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Abstract

Background: The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets
have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an
emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the
biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of
diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization.

Results: We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of
unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new
methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We
next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore,
with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one
specific state of MSCs biology.

Conclusions: We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically,
our results suggest different candidates as potential actors in MSCs biology and propose promising directions for
future experimental investigations.
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Background
The increasing popularity of RNAseq and the ensuing
aggregation of this type of data into public databases
enable the search for new biomarkers across large cohorts
of donors or cell types for the identification of patholog-
ical conditions or cellular lineages. As such, RNAseq has
paved the way for the discovery of novel transcriptional
biomarkers such as long non-coding RNAs (lncRNAs),
that have emerged as a fundamental molecular class. A
growing number of lncRNAs has been identified in the
last decades, with their number approaching that of cod-
ing RNAs (17910 annotated human lncRNAs in the latest
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v32 version of GENCODE versus 19965 coding genes). An
increasing body of evidence has highlighted characteris-
tics that define lncRNAs as therapeutic targets as well as
potential tissue-specific markers [1].
Indeed, despite their non-coding nature, a large spec-

trum of functional mechanisms has been associated to
lncRNAs [2, 3]. These include: endogenous competition
(miRNA sponging for example), protein complex scaf-
folding and guide for active proteins with RNA-DNA
homology interactions. These mechanisms occur in vari-
ous physiological or pathological processes such as devel-
opment, cancer and immunity [4–6].
To date, there is no finite list of lncRNA isoforms and

therefore, no complete lncRNA catalogue due to the high
number of transcripts and their tissue-specific expres-
sion [7, 8]. The absence of a complete catalogue makes it
difficult to establish a comprehensive lncRNA expression
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profile. Currently, the best strategy for the study of lncR-
NAs consists in the prediction of transcripts from a selec-
tion of RNAseq data in a tissue-specific condition. This
strategy was successful in novel lncRNA biomarker dis-
covery in pathological conditions [9, 10], but was poorly
explored for cell lineage characterisation. Taking into
account their functional importance and specificity, these
RNAs should therefore not be ignored in establishing the
molecular identity of a cell type.
Cell characterisation by specific markers brings differ-

ent challenges such as the importance of probing the
specificity of the marker and its limits in an extended
number of cell types, rather than using a control/patient
experimental model.
Moreover, the cells are not in a fixed state and display a

variable transcriptional activity depending on cell status,
environment, culture conditions and other parameters [1].
Furthermore, the lncRNAs’ function is generally poorly
assessed, except in the case of recurrent known transcripts
(HOTAIR, H19). The in silico elaboration of a lncRNA
catalogue that document the functional domains where
the candidates could act, will be beneficial in the identifi-
cation of lncRNAs’ role and thus, in future experiments.
To this end, we have developed an integrated four-

steps procedure consisting of: i) an ab initio transcript
reconstruction from RNAseq data and characterisation
of novel transcripts, ii) a differential analysis using pseu-
doalignment coupled with a machine learning solution
in order to extract the most cell-specific candidates, iii)
an original step of tissue-expression validation with spe-
cific k-mers search in large and diversified transcriptomic
datasets, iv) an in-depth analysis to predict lncRNAs’
functional potential from in silico prediction approaches.
The notable advantage of introducing an in silico ver-
ification using k-mers is to allow a precise and in-
depth determination of lncRNAs expression profile and
to quickly interrogate their lineage specificity. In addi-
tion, validation of newly identified lncRNAs has been
undertaken using real-time quantitative PCR (RT-qPCR)
and Oxford Nanopore Technologies (ONT) long-read
sequencing.
Mesenchymal stem cells (MSCs) are defined as mul-

tipotent adult stem cells, harvested from various tis-
sues including bone marrow (BM), umbilical cord (UC)
and adipose tissue (Ad). MSCs are an interesting cell
type to explore since these cells lack the extended tran-
scriptional characterisation that could highlight their
lineage belonging and/or the possibility to distinguish
them from other mesodermal cell types such as fibrob-
lasts and pericytes [11, 12]. The commonly admitted
surface markers for MSCs, proposed by the Interna-
tional Society for Cellular Therapy (ISCT) and required
to identify MSCs since 2006 are THY1 (CD90), NT5E
(CD73), Endoglin (ENG, CD105) concerning the positive

markers, and CD45, CD34, CD14 or CD11b, CD79alpha
or CD19 and HLA-DR concerning the negative markers
[13]. These markers are not distinctive and may therefore
not be sufficient for the definition of cellular or biolog-
ical properties. Considering their different therapeutic
properties (chondro and osteo differentiation potential,
immunomodulation and production of trophic factors)
[14] and given the increasing usage of these cells for
academic and preclinical research [15], a detailed molec-
ular characterisation of MSCs and predictive markers of
functionality will constitute an important tool in regen-
erative medicine. LncRNAs have emerged as a class of
transcripts with tissue-specific expression and impor-
tant functions, such as the regulation of MSCs func-
tion [16–18], and remain largely unexplored in these
cells.
To address this need, we performed a broad transcrip-

tomic analysis of novel lncRNAs on human MSCs. We
started from publicly available MSCs RNAseq, select-
ing ribodepleted datasets in order to enhance lncRNAs
discovery and to explore the polyA+ and polyA- lncR-
NAs. We restricted the differential expression analysis
to a BM-MSC source compared to “non-MSC” coun-
terpart. Once achieved, in depth in silico analysis was
performed to check the lncRNAs cell specific profiles with
more and extensive datasets. To validate our approach,
RNAseq data from eight publicly available libraries of nor-
mal MSCs containing a large diversity of non cancerous
cell types were used for novel lncRNAs detection and
tissue expression comparison. We initially reconstructed
more than 70000 unannotated lncRNAs present in human
BM-MSCs. These lncRNAs were assigned, depending
on their position relative to annotated genes, to “MSC-
related long intergenic non-coding RNAs” named “Mlinc”,
and to “MSC-related long overlapping antisense RNAs”
called “Mloanc”. Among them, 35 Mlincs were specifically
enriched in the cell lineage compared to the “non-MSC”
group. Finally, after a further selection of the three most
specific Mlincs, detailed in vitro and in silico functional
explorations were performed.

Results
For the purpose of generating a catalogue of all transcripts
in any particular cell type, we developed a pipeline for
the characterisation of all RNAs and their expression pro-
file in a large collection of RNAseq data. The procedure
includes four steps: i) an ab initio transcripts reconstruc-
tion from RNAseq data and identification of unannotated
transcripts, ii) a differential analysis using pseudoalign-
ment coupled with a machine learning solution in order
to extract the most cell-specific candidates, iii) an original
step of tissue-expression validation with a k-mer approach
(comparing large transcriptomic datasets), iv) an in-depth
analysis to predict lncRNAs functional potential from in
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Fig. 1 Flowchart representation of the pipeline used in this study. The 4 steps of the flowchart are described. a Ab initio reconstruction of transcript
expressed in MSCs from SRA dataset and creation of a reference (GTF+fasta) for quantification of Ensembl annotated genes, unannotated intergenic
(Mlincs) and unannotated overlapping antisens (Mloanc). The results are shown in Fig. 2. b Differential Analysis for the selection of MSC markers
(restrained candidates set) with Kallisto pseudoalignement and Sleuth differential test followed by feature selection by random forest with Boruta
package. Long-read sequencing and active transcription in MSCs by epigenetic marks information completed the selection step (see Figs. 2 and 3). c
Validation of cell expression specificity of the candidates by k-mer quantification in ENCODE RNAseq datasets (see Additional file 8 for the list of
data) and qPCR validation. The results are presented in Fig. 4. d Functional investigations were performed with in silico prediction methods from the
sequence of candidates, followed by k-mer quantification with FANTOM6 dataset, single-cell RNAseq and selected MSC conditions. K-mer
quantification phases are shown by corresponding icons (Figs. 5 and 6)
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silico prediction approaches (Fig. 1). To illustrate the pro-
cedure, we produced a RNA catalogue from BM-MSCs
(“MSC” group).

