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Penalized partial least squares for pleiotropy
Camilo Broc1,2*  , Therese Truong3,4 and Benoit Liquet2,5

Background
Genome-wide association studies (GWAS) have identified numerous genetic mark-
ers linked to multiple phenotypes, suggesting the existence of pleiotropy that occurs 
when a single variant or gene can influence several phenotype traits [1–4]. Highlighting 
pleiotropy provides opportunities for understanding the shared genetic underpinnings 
among associated diseases. However genetic information may be spread among differ-
ent studies (a) because the signal is small and larger sample sizes can increase the ability 
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Background:  The increasing number of genome-wide association studies (GWAS) has 
revealed several loci that are associated to multiple distinct phenotypes, suggesting 
the existence of pleiotropic effects. Highlighting these cross-phenotype genetic associ-
ations could help to identify and understand common biological mechanisms underly-
ing some diseases. Common approaches test the association between genetic variants 
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Results:  Our method has the advantage to propose a global readable model while 
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of the proposed method to other benchmark methods on simulated data and gave an 
example of application on real data with the aim to highlight common susceptibility 
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extension of the PLS, the method is suited for data with a large number of variables. 
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of detection (b) because in the case of rare phenotype, analyses require to study distinct 
data sets corresponding to different phenotypes. Therefore combining data across stud-
ies is necessary for cross-phenotype or pleiotropic association analyses. Combining data 
across studies on different phenotypes could also permit to increase statistical power to 
detect new signals weakly associated to several phenotypes. This leads to consider data 
sets from different sources, having common genotype data, but which phenotype traits 
may differ from one study to another.

In this article, we are interested in meta-analysis methods dealing with data from inde-
pendent studies. Genetic information comes from single nucleotide polymorphisms 
(SNP). Genes are defined by a set of SNPs grouped in the same location in the genetic 
sequence. Pathways are groups of genes involved in a common biological mechanism. 
Genetic analyses aim at testing the association between genetic variants and phenotypes 
at the SNP-, gene- or pathway-level. Hence, information about independent data sets 
gives an architecture in terms of observation sets while information about either genes 
or pathways gives an architecture in term of groups of variables. The challenge of pleiot-
ropy is then to take advantage of these architectures.

In addition, possible biases between observation sets can be induced in genetic studies 
especially due to differences of studied population, used technologies or experimented proto-
cols. Those called “batch effects” are a common problem for meta-analyses [5], and methods 
for pleiotropy must take it into account. Furthermore, such methods must cope with the case 
where a genetic variable have a positive effect on one trait and a negative effect on another 
traits. Those opposite effects cannot be highlighted by standard meta-analysis methods [6, 7].

Various statistical methods were proposed for gene set analysis or to analyze pleiot-
ropy. Recent pleiotropy analyses rely on statistical methods coming from gene set analy-
sis combined with a meta-analysis [1, 8–10]. A non-exhaustive list of gene set methods 
can be given. Burden test and variance component tests have been developed to analyse 
rare variants [7, 11–13]. Alternatively, dimensionality reduction methods [14, 15] and 
Bayesian models have also been largely exploited [16, 17]. We can also cite pairwise simi-
larity based model [18], U-statistic models [19, 20], linear model family methods [21, 22] 
and network-based methods [23]. Furthermore, other omics fields are rising [24–27] and 
methods for genomics are often reused in those analyses [28].

We aim at integrating the meta-analysis perspective in cases of distinct data set to 
a gene set method framework. An extension of the sparse Partial Least Square (sPLS) 
method suited for meta-analysis for pleiotropy is proposed. It deals with observation 
sets and group of variables information while taking into account the possibility of oppo-
site effects, i.e cases where a genetic variable has a positive effect on one trait and nega-
tive effect on other trait. As a sPLS family method, it can cope with the high number 
of variables. The method formulates at the same time a group-lasso resp. a joint-lasso 
penalization to represent the group of variables resp. the sets of observations.

PLS is a dimensionality reduction method developed by Wold [29] and that has been 
widely used for the analysis of data with large number of variables [30]. Applications 
have been done outside of genetic studies, for instance in chemometry [31] or for neuro-
imaging [32]. Unlike, its cousin method (PCA), the Principal Component Analysis (PCA) 
[33], the PLS deals with two blocks of data and this is used for genotype-phenotype 
analyses. Moreover its sparse extension using Lasso penalization has been successful at 
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providing readable models [34]. Especially sparse group Partial Least Square can take 
into account group of variables as a priori information [35, 36]. For different group of 
studies an alternative Lasso penalization has been proposed by Obozinski [37] for a 
linear regression to deal with data made of different sets of observations. An adapta-
tion of the Lasso penalization, the joint-sgPLS, has recently been proposed for the PLS 
[38], answering the specific of both groups of variables and sets of observations. In this 
article, we exploit the same idea to leverage pleiotropy effects, especially because the 
method copes with the challenge of detecting small possible opposite effects.

