Brainhack: Developing a culture of open, inclusive, community-driven neuroscience

To cite this version:

HAL Id: inserm-03221248
https://inserm.hal.science/inserm-03221248
Submitted on 17 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Brainhack: developing a culture of open, inclusive, community-driven neuroscience

The Brainhack Community:

Affiliations are listed at the end of this document.

Author Contributions:
The contributions of the different authors are detailed here, and our crediting system is described here.

* denotes equal contributions.

Corresponding Author and Lead Contact: +

Abstract / In brief

Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open inclusive environment. The authors describe the myriad benefits for participants and the research community, and how Brainhacks complement conventional formats to augment scientific progress.

Keywords: best practices, Brainhack, collaboration, community building, hackathon, inclusivity, neuroscience, open science, reproducibility, training

Discipline: Life-science, Meta-science, Neuroscience (Cognitive Neuroscience, Computational Neuroscience, Systems Neuroscience, Other Neuroscience and Neurobiology)
Introduction

Social factors play a crucial role in the advancement of science. New findings are discussed and theories emerge through social interactions, which usually take place within local research groups, and at academic events such as conferences, seminars or workshops. This system tends to amplify the voices of a select subset of the community—especially more established researchers—thus limiting opportunities for the larger community to contribute and connect.

Brainhack events (or Brainhacks for short) complement these formats in neuroscience with decentralized two-to-five day gatherings, in which participants from diverse backgrounds and career stages collaborate and learn from each other in an informal setting. The Brainhack format was introduced in a previous publication (Craddock et al., 2016; Fig. 1A&B). It is inspired by the hackathon model (see Glossary), which originated in software development and has gained traction in science as a way to bring people together for collaborative work and educational courses. Unlike many hackathons, Brainhacks welcome participants from all disciplines and with any level of experience—from those who have never written a line of code to software developers and expert neuroscientists. Brainhacks additionally replace the sometimes competitive context of traditional hackathons with a purely collaborative one, and also feature informal dissemination of ongoing research through unconferences.

In the following, we aim to address two key questions about the merits of a Brainhack. First, how do participants benefit from attending a Brainhack event? Second, what is the relevance and importance of Brainhacks for neuroscience more broadly? To answer these questions, we discuss the five defining Brainhack features: 1) a Project-Oriented Approach that fosters active participation and community-driven problem-solving; 2) Learning By Doing, which enables participants to gain more intensive training, particularly in computational methods; 3) training in Open Science & Collaborative Coding, which helps participants become more effective collaborators; 4) Focus on Reproducibility, which leads to more robust scientific research; and 5) accelerated Building and Bridging of Communities, which encourages inclusivity and seamless collaboration between researchers at different career stages. Altogether, Brainhacks and similar formats are increasingly recognized as a new way of providing academic training and conducting research that extends traditional settings. These events foster a new research culture that celebrates open science, collaboration and diversity, unlocking opportunities for scientific progress.

A Project-Oriented Approach

Brainhacks are fundamentally centered around attendee-led projects. At the beginning of each Brainhack, participants pitch project ideas and form teams to realize some of these ideas during the “hacking” sessions (Fig. 1B). The teams are dynamic, and their composition can change throughout the course of a project. As participants group themselves based on their common interest in a question, method, goal or idea, interdisciplinary teams naturally emerge. Each participant can hone diverse skills by playing an active part in multiple projects. This format avoids the scientific silos that often arise when scientists connect over a specific methodological or
conceptual approach. Brainhack projects promote the flow of information between specialized domains within the multidisciplinary field of neuroscience.

The project-oriented structure of Brainhack enables everyone to be an active participant at the event, with contributions taking a variety of forms. Importantly, the term “hacking” is not used to refer to coding in particular, but to describe an intensive form of work, eschewing strict conventions, and often targeted at prototyping an idea within a short period of time. Participants are therefore not required to have coding skills in order to make meaningful contributions. An example of an impactful project that did not focus on coding is Open Brain Consent (Open Brain Consent working group, 2021). This project developed consent form templates for the collection and sharing of human neuroimaging data, incorporating data protection standards such as the General Data Protection Regulation (GDPR) of the European Union. The consent forms can be used in ethics approval procedures to ensure that the collected data is shareable, while the participants’ privacy is protected.