General features of the predicted MSC catalogue of
lncRNAs
As mentioned above, we started with the ab initio
reconstruction of any transcript from BM RNAseq with
Stringtie assembler after mapping the reads with the
CRAC software (see “Methods” section for parameters).
New isoforms of annotated transcripts were ignored.
Of the 200243 transcripts present in Ensembl annota-
tion (version 90), 105511 (52.6%) were detected in MSCs
(Transcripts Per Million (TPM) >0.1 in pseudoalignment
quantification).
73463 new lncRNAs were reconstructed. This fraction

of unannotated transcripts represents 41% of detected
transcripts, so in our case, the ab initio reconstruc-
tion made it possible to almost double the inventory of
detectable signatures in MSCs (Fig. 2a). Of these, 34712
were found to be intergenic and were thus referred to
as “Mlinc” RNAs, and 38751 were found to overlap with
coding regions but in anti-sense orientation and thus
referred to as “Mloanc” RNAs (with criteria described as
in “Methods” section and Fig. 2a).
The ab initio method by itself is not sufficient to effi-

ciently determine the lncRNAs’ full length sequences.
Moreover, this step does not preclude the possibility of
false positives and at this point of the analysis, all the dif-
ferent rebuilt transcripts are considered to be windows of
RNA expression or possible artefacts. These candidates
are filtered and, for the most interesting candidates, their
true form is to be refined through experimental methods.
We also assessed the general characteristics of predicted
de novo lncRNAs in MSCs. Globally, Mlincs and Mloancs
are shorter transcripts with longer exons compared to
coding genes and annotated lncRNAs. The large majority
of predicted lncRNAs are mono exonic (99% for Mlincs,
79% for Mloancs), with a length close to 200nt (Fig. 2b-c).
A consequence of the abundance of mono-exonic lncR-
NAs is an infinitesimally small number of variant forms.
Only 0.15% and 0.82% ofMlincs andMloancs respectively,
are not mono-isoforms. The GC content of reconstructed
lncRNAs is lower than that of coding or non-coding anno-
tated genes (Fig. 2d). This low GC proportion of around
40% is a common feature in ab initio transcript prediction,
observed in a majority of studies of different species, from
mammals, insects, plants or prokaryotes [19–22].

Enrichment of a restricted set of Mlincs andMloancs
In this second step, our objective was to obtain a restricted
set of potential transcripts, using successive filtering
approaches that would reveal their cell specificity. We
quantified annotated transcripts, Mlincs and Mloancs

with Kallisto pseudoalignment [23] in a cohort consti-
tuted of two groups: the “MSC” group containing the
BM-MSCs initially used for ab intio reconstruction and
the “non-MSC” group, used for comparison, composed
of a large panel of different cell types including human
embryonic stem cells (hESC), hematopoietic precursors
and stem cells, primary chondrocytes, induced pluripo-
tent stem cells (iPSCs), hepatocytes, neurons, lympho-
cytes and macrophages (metadata available in Additional
file 1).
Only over-expressed transcripts in “MSC” group versus

“non-MSC” group were selected. Differential statistical
tests were made with Sleuth, a tool specially dedicated to
Kallisto quantification results [24] (see all selective param-
eters in “Methods” section). We performed two differen-
tial expression analyses: one at the gene level for Ensembl
annotation and the other at the transcript level for unan-
notated transcripts, to give the most likely variant form
of the predicted lncRNAs. After this differential analysis,
2801 annotated genes, 655 Mlincs and 3032 Mloancs are
significantly overexpressed in BM-MSCs (Fig. 2e-f ).
The lncRNAs are commonly known to be less expressed

than coding genes and this was observed in our selected
annotated genes and new lncRNAs (Fig. 2g). As a vali-
dation of our procedure, we found the 3 positive MSC
markers of ISCT among the selected annotated genes:
THY1 (CD90), ENG (CD105), and NT5E (CD73). We also
retrieved some influencers of MSCs activity, for exam-
ple WNT5A [25, 26], Lamin A/C [27] and FAP [28]. The
complete list of selected genes is provided in Additional
file 2.

Feature selection for the most discriminating coding and
non-codingmarkers
In an attempt to select the best candidates, we retained
lncRNAs with the most discriminating profile between
“MSC” and “non-MSC” groups. In our case, the limita-
tion with a classical “top” ranking by fold change (FC)
or p-value is the presence of subgroups of different cell
types inside the “non-MSC” group. The FC, estimated by
the Beta value in Fig. 2c, appears to be a biased indica-
tor of differential expression as it can select strong but
localised expressed lncRNAs in cells poorly represented
in our control group, leading to potential false positive
results.
To avoid this problem, we used the Boruta feature

selection [29] (see “Methods” section), to select discrimi-
nating features based on random forest machine learning
methodology. Boruta was used separately on each group
of candidates (annotated genes, Mlincs and Mloancs)
to extract a restricted representation of the most rel-
evant MSC signatures. The top 35 importance scores
were selected for annotated genes, Mlincs and Mloancs.
We arbitrary chose to select the first 35 transcripts for
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Fig. 2 Overview of annotated genes and unannotated transcripts enriched in BM-MSCs. a Left pannels represented: i/ Ensembl v90 transcript
categories and distribution, ii/ transcripts distribution expressed in MSCs, showing unnatotated transcripts obtained with ab initio reconstruction by
StringTie vs annotated transcripts (expression >0.1 TPM), iii/ predicted lncRNAs from unnanotated reconstructed transcripts include new lncRNAs
with intergenic (Mlinc) and antisens (Mlncoa) RNA categories. b-c-d Distribution of transcript length, exon length and GC percentage across
different categories respectively with the same colors as in a pannel: coding transcripts (blue), annotated lincRNA (pink), annotated overlapping
antisens lncRNA (purple), novel lincRNA (Mlincs, yellow), novel overlapping antisens RNA (Mloanc, red). e Representation of annotated genes (top
pannel) and unannotated transcripts (bottom pannel) overexpresed in MSC versus non-MSC types (log2FC >0.5 and padj <0.05), separately
showed in MA plot. f Total number of transcripts by category. The colored bar indicated the number of differentially expressed annotated genes
(Ensembl v90) and unannotated transcripts (Mlinc and Mloanc). g Global expression in BM-MSCs (with Sleuth normalisation) of the same categories
as in f for annotated genes and unannotated transcripts

each group based on the observation of the impor-
tance score. Considering the expression profile of these
top 35 coding genes and predicted Mlincs, BM-MSCs
clusterised independently from other cell types (Fig. 3a).
In contrast, the selection of Mloancs did not provide a sat-
isfying clustering as they had similar expression profiles
in MSCs and other closely related cell types, in particu-
lar in primary chondrocytes (Figure in Additional file 3).
For this reason, Mloancs were not retained for further
analysis. Selected annotated genes showed a poor speci-
ficity, with only few candidates showing a clear differ-
ence of expression betweenMSCs and others: APCDD1L,

HOTAIR, KRTAP1-5 and SMILR. The 3 positive MSC
markers from the ISCT were absent in this selection. The
novel top 35 Mlincs showed less expression overall but
with a more distinctive profile and a higher number of
possible MSC markers with clear contrast of expression.
The characteristics, genomic intervals and sequences of
the 35 candidates are presented in Additional file 4.
To assess the potential of genes already proposed as

potential MSC biomarkers by ISCT (Figure in Addi-
tional file 5) or other potential MSC markers proposed
by different authors [14] (Additional file 6), we made a
separated expression heatmap without filter. Among these
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Fig. 3 Selection of a refined set of the best candidates by random forest (top35), long-read sequencing and epigenetic features. a Expression of the
best MSC-specific candidates selected by Boruta machine learning along MSC group and not MSC cohorts. Left pannel: top35 most relevant
annotated genes (non-coding included); Right pannel: unannotated intergenic lncRNAs (Mlincs) and their average importance scores determined
by Boruta method displayed in upside line plot. b Genomic visualisation of Mlincs 28428 (up left panel), 64225 (up right panel), 128022 (down left
panel), and 89912 (down right panel). Predictions (Mlinc orange) from short reads alignment of all MSC group files (blue/magenta and BAM
visualisation), are compared with unoriented long-read alignments (grey). Additional epigenomic features are shown to reveal active transcriptional
activity from trimethylation of Histone H3 (H3K4me3), acetylation of Histone H3 H3K27 in MSCs (H3K4me3 and H3K27ac, green), and Dnase
sensibitity hotspots of MSC (MSC DNAse, red)

previously proposed markers, THY1 (CD90) presented
the most specific profile. However, each gene is expressed
in distinct non-MSC types.