The method is compared to two well established statistical methods in genetic stud-
ies. The first one, ASSET [6] extends standard fixed-effects meta-analysis methods 
for detecting effects in opposite directions from a same genetic trait. The second one 
metaSKAT [7] permits to carry out gene-based meta-analysis extends SKAT and SKAT-
o methods for meta-analyses.

The developed statistical approaches will be applied to real dataset for enriching our 
insights about the genetic mechanisms of thyroid and breast cancer types. We are inter-
ested into exploring gene-level and pathway-level associations for each cancer type as 
well as for both cancer types together.

Methods
Notations

Data are represented by X ∈ R
n×p and Y ∈ R

n×q , two matrices, representing n observa-
tions of p predictors and q independent variables. The Frobenius norm on matrices is 
denoted ‖ ‖F . We note XT the transpose matrix of X and the cardinal of a set S is noted 
#S . The positive value of a real number x is noted (x)+ = |x|+x

2  and is equal to the num-
ber if the number is positive and equal to zero otherwise. In general, observation sets 
can represent the fact that different sets of observations come from different sources 
and must be analyzed accordingly. For instance, data coming from different studies may 
present biases. Variables groups can represent a set of variables that are known or sus-
pected to be part of a same signal. For instance, in genetics a gene defines an established 
group of SNP variables and pathways define established group of genes. Let us consider 
M different sets of observations in the data. Noting, for m ∈ N , Mm a subset of {1, . . . , n} , 
let M = (Mm)m=1..M be a partition of {1, ..., n} corresponding to the observation sets. We 
note #Mm = nm . Row blocks are defined by this partition. Let us consider that variables 
are gathered in K groups. Let P = (Pk)k=1..K  be a partition of {1, ..., p} corresponding to 
this variable group architecture. We note #Pk = pk . We then we have 

∑K
k=1 pk = p . Col-

umn blocks are defined by this partitions. Both observation set architecture and variable 
group architecture can be defined at the same time as shown in Fig. 1. For matrices, the 
notation · is used to refer to blocks of matrices. For instance X·,Pk is the block of matrix 
of X corresponding the columns of the k-th group of variables and XMm,· is the block of 
matrix of X corresponding the columns of the m-th set of observations.

Sparse Partial Least Square for structured data

In the literature, several formulations of the PLS exist [39]. While they can have similar 
performances [40], PLS1 [41] has prevailed in last developments [35, 40, 41]. In the scope 
of this article, this formulation has been chosen in order to be able to pursue the path 
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of previous methods. PLS finds successively couples of vector {u1, v1}, . . . , {ur , vr} for 
r < rank (X) , where the couples are composed of vectors of length resp. p and q, maximiz-
ing Cov(Xui,Yvi) for any i ∈ {1, . . . , r} , under the constraint that u1, . . . ,ur are related to 
orthogonal families of components [29]. It can be solved considering successive maximiza-
tion problems [42], for h ∈ {1, . . . , r}

where X0 = X , Y0 = Y  and X (h−1) , Y (h−1) are deflated matrices computed from u(h−1)

,v(h−1) , X (h−2) , Y (h−2) for h ∈ {2, . . . , r} . The deflation depends on the PLS mode that is 
chosen [29, 43]. In the following, the notation h is removed in order to simplify the for-
mulation because we are interested in only one of the r steps of the PLS.

The sparse PLS (sPLS) propose to add a penalization to the loading vectors u and v. The 
following equivalence is used:

and the proof can be found in [35].
The sPLS [42] can be written as

The sparse PLS introduces a penalization in this formulation of the problem. The pen-
alty P(·) forces smallest participation to u to be set to zero. The parameter controlling 
the degree of sparsity in the model is � . In the presented formula the sparsity is applied 
only to the vector u, but a similar penalization can be defined for v. In the context of this 
article we treat only the penalization of u but all the results stand also for a v penalization.

(1)max
||uh||2=||vh||2=1

Cov(X (h−1)uh,Y
(h−1)vh),

(2)argmax
||u||2=||v||2=1,u∈Rp ,v∈Rq

Cov(Xu,Yv) = argmin
||u||2=||v||2=1,u∈Rp ,v∈Rq

∥
∥
∥XTY − uvT

∥
∥
∥

2

F

(3)
{u(opt), v(opt)} = argmin

||u||2=||v||2=1,u∈Rp ,v∈Rq

∥
∥
∥XTY − uvT

∥
∥
∥

2

F
+ �P(u)

︸ ︷︷ ︸

Lasso Penalty term
for sparse PLS

.

Fig. 1  Illustration of data structured by groups of variables and sets of observations. Variables and 
observations are assumed to be ordered by resp. groups of variables and observations sets. The notation 
p represents the number of variables of matrix X, q the number of variables of matrix Y, n is the number of 
observations. n1, · · · , nM are the resp. number of observations of each observation set. p1, · · · , pK are the 
resp. number of variables in each group of variables
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Remark 1  Before analysis, the X and Y matrices are transformed by subtracting their 
column averages. Scaling each column by their mean and standard deviation is also 
often recommended [44]. Thus, the cross-product matrix XTY  is proportional to the 
empirical covariance between X- and Y-variables when the columns of X and Y are cen-
tered. When the columns are standardized, XTY  is proportional to the empirical cor-
relations between X- and Y-variables. In this article the standardization is an important 
step to overcome the issue of the “batch effect” or to aggregate observations from differ-
ent studies. The point has been discussed in [38].