Unlike some traditional hackathons, there is no competitive element to Brainhacks. The focus is on collective and community-driven work, making the events more welcoming for inexperienced participants. Neither the level of completeness nor the publication potential determine the success of a project. Instead, Brainhacks emphasize the value of collaborating, exploring unconventional ideas, group thinking and building tools that benefit the community. Exemplary of these values is a project that originated at the first Brainhack in 2012: The Brain Catalogue provides magnetic resonance (MR) brain images of a range of different species and allows multiple users to view and segment them on the web simultaneously. Its successor, BrainBox, has evolved to enable real-time collaborative segmentation of any MR image accessible online (Heuer et al., 2016). BrainBox has been used in many subsequent Brainhack projects, research collaborations, and science outreach events. Similarly, braindr fosters citizen science while solving visual quality control for massive datasets (Keshavan et al., 2019). This app enables anyone to contribute to scientific progress by swiping left or right on brain images to classify them as clean or corrupted. The project originated from a hackathon in 2017, was extended in a Brainhack project in 2018, and recently led to the development of the extensible SwipesforScience citizen science template.

Many Brainhack projects take on a life of their own and grow beyond a single event. The open science approach embraced by the Brainhack community makes it easier for anyone to contribute to, or take the lead in pushing projects forward beyond their initial creation. For example, the Autism Gradients project, exploring the cortical hierarchy in individuals with autism, was conceptualised at Brainhack Global 2016. It was subsequently picked up by another group who expanded the original idea and invited the initial Brainhack team to collaborate. This resulted in a peer-reviewed publication (Hong et al., 2019), multiple follow-up projects, two exchange grants, and international workshops (Autism workshop at INSAR and gradient workshop at OHBM) on the same topic. Another example is the development of Nighres, a Python package for processing high-resolution neuroimaging data. The initial project spanned two Brainhacks in 2016, and resulted in a toolbox that made algorithms for layer-specific analysis of the cortex easier to install and use. This sparked the development of the full Nighres package, with a broader range of functions and various contributors across several Brainhacks. Nighres has been presented in a peer-reviewed publication (Huntenburg et al., 2018), is actively maintained, and has been used
and cited in multiple studies. Some projects transcend the domain of brain sciences; for example, [DueCredit](https://duecredit.org) is a project promoting citable code that emerged at Brainhack OHBM 2015 and is now used in molecular dynamics, geophysics, and other sciences. Many more projects have been part of Brainhacks over the years, attracting users and developers and evolving together with the community. An expanding list lives in the accompanying [Jupyter Book](https://jupyterbook.org).

All these examples highlight how the project-oriented approach of Brainhacks encourages active participation and interdisciplinary collaboration that can reach beyond a single event. The projects directly benefit participants, who can explore new ideas in a stimulating setting, leverage their projects for career advancement, and gain new skills by collaborating with experienced researchers and developers. Brainhack projects also contribute to the progress of the wider neuroscience community by fostering exchange across scientific silos, resulting in multidisciplinary tools, community-driven guidelines and reference data, as well as traditional publication output.

Learning by Doing

Alongside projects, educational activities lie at the heart of Brainhacks. Such activities include informal teaching between project teammates, theoretical discussions in self-organized groups, unconference presentations, and structured workshops on a particular tool or topic. A recent format for major Brainhack events is the [TrainTrack](https://brainhack.org/traintrack), entirely education-focused sessions that run in parallel with project work (Fig. 1A-B). This format lowers the entry barrier for new participants, enabling them to build relevant skills and familiarize themselves with the structure and environment of a Brainhack before diving into their first project. The variety of educational approaches supports different ways of learning. Furthermore, the informal nature of these activities empowers participants to be proactive about learning and asking for help.

Brainhack instructors strive to share their materials with the scientific community, including recorded presentations, slide decks, or interactive tutorials. For example, all the materials developed for the [TrainTrack of OHBM Brainhack 2020](https://brainhack.org/traintrack/2020) have been made publicly available under a permissive license so as to encourage reuse, redistribution, and reproduction of the content. Educational content developed for Brainhacks covers a range of topics including analytical and statistical methods (e.g., machine learning, data preprocessing), reproducible workflows (e.g., automated pipelines, automated data standardization, version control, software containers), and other relevant concepts (e.g., preregistration, p-hacking). Brainhacks represent an ideal place to showcase neuroscientific tools in the form of presentations or training sessions. These sessions are designed to be hands-on and interactive as they typically feature small groups having active discussions. Participants are explicitly encouraged to adopt what they learned at a Brainhack event to their own context and to improve the teaching material with their own ideas.