Validation of selected Mlincs with long-read sequencing
As mentioned above, classical annotation of lncRNAs
with ab initio short read methods suffers from inaccu-

racies and biases. The ONT can sequence entire cDNA,
which constitutes a clear technological advantage, not
only in confirming the existence of the transcripts but also
as it makes it possible to precisely identify the genomic
intervals of lncRNA candidates. We performed long-read
sequencing of a polyA+ RNA library obtained from a
BM-MSC sample. Among the top 35 selected Mlincs, 4
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transcripts are covered with the ONT sequencing, in 3
million total reads.
These intergenic lncRNAs are named as Stringtie

output (“SetName. TranscriptNumber. VariantNumber”):
Mlinc.28428.2, MlincV4.128022.2, MlincV4.89912.1 and
MlincV4.64225.1. To support the above transcriptional
units, we compared them with our short read data
and searched for epigenetic status at the locus of the
Mlincs in BM stromal mesenchymal cells. We looked at
DNase sensitive site, H3K27 acetylation, H3K4 trimethy-
lation that commonly corresponds to active regula-
tory regions (Fig. 3b) and 5’ Cap analysis of gene
expression (CAGE) experiments of ENCODE/RIKEN
(Additional file 7), collected from UCSC genome browser
(see “Methods” section).
We globally observed a DNA accessibility enrichment

and acetylation of Histone 3 at the promoter region of our
candidates, correlating with DNAse sensitivity hotspots
in BM mesenchymal cells that reinforce the prediction of
the expression windows. In particular, for Mlinc.28428.2,
the transcript observed with long-reads sequencing cor-
responded to the prediction made with short reads. It was
also supported by Mlinc.28428.1, a variant that differs by
the absence of the second exon. Similar characteristics
were observed forMlinc.128022, which also produced two
variants with a different organisation of 5 exons. The two
other candidates, Mlinc.89912.1 and Mlinc.64225.1, are
mono-exonic. Mlinc.89912.1 occurs at the close proximity
of FGF5 3’end, in reverse orientation. For this reason, the
different epigenomic features could not be attributed with
certainty to the Mlinc. For Mlinc.64225.1, the long-read
sequence is longer than the ab initio short read prediction.
Except for Mlinc.64225, and in accordance to the start
of long reads, we observed CAGE enrichments at the 5’
end of Mlinc predictions in MSCs polyA+ libraries. This
CAGE enrichment was not observed for CD34 cells and
hESCs polyA+ libraries. This observation validates both
the intervals and the existence of a polyA form of these
candidates (Additional file 7). KRTAP1-5, HOTAIR and
SMILR, selected for their good expression profiles, were
also covered by long reads (Data not shown).

High-throughput investigation of a marker’s specificity by
specific k-mers search
Amarker can only be considered specific within the limits
of the diversity of samples used for its study. Considering
the growing number of cells/tissues and transcriptional
profiles, it is essential to probe the limits of a chosen
biomarker against these various cell types. Most of pub-
lished analyses highlighting new potential biomarkers of
MSCs or fibroblasts have been restricted to a comparison
between only few cell types and, as discussed, commonly
described markers are not strictly distinctive. In order
to assess the expression of Mlinc candidates in a large

number of samples, we extracted specific 31nt k-mers
from each of their sequences, as previously described [30].
These simplified but candidate-specific (oligonucleotide-
like) probes allow a simple and fast presence/absence
search on large-scale cohorts and a direct quantifica-
tion in raw FASTQ data. The k-mers were quantified in
ENCODE human RNAseq database, including “primary
cells” and “in vitro differentiated cells” categories (Addi-
tional file 8). Particularly, as the bibliography suggests
that MSCs can also express phenotypic characteristics of
endothelial, neural, smooth muscle cells (SMCs), skeletal
myoblasts and cardiac myocytes, RNAseq samples from
this mesodermal origin were tested.
With ISCT positive markers, we observed an expected

expression profile that recapitulates previous biological
studies, particularly the high expression of ENG (CD105)
in endothelial cells (Figure in Additional file 9) and the
overexpression of NT5E (CD73) in epithelial and endothe-
lial cells (Figure in Additional file 10). Interestingly, their
expression varied amongMSC sources: NT5E (CD73) was
strongly enriched in Ad and BM derived MSCs and THY1
(CD90) in UC derivedMSCs (Figure in Additional file 11).
We next analysed the expression profile using our candi-
date annotated genes Mlinc specific k-mers (Fig. 4). The
specific k-mers search supported the stated expression
profile of Mlincs previously shown: our Mlinc candi-
dates were positive in MSCs and displayed low or absent
expression in cells of ectodermal lineage, hematopoietic
or endothelial origins.
However, the high throughput and naive quantification

in the ENCODE cohort made it possible to extend the
observation of this absence of expression into cell types
not previously studied. Moreover, this diversity showed
that the expression of most of the candidates, contrary to
positive markers of the ISCT, were exclusive of cells with
mesodermal origin. All candidates were expressed in at
least one type of fibroblasts and differentially present in
other mesodermal cell types. For the 4 selected Mlincs,
they shared (i) a systematic and strong expression in cell
types like skin fibroblasts and cells derived from reser-
voir of mesenchymal progenitors (muscle satellite cells or
dermis papilla cells), (ii) a homogenous over-expression in
regular cardiac myocytes, and (iii) an irregular expression
in SMCs. The ENCODE cohort containing MSCs of dif-
ferent origins, we can therefore observe that the Mlincs
show differences of expression depending of the tissular
origin, these candidates being mainly expressed in two
MSC types. The results permitted the classification of our
Mlincs according to observed specificity, from the most
promising to the least restricted profile: Mlinc.28428.2 is
expressed in Ad and BM derived MSCs. It is the can-
didate with the clearest absence of expression in non-
mesodermal cells and with the poorest relative expression
in SMCs. Mlinc.128022.2 is expressed in Ad and BM-
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Fig. 4 High throughput exploration of selected candidates across a variety of samples by k-mer quantification in RNAseq and biological validation
by RT-qPCR. a List of tissues for the cell specific expression exploration (samples with ID numbers are listed in Additional file 8) b Relative expression
of Mlinc.28428.2, Mlinc.128022.2, and Mlinc.89912.1 across ENCODE’s ribodepleted RNAseq data, made by k-mer quantification, normalised by k-mer
per million. c qPCR relative quantification was performed on the selected 3 Mlincs in MSC of different origins (BM-MSC, Ad-MSC, Umbilical cord msc)
and other indicated cell types. Relative quantification (Log induction) was quantified by ddCt method using non MSC types as calibrator (mean of
triplicates). Student tests have been made between triplicates, each test using BM-MSCs as reference group (ns: P >0.05, *: P ≤0.05, **: P ≤0.01, ***:
P ≤0.001, ****: P ≤0.0001)

MSCs and particularly in preadipocytes and muscle cells
(myoblasts, myocytes and myotubes). Mlinc.89912.1 is
principally expressed in BM-MSCs and less in UC andAd-
MSCs, but shows expression in epithelial and endothelial
cells. Finally, Mlinc.64225.1 differs from other Mlincs as it
is also strongly expressed in keratinocytes, hematopoietic
stem cells and epithelial cells (Figure in Additional file 12).

Its expression in non-MSC types, has led us to retain the
3 other Mlincs for further investigations.

RT-qPCRmimics the in silico prediction and deciphers
multiple transcript variants
To confirm the specificity of selected Mlincs’ expres-
sion experimentally, we performed RT-qPCR on a set
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of 80 RNA preparations from different primary cells
(Fig. 4c). These include MSCs from BM, Ad and UC,
fibroblasts of different tissue origins, iPSCs, neural stem
cells, myoblasts, human umbilical vein endothelial cells
(HUVECs) and hepatocytes. RT-qPCR and amplicon
sequencing using sets of specific primers (Additional file
4) confirmed different predicted forms of theMlinc candi-
dates in BM-MSCs (Additional file 13). We designed two
primer pairs for both Mlinc.128022 variants to validate
the existence of first splice, and two pairs for Mlinc.28428
variants, one overlapping the second exon and another
corresponding to a splice between first and third exons.
All variations captured by the primers design were quanti-
fied, suggesting that all these different variations predicted
in silico exist biologically in MSCs. We confirmed most
of the expression profiles obtained by k-mers quantifica-
tion using RT-qPCR, notably the specificity of expression
dependency on the MSC tissular origin: over expres-
sion of Mlinc.28428 and 128022 in BM and Ad-MSCs.
Nevertheless, few exceptions such as Mlinc.89912.1, pre-
sented an enrichment in UC-MSCs not found with k-mers
quantification. Moreover, the restricted expression to
cells of mesodermal origin is confirmed in our RT-qPCR
results. We obtained similar observations with annotated
candidates: overexpression of KRTAP1-5 and SMILR
in BM-MSCs specifically, and of HOTAIR in UC and
BM-MSCs.