Remark 2  Presented framework deals with the estimation of a pair of weight vectors 
(u, v), which is the main contribution of the method in terms of methodology. This esti-
mation step can then be included in the global framework of PLS with the deflation steps 
for modeling several components.

Extensions of the sparse Partial Least Square

In the following, extensions of the sPLS taking into account an observation or/and variable 
set architectures are presented. The last method has been recently developed [38] and deals 
with both kinds of architecture. It is the main topic of the article. Proposed model is an 
extension of the multigroup sPLS proposed by Eslami et al. [40].

In order to cope with the architectures, sgPLS has been proposed [35]:

where the loading vectors u and v are composed of resp. p and q elements. Penalization 
Pvariable shrinks variables individually towards zero whereas penalization Pgroup shrinks 
whole groups of variables towards zero. The parameter driving the degree of sparsity 
of the model is � whereas the parameter controlling the balance between both kinds of 
sparsity is α . In this model elements of u corresponding to least relevant variables and 
least relevant groups of variables are set to zero.

An extension using the joint Lasso penalization from Obozinski ( [37]) has been pro-
posed [38]. This method is the object of study of this article. Its formulation for the sgPLS is:

(4)

{u(opt), v(opt)} = argmin
||u||2=||v||2=1,u∈Rp ,v∈Rq

∥
∥
∥Z − uvT

∥
∥
∥

2

F
+ �(1− α)Pgroup(u)+

�αPvariable(u)

with Pgroup(u) =
K∑

k=1

√
pk
∥
∥uPk

∥
∥
2
, Pvariable(u) =

p
∑

i=1

�ui�2

and Z = XTY .
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where the set of loadings U is composed of p×m elements (p elements per U·,m ). The 
set of loadings V is composed of q ×m elements (q elements per V·,m ). In this model ele-
ments of U corresponding to least relevant variables and least relevant group of variables 
are set to zero. Variables and groups of variables corresponding to least participating 
variables are set to zero for all U·,m , m ∈ {1, . . . ,M} at the same time.

The solution of Eq. 5 is: 

 where the positive value of a real number x is noted (x)+ = |x|+x
2 .

The solution is computed in 3 steps. First step (Eq.  6a) represents the solution of 
simple PLS for each M studies separately. Second step (Eq.  6b) applies sparsity on 
each variable for all studies at once. Third step (Eq. 6c) sets a sparsity on each group 
of variables for all studies at once. For all sparse methods, optimal parameters driving 
the penalization ( � and α ) must be chosen. A K-fold cross-validation is used here. For 
each set of penalization parameters that must be tested:

•	 Observations are split into a partition of L samples: {S1, · · · , SL} . For a qualitative 
outcome, samples are chosen respecting the proportion of population of the out-
come. For l ∈ {1, · · · , L} , the subset of {1, · · · , n} where Sl is omitted is noted S−l.

•	 For l ∈ {1, · · · , L} , a model is performed on XS−l ,· and YS−l ,· . From this model a 
prediction is performed on XSl ,· which gives a prediction ŶS−l ,· . Prediction error is 
computed comparing ŶS−l ,· and YS−l ,· . For qualitative outcome, a miss-classification 
rate is computed. For a quantitative outcome a L2-norm is computed. For multi-
variate outcome, the mean prediction over each variable outcome is computed.

•	 The mean of prediction errors over the L models is computed.

(5)

{U (opt),V (opt)} = argmin
U∈Rp×M and V∈Rq×M

||U·,m||2=||V·,m||2=1 form∈{1,··· ,M}

M∑

m=1

∥
∥
∥Z(m) − U·,mV·,m

T
∥
∥
∥

2

F

+ �(1− α)Pgroup(U)+ �αPvariable(U)

with Pgroup(U) =
K∑

k=1

√
pk
∥
∥UPk ,·

∥
∥
F
, Pvariable(U) =

p
∑

i=1

∥
∥Ui,·

∥
∥
2

and Z(m) = XT
Mm,·YMm,·,

(6a)U
(opt)
Pk ,· = U

(1)
Pk ,·



1− �(1− α))

2
�
�
�U

(1)
(Pk ,·)

�
�
�
F





+

(6b)with U
(1)
i,· = U

(0)
i,·



1− �α

2
�
�
�U

(0)
i,·

�
�
�
2





+

(6c)and with U (0)
·,m = XT

M,·YM,·
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The set of parameters corresponding to the lowest error of prediction over the proce-
dure above is selected. An example of the procedure can be found in the implementation 
of many extensions of the sPLS [35, 36, 40].

