkers (128) to better assess vulnerability 
of the carotid atherosclerotic plaque. A large-scale cohort 
study is required to validate the MRI sequences used to 
diagnose in vivo IPH as a predictor of cerebral ischemic 
events.
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