In silico prediction of lncRNA interactions and functions
The relative specificity of selected Mlincs for mesenchy-
mal cells could be an indication of their roles in MSCs
function. The prediction of their possible function could
therefore suggest their suitability as markers of MSCs’
function potential. To this end, we explored assumptions
on the function of Mlinc.28428.2, Mlinc.128022.2 and
Mlinc.89912.1 candidates using different published meth-
ods. We first used bioinformatic tools based on machine
learning and deep learning to decipher general charac-
teristics of our candidates: FEELnc [31] to assess coding
potential, tarpMir [32] to decipher “miRNA sponge” func-
tion and LncADeep [33] to analyse potential interactions
with proteins. Only two of the 35 selected Mlincs and
none of the 3 selected Mlincs with validated specificity
were revealed as potentially coding RNAs, the major-
ity being predicted as non-coding by FEELnc (33/35).
None candidate had more than five target sites for a
given miRNA, indicating a low probability of a “miRNA
sponge” activity (Additional file 4). For the 3 retained
Mlincs, predicted interacting proteins by LncADeep were
submitted to Reactome (Additional file 14). We noted a
predicted interaction between Mlinc.28428.2 and Beta-
catenin (CTNNB1) as part of apoptosis-linked modules,
5’-3’ Exoribonuclease 1, component of the CCR4-NOT
complex, mRNA Decapping Enzyme 1B as part of the

mRNA decapping and decay pathways. The interaction
was also predicted with different mediators of RNA poly-
merase II transcription subunits (MED), ATP Binding
Cassette Subfamily B Members as part of the PPARA
activity linked to ER-stress [34], and Proteasome sub-
units for intracellular transport, response to hypoxia and
cell cycle modules. Mlinc.128022 could interact with
important genes like THY1 (CD90), NRF1 (mitochon-
dria metabolism) with no module clearly highlighted.
Mlinc.89912 could interact with tubulins, UBB (ubiqui-
tin B), SMG6 nonsense mediated mRNA decay factor and
ribosomes subunits (RPSX) proteins, RPL24 for nonsense
mediated decay (NMD), PINK1 (mitophagy) and finally
MGMT as part of the MGMT mediated DNA damage
reversal module.
We further quantified the expression of our candi-

dates by counting their specific k-mers in the entire
FANTOM6 set of 154 Knock-downed (KD) annotated
lncRNAs in human dermal fibroblasts (https://doi.org/
10.1101/700864, dataset presented in Additional file 15).
We selected the KD experiments where expression of
the Mlincs was statistically differential when compared
with controls. Particular attention was paid to KD lncR-
NAs with reported function(s) in bibliography and to
KD lncRNAs overlapping a gene with reported functions.
Mlinc.28428.2 is down-regulated when JPX, SERTAD4-
AS1, BOLA3-AS1, and SNRPD3 are KD and over-
expressed with the KD of PTCHD3P1, ERVK3.1 and
MEG3, among other lncRNAs without reported function
(Fig. 5a). Interestingly, interactions between p53 path-
way and JPX [35], SNRPD3 [36] and MEG3 [37, 38])
respectively, have been previously reported. All these
features converge on the hypothesis of a link between
the function of Mlinc.28428, stress response, senescence
and cellular maintenance. The implications of BOLA3
[39, 40]) and PTCHD3P1 [41] in mitochondria homeosta-
sis and glycolysis, the role of BOLA3 in stress response
[42], the status of SERTAD4 as a target of the YAP/TAZ
pathway [43], vital pathway of stress response [44],
and the role of MEG3 in aging [45], all reinforce this
hypothesis.
Mlinc.128022.2 is down-regulated with the KD of

FOXN3-AS1, A1BG-AS1, CD27-AS1, and FLVCR1-AS1
(Fig. 5b). FOXN3 seems to be more than a regulator of
cell cycle, it is also described as a regulator of osteogene-
sis in different cases of defective craniofacial development
[46, 47]. Moreover, the reported over-expression of
FOXN3 during the early stages of MSC osteodiffer-
entiation [48], and the down-regulation of CD27-AS1
in MSCs of donors with bone fracture [49], allow
us to hypothesise a possible function of Mlinc.128022
in bone remodelling and osteogenesis. In addition,
both A1BG-AS1 and FLVCR1-AS have an influence
in osteogenesis and cell differentiation. A recent study

https://doi.org/10.1101/700864
https://doi.org/10.1101/700864
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Fig. 5 Prediction of potential functions of the candidates with k-mer quantification and single-cell. For each Mlinc (Mlinc.28428 (a) Mlinc.128022 (b)
and Mlinc.89912 (c) respectively) 3 steps of prediction were performed. a Enrichment in the different subcompartments of fibroblasts from
FANTOM6 dataset: free nuclear fraction (Nuc), chromatin (Chr) and cytoplasm (Cyt); b Expression of markers in FANTOM6 data depending of the
Knock-down (KD) of annotated lncRNAs. Normalised counts of all specific k-mers is averaged by sample (zero values deleted) and t-tests are made
between control (in pink) and KD fibroblasts (in turquoise). c General expression of Mlincs inside Ad-MSC population, dimensional reduction made
with UMAP method, made from batch corrected counts. Expression of differentially expressed annotated genes between positive (in turquoise) and
negative (in pink) cells for Mlinc.28428, Mlinc.128022 and Mlinc.89912 respectively

showed that A1BG-AS1 interacts with miR-216a and
SMAD7 in suppressing hepatocellular carcinoma pro-
liferation [50], both partners having an important role
in the positive regulation of osteoblastic differentiation
in mice [51, 52]. FLVR1 participates to the resistance of

oxydative stress by heme exportation inmouseMSCs [53],
iron metabolism being closely linked with bone home-
ostasis, formation [54] and cell differentiation [55].
Finally, Mlinc.89912.1 is down-regulated after the KD

of NEAT1-1 and PCAT6, and over-expressed when
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MFI2.AS1, CDKN2B.AS1 (or ANRIL) and MKLN1.AS2
are KD (Fig. 5c). The manifest relations between cell pro-
liferation and CDKN2B-AS1 [56, 57], MFI2 [58], MFI.AS1
[59], PCAT6 [60] and NEAT1 [61, 62], a combination with
the DNA damage repair response, [63, 64] reinforce the
prediction of a role of Mlinc.89912 in these mechanisms.
Moreover, we explored RNAseq from chromatin, nucleus
and cytoplasm subcellular compartments of fibroblas-
tic cells in the FANTOM6 Dataset. Mlinc.28428 and
Mlinc.128022 are enriched in at least cytoplasm (Fig. 5a-
b), whereas Mlinc.89912 is enriched in free nucleus
fraction suggesting interactions with nuclear component
(Fig. 5c).

The single-cell RNAseq: an emergent level of completion in
marker search
We analysed the single-cell RNAseq (scRNAseq) data
from 26071 Ad-MSCs to assess the heterogeneity of
the 3 Mlincs, to explore their expression at the single-
cell level (dataset presented in Additional file 16) and
to provide a supplemental layer of functional investiga-
tion. No clear correlation between cell cycle and expres-
sion of our Mlincs was identified (Additional file 17).
We observed a high variability of the number of cells
expressing the markers (Threshold ≥0.1). 11927/26071
were Mlinc.28428-positives, 4944 were Mlinc.128022-
positives, and 404 were Mlinc.89912-positives. For each
Mlinc, we performed a differential test to decipher genes
differentially expressed in Ad-MSCs Mlinc-positive and
Mlinc-negative cells.
We found that Mlinc.28428-positive cells under-express

H19 and PI16 (Fig. 5a). These genes, that present a
diversity of functions, are involved in stress mechanisms
(oxydative response and shear stress), inflammation in
fibroblasts and MSCs and senescence pathways [65–68].
Despite the low number of differentially expressed genes
in Mlinc.28428-positive cells, their functional behaviour
and their known targets suggest a pathway linked to stress
response and senescence establishment that reinforce our
previous assumptions on Mlinc.28428 function.
Mlinc.128022-positive cells are enriched in FTH1,

TPM2, FTL and CD24 and present a lower expression
in HMGN2, HMGB1, ODC1, PTTG1, BIRC5, EIF5A,
MKI67, UBE2S, FGF5, HAS2-AS1 (Fig. 5b). A signif-
icant portion of these genes are linked to osteogenic
properties of MSCs as previously observed with FAN-
TOM analysis. The Mlinc.128022-positive cells have an
increased expression of ferritin (light and heavy chains),
major actor in iron metabolism in osteoblastic cell line
[69], that is also involved in osteogenic differentiation [70]
and osteogenic calcification [71]. Two genes, enriched
in Mlinc.128022-positive cells, are positively linked to
the osteogenic differentiation potential of MSCs: the
tropomyosin 2 (TPM2), downregulated when human