The K-fold procedure relies on the prediction performances. However, if the signal 
is too small, prediction can be poor and the calculation of optimal parameters can be 
problematic in a cross-validation framework. Other Lasso penalization methods have 
struggled when the number of variables is large [42, 45]. Due to the large number of 
variables in genomic data, the difference in term of prediction performance is not large 
enough to highlight one clear choice of penalization parameter. In this article, an alter-
native bootstrap strategy is proposed: sgPLS and joint-sgPLS are evaluated with given 
parameters on the data. Then, a bootstraps procedure is performed B times. The meth-
ods sgPLS and joint-sgPLS are then implemented on each bootstrap. The selection rate 
for variables (resp. group of variables) over the bootstraps are calculated. Rates are con-
sidered depending on whether or not the variable is selected by the model computed on 
true data. Selected variables (resp. group of variable) whose rate is higher than any non-
selected variables are kept in the final selection.

Remark 3  The proposed joint penalization is biconvex but not convex, and thus multi-
ple local minima may exist. The method can then be sensible to the starting point of its 
algorithm. Some development using several starting points can enhance the probability 
of reaching a global optimum and some can even ensure it. In dimensionality reduction 
methods a semidefinite relaxation has been proposed which ensures the convergence 
[46] at the cost of computational efficiency. Methods relying on random initialization 
have increased the chances of finding the global optimum but with lower theoretical 
guarantees. Inheriting such developments for the joint-sgPLS would be interesting for 
future developments.

Remark 4  Group sparse dimensionality reduction methods such as sgPLS and joint-
sgPLS need to be extended in case of overlapping groups of variables [47]. In the scope 
of this article, groups of variables are supposed to be disjointed.

Benchmark methods

Both ASSET and metaSKAT are considered as benchmark methods.
ASSET is a method suited for meta-analysis providing a p-value across studies [6]. The 

input of the method are single variables summary statistics which are combined by the 
method. ASSET exhaustively explores subsets of studies for the presence of true associa-
tion signals that are in either the same direction or possibly opposite directions.

For a given variable i ∈ {1, · · · , p} and a given set of studies m ∈ {1, · · · ,M} the esti-
mate parameters {βi,m, si,m} of a linear model on data XMm,· and YMm,· and the corre-
sponding statistic Zi,m = βi,m

si,m
 are computed. Then for each possible subset 

S ⊂ {1, · · · ,M} , the mean statistic Zi(S) =
∑

l∈S
√
πl(S)Zi,l is evaluated with 

πl(S) = nl∑

l∈S nl
 . ASSET seeks for the optimal subset of observations following the cri-

teria max
S∈S

|Z(S)| . A p-value is computed from this final statistic. ASSET relies on sta-

tistics at variable level and hence do not propose gene- or pathway-level information. 
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Further, the current version of ASSET provides pleiotropy result for each variant 
which should be corrected using a FDR correction in order to control possible false 
positive pleiotropy effect.

SKAT is a method to detect association between rare variants in a region and a 
phenotype (continuous or binary). It is a supervised test for joint effects of multiple 
variants in a region on a phenotype. The metaSKAT method can do the same but 
aggregating several studies. This method outputs a p-value corresponding to a set of 
variables, for instance a gene or a pathway. The method is based on a weighted sum of 
SKAT statistics of the different studies [7].

The statistics Sm,k = XT
Mm,Pk

ỸMm,· is computed where Ỹ  of a generalized linear 
model performed on Y with respect to covariates. Then a weighted sum is com-
puted on these statistics summing among the studies and then following the varia-
bles: Q =

∑M
m=1

∑K
k=1(wm,kSm,k)

2 where w·,· are weights that must be chosen. Next, 
a p-value is computed. The method relies on the square of the statistic and then can 
detect opposite effects from one study to another.

Unlike metaSKAT, sgPLS and joint-sgPLS ASSET gives one result per variables, 
and does not give information for a whole group of variables. We can note that both 
ASSET and metaSKAT are p-value oriented method which allow them to select vari-
ables. However, they cannot propose predictions whereas joint-sgPLS can.

Simulated data

Presented methods are illustrated on simulated data presenting the architecture given 
in Fig.  1. From one side, SNP genotypes are coded as minor allele counting {0, 1, 2} 
and a certain correlation is expected within a group of SNP from the same linkage 
disequilibrium block. From the other side, phenotype data are binary and have a true 
effect from one or more genetic markers. In order to simulate the correlation between 
SNPs, for a group of variables Pk , a multivariate normal distribution with n observa-
tions x(continuous)k ∼ Npk (µk ,�k) is simulated where µk is a null vector of size pk and 
�k is a pk × pk matrix with 1 on the diagonal and ρk , coefficients controlling the cor-
relation between SNPs within a group, outside of the diagonal. A simulation of this 
variable gives a matrix which represents simulated observations for group of variables 
k. Those blocks are concatenated in a n× p matrix, X (continuous) that represents the 
whole data.