Skills learned at Brainhacks are not constrained to those of a technical nature; the event format provides a unique opportunity for early career researchers to develop transferable skills such as teamwork and leadership. Project teams are often interdisciplinary, allowing participants to practice communicating beyond their own field. Everyone is encouraged to propose and lead their
own projects, and the informal structure of the events often empowers more junior participants to also take on a leadership role. The growing pool of training materials provides a ready route to extend teaching opportunities to any member of the community, including trainees. Such experiences are rare for early career researchers, but crucial for their advancement given that they can potentially mold future interests, boost the quality of their research, and widen their scientific horizons. Altogether, the broad range of scientific and professional training opportunities equips participants with a skill set that can be applicable across many domains and career stages and may therefore open up a greater range of career opportunities.

Open Science & Collaborative Coding

Despite the increasingly central role of programming in neuroscience research, formal training in coding is not common in the neuroscience curriculum. In addition, code is seldom shared across more than a few labs, and too often read and executed by only a single individual. As a result, many scripts and workflows are hard to reuse and share and may contain undiscovered errors (Merali et al., 2010).

By putting cross-disciplinary collaboration at its heart, Brainhacks have brought awareness to the need for usability, reusability, and long-term maintenance of tools. This comes with a shift of efforts, from individuals creating tools for their own needs to a community actively contributing to an existing resource, solving the aforementioned issues. Practices such as writing good code and documentation, improving code readability, performing basic version control, working collaboratively on a codebase on GitHub, GitLab, or BitBucket, and using appropriate open licenses have become essential within the community. These open practices and tools facilitate community-driven development and ensure that tools are available to all researchers, fostering global inclusivity. Brainhacks have highlighted the utility of producing a variety of research deliverables other than scientific papers (such as software, tutorials, workflows, and datasets), a concept that is increasingly endorsed by publishing venues such as F1000, RIO, eLife, Aperture, and others over the years.

Mastering collaborative programming skills enables Brainhack participants to contribute to open research objects which impact the wider scientific community. It can also make them more efficient at conducting their own research; for example, skills such as version control can be transferred to their own research group and foster more seamless collaboration amongst lab members. The wider neuroscience community benefits from the creation of transparent, reproducible tools, and from researchers equipped with the skills to maintain and extend them.

A Focus on Reproducibility

In line with their open, transparent, and collaborative nature, Brainhacks promote increased awareness of the importance of reproducible practices that integrate easily into research workflows. In addition to the coding practices mentioned above, an important aspect of reproducibility is data sharing. Public datasets are featured extensively in Brainhack projects and training sessions, since they are ideal for testing out new ideas or learning how to use a new tool.
First-time users thus experiment with these datasets and related tools under the guidance of expert users, which lowers the barrier to working with public data in the future. This approach establishes open data sharing as a standard practice and teaches participants how to curate their own data and metadata to make them accessible and reusable by others.

Resources that help researchers handle their data in a reproducible fashion are integral to Brainhacks; many of these have been introduced to the Brainhack community through structured efforts from the Center for Reproducible Neuroimaging Computation (Kennedy et al., 2019). For example, many projects and trainings use DataLad, a tool that not only lets participants version-control their own data, but also helps them find, access, share, and work with increasingly large publicly available datasets. Similarly, a growing number of projects build on the Brain Imaging Data Structure (BIDS, Gorgolewski et al., 2016), a community standard for the organization of brain imaging data and metadata founded with the International Neuroinformatics Coordinating Facility (INCF). Introducing participants to data standards, such as BIDS, in the environment of a Brainhack allows them to experience the benefits of a unified data organization and provides them with the skillset to use these formats in their own research. Additionally, past Brainhacks have highlighted best practices in neuroimaging data analysis as defined by the Committee on Best Practice in Data Analysis and Sharing (COBIDAS guidelines for MRI as well as for EEG and MEG). By creating a scientific culture around open and standardized data, metadata, and methods, as well as detailed documentation and reporting, Brainhacks promote fundamental building blocks of a more efficient and reliable scientific research process.