MSCs were cultured in OS medium for the induction of
osteoblasts at the calcification phase [72], and CD24 a
membrane antigen recently proposed as a new marker
for the sub-fraction of notochordal cells with increased
differentiation capabilities [73]. In addition ODC1, under-
represented in Mlinc.128022-positive cells, inhibited the
MSCs osteogenic differentiation [74, 75]. Finally, the
decrease of FGF5, MKI67, BIRC5 (survivin) and PTTG1
(securin) expressions, all linked to proliferation active
phases of cell cycle, tend to show cell with arrested
cell cycle. These data suggest that the expression profile
of Mlinc.128022 positive cells indicate a subpopulation
of undifferentiated osteogenic progenitors, probably in
senescence or quiescence.
Mlinc.89912-positive cells are enriched in FGF5 and

HIST1H4C (Fig. 5c). FGF5 is a protein with mitogenic
properties, identified as an oncogene, that facilitates cell
proliferation in both autocrine [76] and paracrine man-
ner [77]. HIST1H4C, the Histone Core number 4, is
a cell cycle-related gene. Modification of histone H4
(post-transcriptional or mutation) has been highlighted
as important for non-homologous end-joining (NHEJ)
in yeast [78]. Its mutation causes genomic instability,
resulting in increased apoptosis and cell cycle progres-
sion anomalies in zebrafish development. It reinforces
our assumptions that Mlinc.89912 has a role in cell pro-
liferation and DNA damage repair. In conclusion, the
scRNAseq analysis enabled the observation of different
features that characterise the phenotype of Mlincs pos-
itive cells and reinforced hypotheses on their functions
previously observed through k-mers quantification.

K-mers analysis of markers in functional cell situation
Previously, we have presented a number of strategies
to formulate hypotheses on the functions of unanno-
tated lncRNAs, suggesting directions of future experi-
mental investigations. To evaluate the relevance of these
strategies, we sought to quantify with specific k-mers
search the expression of our Mlincs in MSCs in dif-
ferent conditions, linked to above mentioned findings:
stress and senescence for Mlinc.28428.2, osteodifferenti-
ation for Mlinc.128022.2 and cell cycle/proliferation for
Mlinc.89912. We downloaded RNAseq data correspond-
ing to the above-mentioned focus, described in Additional
file 18.
As shown in Fig. 6, we observed a statistically rele-

vant increase of Mlinc.28428 expression in MSCs under
replicative stress and in MSCs with CRISPR-Cas9 deple-
tion of genes with important role against senescence.
In the Wang et al. study [79], MSCs senescence was
observed with the knockout (KO) of ATF6 and the stress
induced with tunicamycin (endoplasmic reticulum stress)
and late passage (replicative stress). Mlinc.28428 expres-
sion increased with tunicamycin treatment, late passage
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Fig. 6 Expression of markers in different datasets from SRA in cell conditions related to previous findings. a Expression of Mlinc.28428.1 in the
context of oxydative, replicative, or KO-driven, stress and senescence (PRJNA396193, PRJNA433339). Relevant changes of expression are showed
with t-test results (ns: P >0.05, *: P ≤0.05, **: P ≤0.01, ***: P ≤0.001, ****: P ≤0.0001). b Expression of Mlinc.128022 in osteodifferentiation conditions
(PRJNA515466) or osteodifferentiation potential (PRJNA379707). Relevant changes of expressions are showed with t-test results (ns: P >0.05, *: P
≤0.05, **: P ≤0.01, ***: P ≤0.001, ****: P ≤0.0001). c Expression of Mlinc.89912 in the context of proliferation (PRJNA328824 and PRJNA498109).
Relevant changes of expression are showed with t-test results (ns: P >0.05, *: P ≤0.05s, **: P ≤0.01, ***: P ≤0.001, ****: P ≤0.0001). The detailed list of
datasets is provided in Additional file 16
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and ATF6 KO. The highest increase is observed in ATF6
KOMSCs associated with late passage condition.
In Fu et al. study [80] YAP, but not TAZ, was found

to safeguard MSCs from cellular senescence as shown
by KO experiments. Interestingly, YAP KO, significantly
increases the expression of Mlinc.28428.2. This would
lead us to conclude that Mlinc.28428 is overexpressed in
senescence and stress conditions, suggesting a role in one
or both of these phenomena.
The change inMlinc.128022 expression is strictly linked

to osteodifferentiation conditions. Mlinc.128022 expres-
sion shows a relevant increase in MSCs exposed to
fungal metabolite Cytochalasin D (CytoD). The CytoD
is reported as an osteogenic stimulant in the con-
cerned study [81]. Moreover, no expression variation
was observed between MSCs and MSC-derived Ad from
Wang et al. study, implying a role in adipodifferentiation.
Agrawal Singh et al. studied osteogenic MSCs differenti-
ation [82], with a similar increase of Mlinc.128022 being
observed after ten days.
We then quantified the expression of Mlinc.89912 in

a study that compares proliferating MSCs versus con-
fluent MSCs [83, 84]. Our candidate was clearly over-
expressed in proliferating cells, validating its capacity to
mark the MSCs in proliferation. Moreover, its expression
was not statistically modified when MSCs were exposed
to epidermal growth factor with pro-mitotic capabilities
[85]. However Mlinc.89912 expression was reduced when
IWR-1, an inhibitor of beta-catenin nuclear translocation,
that reduced the proliferation of MSCs, was added to the
medium. The functional domains of these genes are sum-
marised in Table 1 and confirm the potential functional
role suggested from FANTOM data: stress-related path-
ways for Mlinc.28428, MSCs differentiation with a pre-
sumed orientation in osteo-progenitors for Mlinc.128022

and a more restricted role in proliferation and DNA repair
for Mlinc.89912.

Discussion
With recent evolution of omics analysis, the landscape
of biomarkers has been extended beyond known genes
to the unexplored transcriptome. This potential has been
assessed in pathological conditions but to a lesser extent in
cell-specific conditions, where this new pool of potential
markers could be used to identify less well-characterised
cells and hence predict their function. In this article, we
propose an integrated procedure and strategies to iden-
tify the best markers (annotated or not) in a cell-specific
condition, and predict their potential functions, primar-
ily from RNAseq data (Fig. 1). RNAseq facilitates the
creation of large lncRNA catalogues [8, 86], however it
remains incomplete given the diversity of biological enti-
ties and lncRNAs specific expression in non-pathological,
cell-specific conditions. The creation of a “home-made”
catalogue associated with a specific condition remains the
best way to assess the full diversity of potential biomarkers
in a cell, rather than resorting to a global catalogue made
from diverse samples. To give an idea of the completeness
of such a focused lncRNA catalogue when compared to
a global one, Jiang et al. recently published “an expanded
landscape of human long non-coding RNA” with 25 000
new lncRNAs from normal and tumor tissues, whereas in
our focused analysis only 50% of our 35 selectedMlinc can
be found in this collection [86].
Futhermore, providing new candidates of good quality

to improve lncRNA collection remains a complex task. As
it could be expected, the raw catalogue in our study con-
tains predictions of disparate quality observed with a large
number of mono-exonic transcripts. Without any filter, ab
initio methods are insufficient to adequately reconstruct

Table 1 Results of functional investigations’ summarised for each of the three selected Mlincs

Mlinc Predicted RNA-Protein
interactions (lncADeep)

Subcompartment
enrichment

FANTOM6 expr.
changes

Diff. genes in
positive cells

K-mers investigations

Mlinc.28428 Apoptosis, mRNA decay,
PPARA activity,
intracellular transport,
response to hypoxia and
cell cycle

Chromatin, cytoplasm BOLA3-AS1, JPX,
SERTAD4-AS1,
PTCHD3P1, ERVK3.1,
SNRPD3, MEG3

H19, PI16 Stress, senescence

Mlinc.128022 THY1, NRF1 Chromatin, cytoplasm FOXN3-AS1,
A1BG-AS1, CD27-AS1,
FLVCR1-AS1