In order to have {0, 1, 2} genotype data, a discretization is performed. For a given 
variable j ∈ Pk , we aim at simulating a SNP variable with a Minor Allele Frequency 
(MAF), which we note MAFj . This MAF means that:

To this aim, for a given MAFj , quantiles q
(j)
1  and q

(j)
2  are chosen such as 

P(xj ≤ q1) = (1−MAFj)
2 and P(xj ≤ q2) = (1−MAFj)

2 + 2MAFj(1−MAFj)

A discrete genotype, X (discrete) , is computed such that

P(xj = 0) = (1− MAFj)
2

P(xj = 1) = 2 MAFj(1− MAFj)

P(xj = 2) = MAF2j .
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where i ∈ {1, · · · , n} are simulated observations and j ∈ Pk is a variable of k-th group of 
variables.

For each observation i, a binary phenotype yi is simulated with a logit model

where πi = P(yi = 1| data) , βj for j ∈ {1, · · · , p} is a regression parameter.
Then different simulations of the process can be performed successively in order to 

simulate several studies.

Results
The code used for running the methods is available on github (https​://githu​b.com/camil​
obroc​/BMC_joint​_sgPLS​).

Simulation

In this article, simulated genotype has 25 groups of 20 variables. There are then 500 vari-
ables and data is composed of two studies with equal number of observations. Combina-
tions of parameters are considered to study a variation of (i) the existence of opposite 
effects from one observation set to another (ii) the portion of SNPs of the groups having 
effects (iii) the sample size. Values choice are given in Table 1. Variation (i) permits to see 
the ability of method at detecting a signal even when opposite effects occur. Variation (ii) 
allows to observe the influence of intra-group sparsity on the performances of the meth-
ods. Variation (iii) shows cases where the signal is easier or harder to retrieve due to the 
different sample sizes.

The intra-group correlation parameters ρk are equal to 0.5 and the MAF is equal to 0.3 
for each variable. The first 5 groups have an effect in the model of the simulations. For 
each group, half of the non-null regression parameters are positives (taken at random) 
while the other half is negative. In cases where all SNPs have effects (cases 1, 2, 5 and 6), 

X
(discrete)
i,j =







0 if X
(continuous)
i,j ≤ q

(j)
1

1 if q
(j)
1 ≤ X

(continuous)
i,j ≤ q

(j)
2

2 if X
(continuous)
i,j > q

(j)
2 ,

logit (πi) = log (
πi

1− πi
) = α +

p
∑

j=1

X
(discrete)
i,j βj ,

Table 1  Values used for the 8 cases of simulated data

Case Opposite direction 
effect

Percent of SNPs having an effect 
in groups having an effect

Total number 
of observations

1 No 100% 200

2 No 100% 400

3 No 50% 200

4 No 50% 400

5 Yes 100% 200

6 Yes 100% 400

7 Yes 50% 200

8 Yes 50% 400

https://github.com/camilobroc/BMC_joint_sgPLS
https://github.com/camilobroc/BMC_joint_sgPLS
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the absolute value of those parameters is set to exp (0.1) whereas in cases with half of 
SNPs having effects (cases 3, 4, 7 and 8), the absolute value of those parameters is set to 
exp (0.5).

For all methods 50 replications of the data are performed. For the implementation of 
the sgPLS and joint-sgPLS, penalisation parameters must be chosen similarly to [35]. 
The penalization parameter � and α are optimized through a K-fold penalization proce-
dure with an error of prediction as criteria. Choosing a parameter � is equivalent to set a 
number of selected groups [35]. In this simulation the grid of number of selected groups 
{1, · · · , 25} is used and the grid for α is {0.1, 0.5, 0.9} . Figures 2 and 3 show the error of 
prediction performances through a cross-validation procedure of the sgPLS and joint-
sgPLS in a simulation of case 1, for different levels for α and different levels of group 
selection. The observed mean and the variance of the error rate over 50 replications are 
presented. In the framework of the method the set of parameters corresponding to the 
lowest error of prediction rate is kept for the model.

For ASSET, sgPLS and joint-sgPLS, the variables selected by the models are compared 
to the variable having an effect on the true model. For metaSKAT, sgPLS and joint-
sgPLS, the group of variables selected by the models are compared to the group of vari-
ables having an effect on the true model.

Results of the simulations are presented in Table 1 for sgPLS, joint-sgPLS, ASSET and 
metaSKAT. The measures of performance are the True Positives (TP), False positives 
(FP), False Negatives (FN) and True Negatives (TN) (Table 2).