Building and Bridging Communities

All aspects of Brainhacks discussed above build upon an active commitment to a diverse, inclusive, and non-hierarchically organized community. This commitment has been formalized in a Code of Conduct that aims to ensure a safe and welcoming environment for participants from all backgrounds. The Code of Conduct is discussed at the beginning of a Brainhack and adherence is monitored throughout the event. There have also been dedicated efforts to raise awareness about equity, diversity and inclusivity, such as a recent panel discussion at Brainhack Ontario 2020. While far from perfect or bias-free, we feel that the Brainhack community itself is continuously growing more diverse in terms of race, ethnicity, gender identity and expression, sexual orientation, career stage, and other aspects of personal background and identity. The enthusiastically inclusive culture helps members hold each other to a standard of mutual respect that empowers individuals from typically underrepresented groups to claim their space and take on central roles in the community.

Brainhacks are designed to promote intensive networking. The project-oriented and decentralized setting puts participants on an equal footing regardless of backgrounds and career stage. Unconferences provide a unique opportunity for people interested in the same topic to meet and discuss, sometimes sparking new collaborations. Working in small groups during projects, workshops, and unconferences over the course of several days encourages frequent interactions that often go deeper than relatively short encounters at traditional conferences. These interactions contribute to building lasting collaborations that bridge across disciplines, research contexts,
career stages, and geographical borders. Sometimes they lead to job opportunities, grant proposals, new ideas, and new projects. Often they turn into friendships. We firmly believe that growing this diverse community and insisting on a culture of collaboration and inclusivity has untold benefits for the retention and well-being of all scientists doing brain research.

In addition to year-round locally organized Brainhacks, Brainhack Global has emerged as a major yearly initiative that has sparked numerous simultaneous events around the world (Fig. 1C-D). The focus on open collaboration through virtual spaces throughout the years meant that the community had the infrastructure, knowledge and motivation to go fully virtual in 2020, accommodating restrictions due to the COVID-19 pandemic, budget constraints, and increased awareness of the climate cost of travel. The general format of project-oriented, community-building events has gained traction in the field of neuroscience and beyond. Large initiatives such as the Human Brain Project, Neurodata Without Borders, and the Society for the Improvement of Psychological Science have also chosen hackathons as a primary work format. Summer schools like the ABCD-ReproNim course, NeuroHackademy, the ABCD Workshop and the Brainhack School are based on the same principles as the original Brainhack events. Brainhacks have been organized with other communities such as Network Neuroscience, thereby forming a bridge with those communities. Many brainhack community members also play active roles in like-minded initiatives such as the Open Science Special Interest Group of OHBM or Neuromatch Academy, amongst others. Thus, a community of individuals and practices has emerged that transports the benefits and values of the brainhack format far beyond any individual event or organization. Brainhacks are spreading to an increasingly wide community, as their non-hierarchical, self-organising structure enables individuals to organize a Brainhack anywhere in the world (Fig. 1C), while events are kept financially accessible. An online community with over 4000 members and 500 channels uses the Mattermost messaging platform to provide continuity across time and space. Posts range from questions about a specific resource, to job openings and discussions about research ethics; and anyone can join regardless of having attended a Brainhack. The community evolves with every new member and their ideas, and many members become local advocates for the principles of open and collaborative science in their home institutions.

Conclusion & Future Directions

Brainhacks complement traditional academic settings and offer additional opportunities for participants to achieve their scientific and professional goals. The focus on building a community that promotes open science and inclusivity has naturally led to better coding practices, more reproducible methods, accelerated knowledge dissemination and ample opportunities for collaboration. Brainhacks differ from many scientific meetings, as they are more project-oriented, less formal, and have broadened the notion of what constitutes successful outputs in science. Within neuroscience, Brainhacks have the potential to evolve beyond their initial focus on neuroimaging data and include more projects on theory, hardware, and different types of neural data. With a growing global community, and an iteratively improving format (Fig. 1D), Brainhacks provide a successful template that can be extended to other scientific fields. Nearly a decade of successful Brainhacks have already brought about positive change for individual researchers and
the field as a whole, in the form of improved skills, reusable resources, new collaborations, and a diverse and inclusive community.