FTH1, TPM2, FTL,
CD24, HMGN2,
HMGB1, ODC1,
PTTG1, BIRC5, EIF5A,
MKI67, UBE2S, FGF5,
HAS2-AS1

Osteodiff., Stress

Mlinc.89912 MGMT-mediated DNA
damage reversal,
Nonsense Mediated
Decay, Tubulin
metabolism

nucleus (free),
cytoplasm

NEAT1_1, PCAT6,
MFI2-AS1,
MKLN1-AS2,
CDKN2B-AS1

FGF5 and HIST1H4C Proliferation
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full length transcripts. The usage of long-read sequenc-
ing has been particularly effective in helping to validate
our predictions. Given the benefits of full-length RNA
sequences, long-read sequencing should become the stan-
dard for lncRNA validation. A specific lncRNA can be
the one presenting the most relevant properties after in
silico analysis. The first task remains the identification
of the more specific markers for a given cell type, task
that present differences from classic comparative analysis.
The MSC markers proposed in the past were determined
through a simple comparison between MSCs of a certain
origin with non-MSC cells whose types are either unique
or few in number.
Historically, MSCs have been compared to BM

hematopoietic stem cells. However, our initial RNAseq
analysis revealed that all potential MSC markers pro-
posed in the past are expressed in at least one other
non-mesenchymatous cell type, and so, do not consti-
tute exclusive MSC markers at the transcriptome level.
Even if all cell types cannot be investigated, the diver-
sity of the negative cell set is a critical criterion in
selecting the most specific transcripts. In keeping with
this idea, we restricted the list of potential biomarkers
with an enrichment step based on a differential expres-
sion comparing BM-MSCs to other cells including stem
cells, as well as differentiated cells of various lineages
(lymphocytes, macrophages, primary chondrocytes, hep-
atocytes and neurons). In the enriched list, the overex-
pressed annotated genes contained members of MSC-
related pathways as well as the ISCT markers. This result
supported the MSCs characterisation made by the orig-
inal authors [13], thus validating the identity of MSCs
used for this RNAseq analysis with the currently defined
criteria. The problem with classical differential analy-
sis used on diverse “non-MSC” group is that all the
group is considered to be homogeneous. As a result, can-
didates with positive expression in small cell groups could
pass statistical test, creating false positives. For this kind
of differential analysis, we propose to select the most dis-
criminating transcripts by feature selection, a machine
learning methodology that reduces the number of non-
discriminating candidates after selection. We used feature
selection through Boruta, a method based on “random
forest”, to retain the top 35 most relevant MSCs signa-
ture for annotated genes, Mlincs and Mloancs separately.
Putting aside our initial focus on unannotated lncRNAs,
different annotated lncRNAs or coding genes with inter-
esting profiles were also selected by feature selection:
among them, KRTAP1-5 have been exclusively studied in
BM-MSCs [87], where its preferential expression was val-
idated by our results. These discoveries can bring new
features concerning these genes and suggest directions
for future investigations concerning their impact on the
MSCs.

However, a marker is classically considered as spe-
cific on condition that its positive expression cannot be
observed in any other cell type. Therefore, the expression
of these potential markers should be explored in an entire
RNAseq database to further validate its specificity. The
exploration of a wide set of RNAseq data as proposed by
ENCODE, including a diversified set of primary and stem
cells, could support or invalidate the specificity of poten-
tial markers. In order to assess the expression of Mlinc
candidates in a large number of samples, we used a sig-
nature for each candidate, extracting specific 31nt k-mers
from their sequences. The specific k-mers extraction was
made using Kmerator software. These k-mers were then
quantified in the ENCODE human RNAseq database. The
new and simplified procedure based on k-mers count-
ing and large scale RNAseq exploration has the following
advantages: i) a direct textual search that requires less
time and CPU resources than classical methods and ii) a
restricted set of lncRNAs supported by different results in
the biological (wet) and in silico levels (RNAseq data). The
counterpart of the extensive vision of marker expression is
that we observe a limit of specificity among our best can-
didates. We observed expression in fibroblasts, in close
primary cells of common embryonic origin like SMCs and
other tissue-specific fibroblastic cells. Other tissue resi-
dent fibroblastic cells like skeletal muscle satellite cells,
pre-adipocytes and fibroblasts from different sources,
especially dermis, express our selected Mlincs markers.
The question of the differences betweenMSCs and related
cell types is crucial to the issue. Specifically, the differ-
ences between MSCs and fibroblasts remain a subject of
debate [12, 88]. According to the ISCT statement, no phe-
notypical differences have been reported between fibrob-
lasts of different sources and adult MSCs [89], suggesting
the hypothesis of a uniform cell type with functional vari-
ation depending on the tissue source. Our results sup-
port this idea: distinguishing MSCs from fibroblasts with
only few positive markers remains a complicated task.
Moreover, we observe low to medium expression of

our candidates in close cell types from the same embry-
onic origin such as muscular cells and SMCs. This could
be due to a shared phenotype between cells with close
embryonic origin. Common markers between MSCs and
SMCs have already been described. Notably, MSCs can
express similar levels of SMC markers such as alpha-
actin [90, 91]. Moreover, Kumar et al. [92] determined
that MSCs, pericytes and SMCs could have the same
mesenchymo-angioblast progenitor and that SMCs share
a certain plasticity with MSCs, as they can be differen-
tiated in chondrocyte-like and beige adipocytes or myo-
fibroblasts. However, a lot of cell types in ENCODE have
not been actively sorted by expression of their respective
surface markers and fibroblast contamination is a classical
feature in primary cell culture. Therefore, we should not
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exclude the possibility of fibroblast contamination when
investigating markers for MSCs by bulk omics technol-
ogy. Given this, scRNAseq could be the best solution to
identify the source of marker expression in counterpart
cells.
To conclude, our extensive cell type comparison shows

that the discovery of a marker of MSCs as distinct cell
type is not plausible. After deepening our own research
on MSCs biomarkers at the annotated and unannotated
levels, we were unable to find a marker that could simul-
taneously i) distinguish MSCs to close or homologous cell
types (fibroblasts, satellite cells, SMCs), ii) be present in
all MSCs types and iii) distinguish MSCs frommore char-
acterised cell types (hematopoietic lineage, neurones, etc).
Our results suggest, like other studies, a strong proximity
between MSCs, fibroblast and mesodermal cell types.
More than a marker of MSCs, candidates extracted by

our method could be used to explore important features
in MSCs biology and therefore, warrant investigation into
their function, assuming that the specificity of RNA for
a cell type can highlight its importance in cell activity.
Even if the functional invalidation stands as the principal
method to efficiently determine the function of a lncRNA,
its expression and co-expression with known genes can
potentially characterise a function or an intrinsic state of
a cell type, particularly for MSCs with reported diversity
of states and functions (differentiation, immunomodula-
tion, senescence, proliferation, etc). In our opinion, it is
vital that during the creation of a catalogue of lncRNAs,
a restricted set of selected biomarkers should be studied
more intensively, both in term of specificity and func-
tion. Assumptions on functional domains, where lncR-
NAs could act, could increase the relevance and visibility
of discovered lncRNAs, and far from the bioinformatics
implications, encourage future biological investigations.
We decided to investigate the 3 selected Mlincs, vali-
dated by k-mers search, RT-qPCR and long-read sequenc-
ing, in term of biological impact with complementary
in silico experimental approaches. We propose differ-
ent in silico strategies, depending on the amount and
diversity of the available data. The analysis confirms the
non-coding potential of candidates and indicates a low
probability of “miRNA sponge” activity. However, pro-
tein potential interaction results give interesting paths
that were then investigated by complementary explo-
ration. The k-mers quantification permits a naive high
throughput exploration of numerous RNAseq data, simul-
taneously exploring potential functions and specificity
to assess their potential. Instead of different cells, each
candidate’s expression was quantified in MSCs in dif-
ferent experimental conditions. FANTOM6 data recently
offered a pilot about lncRNAs functional investigation,
with a high-throughput invalidation of 154 lncRNAs and

coding genes in fibroblasts and their RNAseq counter-
part added to phenotypical observations. The utilisa-
tion of co-expressions between KO genes and candidates
lncRNAs remains an efficient way to decipher lncRNAs
function, provided number of KD genes is high. More-
over, the availability of recent single-cell data of MSCs
has been a good complement to lncRNAs functional
investigation.
Using scRNAseq from Ad-MSCs [93], we observed

that our markers are not expressed in all cells but con-
stitute different subpopulations with different levels of
rarity in Ad-MSCs. FANTOM6 and single-cell analysis
could permit tracing three components of these states:
stress inducible cells, lineage commited osteogenic pro-
genitors and proliferating cells. Globally, we observed
a global concordance of the results between the differ-
ent strategies used for functional prediction. Mlinc.28428
has concomitant expression with genes related to the
stress response pathway. Mlinc.28428 could be a good
target for treatment to study the senescence process,
age pathologies or stress response. Mlinc.128022 poten-
tially interacts with THY1 (CD90) and has co-occurences
with genes linked to osteoprogenitors and cell differen-
tiation. The k-mers search highlights its participation in
MSCs’ osteodifferentiation. Finally, Mlinc.89912 poten-
tially interacts with damage repair and RNA decay, and
tubulin metabolism, all linked to cell proliferation and cell
cycle. Moreover, the subcompartment enrichment corre-
sponds to this prediction: Mlinc.89912.1 is the only can-
didate to have possible interactions with DNA-repair sys-
tem, a hypothesis corresponding to its observed enrich-
ment in the nucleus. A final selection of bulk RNAseq
of MSCs in specific biological conditions allowed con-
firmation of our initial assumptions, showing that the
different strategies we propose could be used to give rele-
vant indications of the lncRNAs’ functions. These results
show that a lncRNA selected by its expression speci-
ficity has a high probability of being part of a functional
mechanism.