Considering cases 1 and 2, we can see that ASSET and metaSKAT have FP lower 
than TP in opposition to sgPLS and joint-sgPLS. They are then more conservative than 

Fig. 2  Mean and variance of the error of prediction in cross-validation of sgPLS, for one simulation of case 
1 of the simulations. The cross-validation is performed for α ∈ {0.1, 0.5, 0.9} and for levels of group selection 
corresponding to {1, · · · , 25}
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the two later methods. We can see that overall, each model performs better when the 
number of observations is higher (200 against 400). We can see that when the intras-
parisity is set to 50 % (cases 3, 4, 7 and 8) rather than 100 % (cases 1, 2, 5 and 6), varia-
ble-level results for ASSET sgPLS and joint-sgPLS are inflated by more than a half. This 
may be due to the fact that the methods struggle to differentiate the effect of variables 
within a same group. The gene-level results are similar whichever the intrasparsity is for 
metaSKAT, sgPLS and joint-sgPLS. Cases 1, 2, 3 and 4 have effect in the same direction 
among studies while cases 5,6,7 and 8 show effects in opposite directions. We can see 
that when effects are in the same direction or opposite direction, sgPLS can compete 
with joint-sgPLS and with other benchmark methods while being the least conservative. 
On the other hand, when effects are in different directions, sgPLS performances fumble 
whereas other methods keep a similar TP/FP ratio. Comparing closely ASSET to joint-
sgPLS, we can see that joint-sgPLS have always a higher TP and the largest difference 
can be seen when all variables are involved within a group (cases 1, 2, 5, 6). This is prob-
ably due to the fact that joint-sgPLS can draw information at the group-level to infer sin-
gle variable results. Comparing closely metaSKAT to joint-sgPLS, we can see that both 
methods can retrieve a large amount of groups participating to the effect. The method 
joint-sgPLS have always a higher TP in each cases. In cases 1 and 5, metaSKAT TP is 
especially low. Those are cases with the smallest number of observations and with small 
regression parameters βj and hence where the intensity of the signal is the lowest.

Overall, we can see that sgPLS and joint-sgPLS have competitive performances for 
detecting effect in the same direction while joint-sgPLS is the method with the best per-
formance for detecting opposite effects. Furthermore sgPLS and presented joint-sgPLS 

Fig. 3  Mean and variance of the error of prediction in cross-validation of joint-sgPLS, for one simulation 
of case 1 of the simulations. The cross-validation is performed for α ∈ {0.1, 0.5, 0.9} and for levels of group 
selection corresponding to {1, · · · , 25}
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have the merit of giving single variable results and group results in the same model. This 
allow variable-level results to be enhanced by the group a priori information.

Pleiotropy investigation on breast and thyroid cancer

The developed statistical approaches were applied to real data in order to enrich our 
insights about the genetic mechanisms involved in carcinogenesis of thyroid and breast 
cancers. Thyroid and breast cancers share some similarities in their biology: both are 
more frequent in women, are influenced by hormonal and reproductive factors and are 
hormonally-mediated. Moreover, individuals diagnosed with breast cancer are more 
likely to develop thyroid cancer as a secondary malignancy than patient diagnosed with 
other cancer types, and vice-versa [48]. Genetic factor contributing to the incidence of 

Table 2  Performances in terms of mean number of TP, FP, FN and TN over simulation cases 
1 to 8 for methods sgPLS, joint-sgPLS, ASSET and metaSKAT