Figure Legends

Figure 1. Brainhack in time and space. (A) Anatomy of a Brainhack shows how the components of Brainhack events relate to overarching topics that lead to scientific and professional opportunities in neuroscience. (B) Timeline of a Single Event describes the typical daily schedule throughout a brainhack. Project work and educational activities occur simultaneously interspersed with unconferences. (C) Brainhack Cartography displays cities across the world that have hosted a Brainhack. Marker color indicates the year in which each city hosted its first Brainhack, and marker size indicates the number of events hosted in each city. (D) The Brainhack Timeline displays the number of events per month since the inaugural Brainhack in September 2012, along with notable happenings throughout the years. Months are only denoted in the first year with a single letter; this ordering is repeated for all subsequent years. See the latest version of this figure here.

Acknowledgments

The present manuscript is part of a growing community effort to collate BrainHack related insights and expertise into a Jupyter Book that will serve as a centralized set of resources for the community; we acknowledge all the individuals who contributed and will make ongoing contributions to these resources. A pre-print version of the present manuscript is available as part of the Jupyter Book here. Moreover, we would like to acknowledge all Brainhack organizers, supporters, presenters, and participants for their contribution to growing and maintaining this community. The benefits described in this manuscript would not be possible without them. We also thank all institutions, labs, and organizations who have helped this community grow, meet in stimulating environments and add an excellent educational resource pool and agenda. With an expanding community, Brainhack's support network keeps growing and we thank all labs and individual researchers for their dedication and expertise offered to this community (see Supplementary Materials for a full list of individual acknowledgments; an updated list will be maintained in the Jupyter Book here).

Declaration of Interests

Anisha Keshavan is an employee of Octave Bioscience

References

Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data. Human Brain Mapping; 1-10. https://doi.org/10.1002/hbm.25351

Affiliations

1Institute of psychology, Université catholique de Louvain, Louvain la Neuve, Belgium, 2Radiology & Biomedical Imaging, Yale University, New Haven CT, USA, 3Center for Research and Interdisciplinarity, Université Paris Descartes, Paris, France, 4Department of Neuropsychology,
Univ Rennes, Inria, CNRS, Inserm, Rennes, France,

Center for Intelligent Imaging, University of California, San Francisco, USA,

McGill University, ARAMIS team, Inria, Paris, France,

Paris Brain Institute, Sorbonne Universites, Paris, France,

University of Oregon,

Krembil Centre from Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada,

Department of Psychiatry, University of Toronto, Toronto, Canada,

University of Oxford, Oxford, UK,

NeuroDataScience - ORIGAMI laboratory, McGill University, Montréal, Québec, Canada,

Department of Psychology, University of Maryland, College Park, MD, USA,

Neuroimaging of Human Cognition, Brain Institute of Rio Grande do Sul, Porto Alegre, Brazil,

Department of Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland,

Indiana University, Bloomington IN, USA,

Wellcome Centre for Human Neuroimaging, University College London, London, UK,

University of North Carolina, Chapel Hill,

Department of Psychology, Harvard University, Cambridge, MA, USA,

CNRS UMR 5293 Institut des Maladies Neurodégénératives, Bordeaux, France,

Department Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK,

Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg NY, USA,

Department of Psychiatry, NYU Grossman School of Medicine, New York City, USA,

Systems Neuroscience, Melbourne Neuropsychiatry Centre, Melbourne, Australia,

Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia,

Yale University,

Department of Psychology, Philipps Universität, Marburg, Germany,

Department of Computer Science and Software Engineering, Concordia University, Montréal, Québec, Canada,

Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland,

International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia,

NIH,

Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK,

Department of Psychiatry, University of Oxford, Oxford, UK,

Interdepartmental Neuroscience Program and MD/PhD program, Yale School of Medicine, New Haven, CT, USA,

Department of Psychology, Western University, London ON, Canada,

Brain and Mind Institute, Western University, London ON, Canada,

Department of Radiology and Biomedical Imaging, Yale School of Medicine,

Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA,

Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA,

Philipps Universität, Marburg, Germany,

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,

Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany,

Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA,

Biological Engineering, MIT, Cambridge, USA,

D-ITET, ETH Zurich, Zurich, Switzerland,

Department of Psychology, University of Michigan, Ann Arbor, MI, USA,

Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,

Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Canada,

NeuroPoly Lab, Institute of Biomedical Engineering, Montréal, Québec, Canada,

Montreal Heart Institute, University of Montréal, Montréal, Québec, Canada,

University of Massachusetts Medical School,

Octave Bioscience, USA,

eScience Institute, University of Washington, Seattle WA, USA,

Institute for Learning and Brain Science, University of Washington, Seattle WA, USA,