Conclusion
In conclusion, we have predicted genes and lncRNAs
enriched in MSCs and proposed several selection steps
including feature selection (machine learning), large scale
signature search, RT-qPCR validation, in silico tools
and single-cell analysis. We present the application of
a new way of quantification in RNAseq: the specific k-
mers search could be used as a naive information in
lncRNAs catalogue creation. The strategies presented
here are transferable to other cell types and different
studies while the specificity and functional assumption
present a significant potential in long non-coding tran-
scriptome exploration. We present 3 lncRNA markers of
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bone marrow and adipose MSCs that passed all selec-
tion steps and present interesting features: Mlinc.28428.2,
Mlinc.128022.2 and Mlinc.89912.1. These markers could
be used by the scientific community as potential tar-
gets for functional biological experiments on MSCs,
with pre-indications of potential functions to orien-
tate the experiments and finally initiate the objective
of transition between bioinformatics challenges and cell
biology.

Methods
Data collection and basic processing
The public RNAseq datasets (in FASTQ format) have
been assessed using ENCODE, the EBI “ArrayExpress”
service or SRA database at each step of the pipeline: i)
lncRNAs prediction and first differential analysis (Addi-
tional file 1), ii) k-mer search in ENCODE data to
refine lncRNAs’ specificity (Additional file 8), iii) k-
mer search in FANTOM6 CAGE dataset and scRNAseq
analysis from Adipose MSCs by X. Liu et al raw data
[93] for functional investigations (Additional files 15 and
16), iv) k-mer search in MSCs in different conditions
(Additional file 18).
The reads quality were assessed with FastQC (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) to
avoid the implementation of poor quality data in the anal-
ysis. Data from Peffers et al. [94], added to ENCODE’s
BM-MSCs RNAseq data, were selected for the Mlinc
and Mloanc characterisation and the differential analy-
sis considering the above-mentioned features: Ribo-zero
technology, stranded and paired-ends RNAseq. Peffers’
data had a forward-reverse library orientation instead
of a reverse-forward orientation of a classic Illumina
sequencing, thereby the order of paired files was manually
reversed. To minimize false negative results in our analy-
sis, we followed the standard ENCODE procedure which
implies datasets with a minimum of ∼ 20M reads and
we favored the use of ribodepletion method of extraction
(details provided in Additional file 1). A single exception
was made for hematopoietic progenitors (4 samples with
∼ 5M reads and 2 other ones with ∼ 25M and ∼ 30M
reads), justified by the lack of public data and the rele-
vance of a comparison hematopoietic/mesenchymal cells.
The FASTQ files used for lncRNAs prediction in MSCs
referred as “MSC” group (Additional file 1), were mapped
using CRAC v2.5.0 software [95] on the indexed GRCh38
human genome including mitochondria, with –stranded,
-k 22 and –rf options.

Ab initio assembly for transcripts prediction or
unannotated transcripts prediction
The aligned reads of the “MSC” group were put through
ab initio transcript assembly. Unannotated transcripts

were predicted with the following procedure: i) an ab ini-
tio reconstruction was performed on individual RNAseq
with StringTie [96] version 1.3.3b, with -c 5 -j 5 rf -f 0.1
options (5 spliced reads are necessary to predict a junc-
tion and a minimum of 5 reads are required to predict
an expressed locus), ii) the output individual GTF files
obtained with the RNAseq of “MSC” group were then
merged with StringTie with -f 0.01 -m 200 options and
with a minimum TPM of 0.5, with the Ensembl human
annotation (GRCh38) v90 used as guide for StringTie.
The GTF was parsed with BEDTools [97] to dissoci-
ate new intergenic lncRNAs (lincRNAs) from annotated
RNAs (coding or annotated lncRNAs), by applying fil-
ter criteria classically used in lncRNAs prediction [98],
excluding transcript models overlapping (by 1 bp or more)
any annotated coordinates. The resulting GTF of unan-
notated lincRNAs from MSCs is referred as “Mlinc”. In
parallel, the GTF was parsed with BEDTools to dis-
sociate overlapping-antisens lncRNAs (lncoaRNAs), by
applying filter criteria classically used in lncRNAs pre-
diction, keeping transcript overlapping any annotated
coordinates, then excluding transcripts overlapping these
annotated coordinates on the same strand. The resulting
GTF of MSCs overlapping-antisens lncRNAs is referred
as “Mloanc” (Fig. 1). For an exhaustive analysis, we
decided not to filter the reconstructed transcripts by
their mono-exonic structure but selected ab initio recon-
structions bigger than 200 bp. Potential false positives
can later be eliminated in the downstream steps such
as differential expression analysis, long-read sequencing
and qPCR.

Long-read sequencing
The library was generated with 250 ng polyA+ mRNA
purified from 50 μg of human BM-MSCs total RNA. The
polyA+ mRNAs were treated according to the cDNA-
PCR sequencing kit protocol (ref SQK-PCS108) as recom-
mended by ONT. 3 254 396 sequences were obtained on
the ONT MinION sequencer. The base calling was done
with albacore version 2.2.7. 2 720 928 long reads were suc-
cessfully mapped using Minimap2 [99] version 2.10-r764
on GRCh38 human genome with default options used for
ONT sequencing.

Quantificationwith pseudoalignment and feature selection
Kallisto v0.43.1 [23] was used directly on RNAseq raw
FASTQ from the “MSC” and “non-MSC” groups. This
pseudoalignment was performed with a number of boot-
straps (-b) of 100, using a Kallisto index containing the
sequences of all transcripts: the Ensembl coding and
non-coding transcripts (v90) plus the predicted lincR-
NAs and lncoaRNAs. Sleuth version 0.29.0 [24] was
used with R for differential expression analysis using

https://www.bioinformatics.babraham.ac.uk /projects/fastqc/
https://www.bioinformatics.babraham.ac.uk /projects/fastqc/
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the Wald test method, to compare the “MSC” group
against the “non-MSC” group (including lymphocytes,
macrophages, hepatocytes, iPSCs, ESCs, HUVECs, neu-
rons, chondrocytes). Analysis was performed at the gene
level for the annotated genes and at the transcript level
for the predicted lincRNAs and lncoaRNAs. Genes or
lncRNAs having a log2 FC between “MSC” and others
greater than 0.5 and a p-value lower than or equal to
0.05 were selected. Finally, only transcripts/genes over-
expressed in MSCs were selected. Each category (anno-
tated transcripts, lincRNAs and lncoaRNAs) of poten-
tial candidates passing the first differentiation expres-
sion filter were separated for feature selection analysis.
Boruta 6.0 [29] was used with 10000 maximum runs
and a p-value of 0.01 on each category, with multiple
comparisons adjustment using the Bonferroni method
(mcAdj = TRUE). Candidates passing the Boruta test as
“Confirmed” for each category were selected as reliable
biomarkers.

Quantification by k-mers search
To quantify the expression of a transcript or a gene
in available RNAseq data with a rapid procedure, spe-
cific 31nt long k-mers were extracted from the candi-
date sequences. A specific k-mer of an annotated can-
didate corresponds to a 31nt sequence that maps once
on the genome and reference transcriptome (Ensembl
v90). In case of unannotated transcript (Mlinc, Mloanc),
a specific k-mer maps once on the genome and is
absent from the reference transcriptome. The automated
selection of specific k-mers is ensured by the Kmera-
tor tool (manuscript in preparation, https://github.com/
Transipedia/kmerator). The k-mers were then quantified
directly in raw FASTQ files using countTags (https://
github.com/Transipedia/countTags). The quantification
is expressed by the average count of all k-mers for one
transcript, normalised by million of total k-mers in the
raw file.
In FANTOM6 Dataset (Additional file 15 https://

doi.org/10.1101/700864) containing CAGE analysis, to
approach a TPM normalisation, the number of k-mers
quantified was normalised by the total number of reads in
million.