Variable level performances Group level performances

TP FP FN TN TP FP FN TN

Simulation case 1

sgPLS 46.78 29.24 53.22 370.76 sgPLS 3.54 3.82 1.46 16.18

joint-sgPLS 40.84 27.16 59.16 372.84 joint-sgPLS 3.44 3.78 1.56 16.22

ASSET 29.98 22.14 70.02 377.86 metaSKAT 2.22 1.08 2.78 18.92

Simulation case 2

sgPLS 75.76 139.34 24.24 260.66 sgPLS 4.74 11.9 0.26 8.1

joint-sgPLS 66.12 76.44 33.88 323.56 joint-sgPLS 4.48 7.62 0.52 12.38

ASSET 47.74 25.4 52.26 374.6 metaSKAT 3.14 1.26 1.86 18.74

Simulation case 3

sgPLS 36.58 63.56 13.42 386.44 sgPLS 4.78 4.02 0.22 15.98

joint-sgPLS 31.3 48.04 18.7 401.96 joint-sgPLS 4.5 3.06 0.5 16.94

ASSET 29.46 46.88 20.54 403.12 metaSKAT 3.62 0.96 1.38 19.04

Simulation case 4

sgPLS 42.68 148.78 7.32 301.22 sgPLS 4.88 11.1 0.12 8.9

joint-sgPLS 40.42 115.96 9.58 334.04 joint-sgPLS 4.92 8.54 0.08 11.46

ASSET 35.26 54.68 14.74 395.32 metaSKAT 4.18 1.02 0.82 18.98

Simulation case 5

sgPLS 17.96 36.28 82.04 363.72 sgPLS 1.46 4.32 3.54 15.68

joint-sgPLS 43.44 25.2 56.56 374.8 joint-sgPLS 3.46 3.5 1.54 16.5

ASSET 30.58 22.48 69.42 377.52 metaSKAT 2.2 0.98 2.8 19.02

Simulation 6

sgPLS 75.76 139.34 24.24 260.66 sgPLS 4.74 11.9 0.26 8.1

joint-sgPLS 66.12 76.44 33.88 323.56 joint-sgPLS 4.48 7.62 0.52 12.38

ASSET 47.74 25.4 52.26 374.6 metaSKAT 3.14 1.26 1.86 18.74

Simulation case 7

sgPLS 13.2 74.96 36.8 375.04 sgPLS 2.04 6.5 2.96 13.5

joint-sgPLS 35.62 94.24 14.38 355.76 joint-sgPLS 4.58 7.02 0.42 12.98

ASSET 29.18 45.5 20.82 404.5 metaSKAT 3.54 0.92 1.46 19.08

Simulation case 8

sgPLS 14.3 72.28 35.7 377.72 sgPLS 1.88 5.76 3.12 14.24

joint-sgPLS 39.12 99.06 10.88 350.94 joint-sgPLS 4.9 7.18 0.1 12.82

ASSET 34.04 56.14 15.96 393.86 metaSKAT 4.22 0.86 0.78 19.14
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breast cancer have been extensively studied, and it is known that genetic variants explain 
approximately 49 percent of the familial risk to develop this disease. Using GWAS, 313 
risk variants were identified for breast cancer [49]. On the other hand, GWAS studies on 
thyroid cancer have been scarce, due to the lesser incidence of this disease as well as the 
lack of data. However, it has been shown that thyroid cancer is the only cancer for which 
genetic factors contribute more than environmental factors [50]. Only 4 loci have been 
associated with thyroid cancer risk and have been replicated in other studies [51]. One 
of them, 2q35, was also previously reported to increase risk of breast cancer [52]. To 
date, no study has been conducted to identify common genetic factors between breast 
and thyroid cancer. Exploring the genetic relationship between the two cancers would 
help to elucidate the common mechanisms between both disease and could permit to 
improve their diagnostic and therapeutic management.

We propose to illustrate the methods on real datasets, by investigating the pleiotropic 
effect of genetic variants from candidate pathways in breast and thyroid cancers.

Beluhca dataset includes data from CECILE, a french case-control study on breast 
cancer (1 125 cases, 1 172 controls) and from CATHY a french case-control study on 
thyroid cancer (463 female cases and 482 female controls). All these individuals were 
genotyped using a customized microarray including 8 716 genetic variants from 28 can-
didate pathways (648 genes) selected from KEGG database and from a literature review 
(SNPs are located at +/− 50 kb from the gene boundaries). After quality controls, we 
retained 6 677 SNPs available for both type of cancers. Missing values were imputed 
using the median among cases or controls and data were centered to µ = 0 . When 2 
SNPs were correlated at r2 = 1 , one of the SNP was removed and couple of extremely 
correlated ( r2 > 0.98 ) SNPs belonging to same genes were eliminated.

As group sparse dimensionality reduction methods such as sgPLS and joint-sgPLS 
need to be extended in case of overlapping groups of variables [47], 10 non-overlapping 
pathways were selected and only the 3766 SNPs related to those groups were kept in the 
final database. After all these preprocessing, the new dataset is composed of 3766 SNPs, 
grouped in 337 non-overlapping genes and 10 non-overlapping pathways. The list of the 
pathways and genes is displayed in Tables 5 and 6 in Appendix 1.

The methods implemented in this article are: ASSET, metaSKAT, sgPLS and joint-
sgPLS. For metaSKAT, sgPLS and joint-PLS, SNP-level, gene-level and pathway-level 
results are given by the methods whereas ASSET gives only SNP-level results. Hence, in 
the case of ASSET, genes corresponding to selected SNPs are considered. For each SNP 
i, an univariate logistic model for gene-disease association can be considered separately 
for thyroid data and breast data (thyroid and breast cancer, Fig. 4).

As it has been presented before, for sgPLS and joint-sgPLS, a calibration of the 
parameters is generally performed through a cross-validation procedure. This process 
relies on the definition of a measure of performance: the error of prediction of the 
model. However, in genetic studies, the effects are small and the prediction perfor-
mances based on genetic units are usually very low. The prediction performance of 
sgPLS and joint-sgPLS are not different enough from one set of penalization param-
eters to another. In order to facilitate the interpretation, we present the results for 
calibration parameters set to 20 genes and 3 pathways and α = 0.5 . We explore the 
stability of the methods using the bootstrap strategy described in the section method. 
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Figures 5 and 6 present this rate for preselected and non-preselected features. A gene 
and resp. a pathway is kept in the final selection if and only if it is preselected and its 
rate of selection among the bootstraps is higher than any other gene (resp. pathway) 
that is not preselected. We can see that for joint-sgPLS less genes are selected than for 
other methods (4 against resp. 20 and 18 for metaSKAT and sgPLS on both data).