Robarts Research Institute, Western University, London, Canada,

Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam,
The Netherlands, “Department of Psychiatry, University of Utah, Salt Lake City, UT, USA,” “Department of Physics, Florida International University, Miami FL, USA,” “CIR Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria,” “CSAIL, MIT, Cambridge, USA,” “Center for the Study of Learning, Georgetown University Medical Center, Washington DC, USA,” “Medical University of Vienna, Vienna, Austria,” “TU Wien, Vienna, Austria,” “Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles CA, USA,” “Laboratory for Machine Learning and Knowledge Representation, Ruder Boskovic Institute, Zagreb, Croatia,” “Functional MRI Laboratory, University of Michigan, Ann Arbor, USA,” “Department of Psychology, University of California, Berkeley, Berkeley, USA,” “Centre de recherche de l’Institut universitaire de gériatrie de Montréal,” “Psychology, University of Nottingham, Nottingham, UK,” “University of Marburg, Marburg, Germany,” “Radiological Sciences & Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK,” “Institute of Software Engineering and Theoretical Computer Science, Technical University of Berlin, Berlin, Germany,” “School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil,” “Centre National de la Recherche Scientifique (CNRS), France,” “INCC UMR 8002, Université de Paris, Paris, France,” “CIMeC, University of Trento, Trento, Italy,” “Department of Data Analysis, Ghent University, Belgium,” “Department of Psychology, Stanford University, Stanford, CA, USA,” “Empenn ERL U 1228 IRISA UMR 6074, Univ Rennes, Inria, CNRS, Inserm, Rennes, France,” “Center for the Developing Brain, Child Mind Institute, New York, NY USA,” “Department of Psychology, University of Oregon, Eugene, USA,” “PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway,” “Department of Neuroscience, Imaging and Clinical Sciences University “G. d’Annunzio” of Chieti Chieti Italy,” “Pasteur Institute, Paris, France,” “Department of Psychology, University of Western Ontario, London ON, Canada,” “Child, Youth and Family Service, Centre for Addiction and Mental Health, Toronto, Canada,” “Big Data Institute, University of Oxford, Oxford, UK,” “WIN-FMRIB, University of Oxford, Oxford, UK,” “Section on Clinical and Computational Psychiatry (ComψΨ), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland,” “Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,” “Department of Psychology, Stockholm University, Stockholm, Sweden,” “Center for Mind/Brain Sciences (CiMeC), University of Trento, Rovereto (Trento), Italy,” “Department of Neuroscience, Georgetown University, Washington, DC, United States,” “Centre for Addiction and Mental Health, Toronto, Canada,” “Departments of Radiology & Biomedical Imaging and of Urology, Yale School of Medicine, New Haven, USA,” “Montreal Neurological Institute, McGill University, Montreal, Canada,” “Engineering, University of Western Ontario, London ON, Canada,” “Computer Science Department, University of Toronto, Toronto, Canada,” “Vector Institute for Artificial Intelligence,” “Women in Artificial Intelligence & Machine Learning (WinAIML),” “Neurology Department, Memory and Aging Center, University of California San Francisco,” “Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK,” “Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, USA,” “Radiology, Harvard Medical School, Boston, USA,” “Stanford University,” “Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada,” “Helen Wills Neuroscience Institute, University of California, Berkley, Berkeley, USA,” “Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore,” “Champalimaud Research, Lisbon, Portugal,” “Neuroscience, American University, Washington D.C., USA,” “Neurology, Johns Hopkins
University, Baltimore MD, USA, 2Department of Psychiatry, University of Michigan,3 German Linguistics & Fine Arts Science, Institute of German Linguistics, University of Marburg, Marburg, Germany, 4Department of Radiology & Biomedical Imaging, Yale School of Medicine,5 University of Maryland, College Park,6 Athinoula A. Martinos Center for Biomedical Imaging - Harvard Medical School - MGH,7 Department of Psychology, University of Michigan, Ann Arbor, USA, 8Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany, 9Section on Molecular Neurobiology, National Institute of Child and Human Development, Bethesda, MD, 10Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia, 11Andrija Stampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia, 12Perceiv Research Inc., Montréal, Québec, Canada, 13Interdepartmental Neuroscience Program, Yale University, New Haven CT, USA, 14Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France, 15Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives- UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France, 16Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France, 17Department of Psychology, University of Miami, Florida, USA, 18Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy, 19Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy, 20Department of Neurology, Georgetown University, Washington D.C., USA, 21Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington D.C., USA, 22School of Psychology, Deakin University, Melbourne, Australia, 23University psychiatric hospital Vrače, Zagreb, Croatia, 24Tools, Practices and Systems Research Programme, Alan Turing Institute, London, UK, 25Department of Psychology, University of Oregon, Eugene OR, 26NBL, University of Alabama at Birmingham, Birmingham AL, USA, 27CNC, University of Alabama at Birmingham, Birmingham AL, USA, 28BrainsCAN, University of Western Ontario, London ON, Canada, 29Center for the Developing Brain, Child Mind Institute, New York, USA, 30CAS Key Laboratory of Laboratory of Behavioral Science, Institute of Psychology, Beijing, China, 31International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, China, 32University of Pittsburgh, 33Department of Electrical and Computer Engineering, Centre for Sleep & Cognition & Centre for Translational MR Research, National University of Singapore, Singapore, Singapore, 34State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 35National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, China, 36School of Education Sciences, Nanning Normal University, Nanning, China
Figure 1. Brainhack in time and space