Genomic intervals assessment
DNase-seq intervals of enrichment were directly down-
loaded from ENCODE in bed format for BM-mesen-
chymal cells (ENCFF832FHZ) and hematopoietic pro-
genitors (ENCFF378FCS). The H3K27ac (GSM3564514)
and H3K4me3 (GSM3564510) ChIP results from undif-
ferentiated BM-MSCs of the Agrawal Singh S. et al.
study [82] were downloaded from GEO database in WIG
format, and remapped to the GRCh38 genome with

CrossMap (http://crossmap.sourceforge.net/). PolyA+
CAGE localisations from ENCODE/RIKEN were down-
loaded in .bed format from UCSC Table Browser with
“GRCh37” assembly and “Expression” group (“TSSHMM”
files at: https://genome.ucsc.edu/cgi-bin/hgTables). The
downloaded files corresponding to samples of MSCs
from BM, Ad and UC (named hMBM, hMAT,and hMUC
respectively), CD34 and H1ES cells were then remapped
to the GRCh38 genome with liftOver (https://genome.
ucsc.edu/util.html).

In silico functional prediction
We used LncADeep [33] to identify particular cor-
relations between candidates and proteins. Beginning
with our selection of 3 candidates, we filtered shared
predicted proteins and selected proteins predicted as
interacting uniquely with the concerned candidate. The
pathways concerned with these unique proteins were
identified with Reactome. TarpMir was used to iden-
tify possible target sites of human miRNA from miR-
base (p = 0.5) [32] and FEELnc [31] to decipher the
coding potential of candidates, using the coding and
non-coding part of Ensembl annotation sequences as
model.

Single-cell analysis
Single-cell data were pseudoaligned with Kallisto, with
the same index used for the initial bulk RNAseq analy-
sis. Pseudoalignment of 10X genomics data, correction,
sorting and counting were made by Kallisto “bus” func-
tion. Count matrices were processed with Seurat R pack-
age [100, 101]. Empty droplets were estimated by bar-
code ranking knee and inflection points, only droplet
with a minimal count of 10000 were kept. In the end,
26071 droplets remain. After normalisation, Inter-donor
batch effect was corrected with ComBat method in sva
R package [102] (Combat function, prior.plots=FALSE,
par.prior=TRUE). Cell cycle scoring was made by Cell-
CycleScoring Seurat function, using gene set used by the
initial authors [93]. Finally, other sources of unnecessary
variability as percent of mitochondrial genes, cell cycle
and number of unique molecular identifiers (UMIs) were
regressed using ScaleData Seurat function.
To decipher genes enriched in cells positive for our

markers, cells with a scaled expression superior or equal to
0.1 were labelled as positive, whereas cells with an expres-
sion inferior to the level were labelled as negative. Then,
markers of these cells were deciphered using FindAll-
Markers Seurat function with a minimum FC threshold of
0.15. Expression of our markers in the Ad-MSCs popula-
tion wasmade by FeaturePlot Seurat function after UMAP
dimensional reduction, the gene enrichments were repre-
sented with VlnPlot function.

https://github.com/Transipedia/kmerator
https://github.com/Transipedia/kmerator
https://github.com/Transipedia/countTags
https://github.com/Transipedia/countTags
https://doi.org/10.1101/700864
https://doi.org/10.1101/700864
http://crossmap.sourceforge.net/
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/util.html
https://genome.ucsc.edu/util.html
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Data visualisation
Genome browser-like figures were generated with Gviz R
package [103]. BAM tracks were generated from merged
BAM files used for transcript prediction. Heatmaps were
generated using superHeat R package (https://github.
com/rlbarter/superheat).

Cell preparation and culture conditions
MSCs were isolated from bone marrow aspirates of
patients undergoing hip replacement surgery, as previ-
ously described [104]. Cell suspensions were plated in
α-MEM supplemented with 10% FCS, 1 ng/mL FGF2
(R&D Systems), 2 mM L-glutamine, 100 U/mL penicillin
and 100 μg/mL streptomycin. These were shown to be
positive for CD44, CD73, CD90 and CD105 and nega-
tive for CD14, CD34 and CD45 and used at the third or
fourth passage. Human skin fibroblasts were cultured in
DMEM high glucose supplemented with 10% FCS. For
Ad-MSCs isolation, adipose tissue was digested with 250
U/mL collagenase type II for 1 h at 37 °C and centrifuged
(300 g for 10 min) using routine laboratory practices.
The stroma vascular fraction was collected and cells fil-
tered successively through a 100 μm, 70 μm and 40
μm porous membrane (Cell Strainer, BD-Biosciences, Le-
Pont-de-Claix, France). Single cells were seeded at the
initial density of 4000 cell/cm2 in αMEM supplemented
with 100 U/mL penicillin/streptomycin (PS), 2 mmol/mL
glutamine (Glu) and 10% fetal calf serum. After 24 h, cul-
tures were washed twice with PBS. After 1 week, cells
were trypsinised and expanded at 2000 cells/cm2 till
day 14 (end of passage 1), where Ad-MSCs preparations
were used.
HUVECs obtained from Clonetics (Lonza, Levallois

Perret, France) were cultured in complete EGM-2MV
(Lonza) supplemented with 3% FCS (HyClone; Perbio
Science, Brebières, France).
Primary human myoblasts were isolated and purified

from skeletal muscles of donors, as described by Kitz-
mann et al [105]. Purified myoblasts were plated in Petri
dishes and cultured in growth medium containing Dul-
becco’s Modified Eagle’s Medium (Gibco) supplemented
with 20% foetal bovine serum (GE Healthcare, PAA), 0.5%
Ultroser G serum substitute (PALL life sciences) and 50
μg/ml Gentamicin (Thermo Scientific, France) at 37° C
in humidified atmosphere with 5% CO2. All experiments
were carried out between passage 4 (P4) and P8 to avoid
cell senescence.
IPSCs were maintained in mTeSR-1TM medium

(STEMCELL Technologies), in Petri dishes with matrigel
(Corning, France). For the passages, cells were incubated
in Gentle Cell Dissociation Reagent (STEMCELL Tech-
nologies) at room temperature, dissociation medium was
discarded and cells incubated in mTeSR medium. All cell

cultures were performed at 37°C with 5% of O2 and 10%
of CO2.
Primary human hepatocytes (PHHs) were isolated, as

described previously [106], from liver resections per-
formed in adult patients.
NSC derived from H9 or directly bought (StemPro)

have been cultivated on laminine with StemPro NSC SFM
medium.
H9 ESCs were cultivated in ESICO medium in a cocul-

ture H9/MEF (Mouse Embryonic Fibroblasts) at 37 °C
with 5% of O2 and 5% CO2.

RNA preparation and reverse transcription
Total RNA was isolated using TRIzol reagent (invitro-
gen) or RNeasy Mini Kit (Qiagen, France) according to
the manufacturer protocol. RNA was quantified using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, France). RNA quality and quantity were further
assessed using the 2100-Bioanalyzer (Agilent Technolo-
gies, Waldronn, Germany). Only preparations with RNA
integrity number (RIN) values above 7 were considered.
Reverse-transcription was performed either with ran-
dom hexamers using the GeneAmp Gold RNA PCR Core
kit (Applied Biosystems) or with oligo(dT) using Super-
ScriptTM First-Strand Synthesis System for RT-qPCR
(invitrogen, France).

Real-time quantitative PCR
Primer pairs were designed with primer3 online software
(http://bioinfo.ut.ee/primer3-0.4.0/) from the transcripts’
sequences. Primer pairs with a perfect and unique match
on the human genome were validated with UCSC blat
software (https://genome.ucsc.edu). As a final verifica-
tion, primers were visualised in parallel with the BAM
alignment using IGV (http://software.broadinstitute.org/
software/igv/) to verify that the primers overlap zones
with read coverage. If possible, primer-pairs were
designed to span an intron when present in the genomic
sequence. Primers were designed for a mean Tm of 60°C.
Quantitative PCR (qPCR) were performed using Light-
Cycler 480 SYBR Green I Master mix and real-time
PCR instrument (Roche). PCR conditions were 95 °C
for 5 min followed by 45 cycles of 15 s at 95 °C, 10 s
at 60 °C and 20 s at 72 °C. For each reaction, a sin-
gle amplicon with the expected melting temperature was
obtained.
The gene encoding ribosomal protein S9 (RPS9) was

used as house-keeping gene for normalisation. The
cycle threshold (Ct) of each amplification curve was
calculated by Roche’s LightCycler 480 software using
the second derivative maximum method. The relative
amount of transcripts were calculated using the ddCt
method [107].

https://github.com/rlbarter/superheat
https://github.com/rlbarter/superheat
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