(A) Anatomy of a Brainhack shows how the components of Brainhack events relate to overarching topics that lead to scientific and professional opportunities in neuroscience.

(B) Timeline of a single event describes the typical daily schedule throughout a Brainhack. Project work and educational activities occur simultaneously interspersed with unconferences.

(C) Brainhack cartography displays cities across the world that have hosted a Brainhack. Marker color indicates the year in which each city hosted its first Brainhack, and marker size indicates the number of events hosted in each city.

(D) The Brainhack timeline displays the number of events per month since the inaugural Brainhack in September 2012, along with notable happenings throughout the years. Months are only denoted in the first year with a single letter; this ordering is repeated for all subsequent years.

See the latest version of this figure at http://brainhack.org/brainhack_jupyter_book/neuroview_figure.html.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Science</td>
<td>Movement and practices within science aimed at increasing the transparency, accessibility, diversity, and inclusivity of scientific practices and output. This is often reflected in open science practices, such as publishing open access manuscripts; making research data findable, accessible, interoperable, and reusable (FAIR); and open sourcing code and software, etc.</td>
</tr>
<tr>
<td>Hackathon</td>
<td>The term hackathon is a portmanteau of “hacking” and “marathon.” Traditionally, it is an event in which people and teams gather to collaboratively work on projects over the course of multiple days. These events often historically feature competitions between teams. Brainhacks instead emphasize collaboration over competition.</td>
</tr>
<tr>
<td>Hacking</td>
<td>In this context, hacking does not indicate trying to break into computer systems by breaching security. Instead, it refers to tinkering with a system to better understand its working and subsequently laying a foundation for its advancement.</td>
</tr>
<tr>
<td>Unconference</td>
<td>This refers to a short session in which participants either present their research or prompt a discourse on any topic of interest in an informal setting. The content of an unconference may be decided impromptu and is often inspired by ongoing team discussions during the course of the Brainhack.</td>
</tr>
<tr>
<td>TrainTrack</td>
<td>A series of educational workshops that run in parallel with the projects enabling attendees to acquire specific skills during the course of their projects. The content of TrainTrack ranges from tutorials teaching skills useful to successfully navigate diverse projects in the Brainhack (such as code version control using Git) to more generalized education relevant to neuroscientific research (like MATLAB, BIDS, etc.).</td>
</tr>
</tbody>
</table>

Terms highlighted here either are defined in a unique way for this community or are important for appreciating the text. For detailed definitions, see Cameron Craddock et al. (2016) and the Brainhack Jupyter Book Glossary http://brainhack.org/brainhack_jupyter_book/glossary.html.