Results of the selection are presented in Table 3 where the name of genes and path-
ways is presented. “sgPLS single” stand for the use of the sgPLS on thyroid and breast 
data separately while “sgPLS both” stands for the use of the method on a concatena-
tion of both data set standardizing by study. Only genes that are selected by at least 
one method are presented. No genes from metabolism of xenobiotics pathway have 
been selected through all methods. We can see that methods focusing on SNP-level 
information select gene from one of the study but never both studies at the same 
time except for INSR which is selected for both studies for SKAT. This genes is not 
selected by meta-analysis methods. Genes selected by group-level methods (ASSET, 
metaSKAT, sgPLS, joint-sgPLS)) that are not selected by variable-level methods 
are: PTEN, RORA, MSH3, IL18RAP,GNPDA2, LRRN6C, NEGR1, NR3C1, SEC16B, 
HEXA, HEXB, MAN2B2, NEU2, TGBR3, NMNAT2, CYP2C18, CYP2C19, MGST1. 
Those genes are good candidates for further investigations as they are not selected by 

Fig. 4  Score for association of SNPs with the outcome for univariate model. The score is computed as 
− log10(p) where p is the p-value. The red line corresponds to the threshold 0.01. The alternation of blue 
colors shows the different chromosomes
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study by study analyses but are selected by meta analyses. We can note that 5 out the 
8 genes selected for Obesity and obesity-related phenotypes pathway and all genes 
selected for Other glycan degradation are part of those genes. Those pathways would 

 a Percent of selection of genes for sgPLS on thyroid data,
100 bootstraps

b Percent of selection of genes for sgPLS on breast data,
100 bootstraps

Fig. 5  Percent of selection of genes for sgPLS and joints sgPLS on 100 bootstraps. a sgPLS on thyroid data. b 
sgPLS on breast data. c sgPLS on both data. d joint-sgPLS. Genes selected on original data (preselected ones) 
are in blue while other genes (non-preselected ones) are in red
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not have been as much hightlighted without meta-analyses. Genes selected for thy-
roid data sets and selected by meta-analyses are: MAP2K2, GTF2H1 and CYP2F1. 
Those genes are then related to thyroid cancer but meta-analyses suggest they may be 
involved with breast cancer in a common effect. Genes selected for breast data and 

c Percent of selection of genes for sgPLS on all data,
100 bootstraps

d Percent of selection of genes for joint-sgPLS on all data,
100 bootstraps

Fig. 5  continued
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selected by meta-analyses are: PLAG2G6, ERCC3, ERCC6, MUTYH, MTHFD2, IL13, 
NAT2. Meta-analyses suggest that these genes may also be involved with thyroid can-
cer in a common effect. We can see that joint-sgPLS selects a lower number of genes 
(resp.4) compared to ASSET, metaSKAT and sgPLS (resp. 19, 20, 18). Method sgPLS 
and joint-sgPLS select the glycan pathway and folate metabolism pathway and sgPLS 

Table 3  Selected data sets in terms of genes and pathways. Selection of resp. thyroid data 
set, breast data sets and both data set is represented in resp. blue, green and read
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selects also cell cycle pathway. PLS methods suggest that pathway-level effect could 
be involved.

Remark 5  Results based on different choice of calibration parameters for sgPLS and 
joint-sgPLS (50, 100 genes and 5 pathways) showed similar patterns.

Table 3  (continued)
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Fig. 6  Percent of selection of pathways for sgPLS and joints sgPLS on 100 bootstraps. a sgPLS on thyroid 
data. b sgPLS on breast data. c sgPLS on both data. d joint-sgPLS. Pathways selected on original data 
(preselected ones) are in blue while other pathways (non-preselected ones) are in red. The pathways are 
noted: (1) Cell cycle (2) Circadian rhythm (3) Folate metabolism (4) Other glycan degradation (5) Obesity and 
obesity-related phenotypes (6) DNA repair (7) Metabolism of xenobiotics (9) Precocious or delayed puberty 
(10) Inflammatory response

Table 4  Computational performances in  seconds of  ASSET, metaSKAT, sgPLS and  joint-
sgPLS for case 1 (n=200) and case 2 (n=400)

n 200 400

ASSET 1.21 1.69

metaSKAT 0.22 0.59

sgPLS 18.29 37.03

joint-sgPLS 31.27 67.80
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Computational performances

Computation performances are presented on simulation cases 1 and 2 which represent 
data having 500 predictors and 1 output (Table 4). The number of observations is respec-
tively n = 200 and n = 400 . The methods sgPLS and joint-PLS penalization hyperpa-
rameters are estimated with the grid used for the simulation. Mean running times over 
50 replications are given.

We can see overall that has the smallest running time. The methods sgPLS and joint-
sgPLS have the most expensive computational. This is due to the estimation of the penal-
ization parameters as hyperparameters. However, this calculus consist in successive 
applications of the same method. It can then be paralellized.

Discussion
In this article, the properties of the joint-sgPLS are presented and are compared to the 
classical sgPLS, the ASSET method and metaSKAT. The methods ASSET, metaSKAT 
and joint-sgPLS are suited for meta-analyses whereas sgPLS is not. ASSET only gives 
variable-level results whereas metaSKAT and joint-sgPLS can assess group-level results. 
However, joint-sgPLS is the only method proposing to link in a same model variable 
results and group results. The method have then more interpretability while have com-
petitive or superior performances over simulations compared to benchmark methods. 
Hence, joint-sgPLS seems perfectly suited for meta-analysis where effects in opposite 
directions can exist which invite us to pursue further investigation with it in complex 
studies for genetic epidemiology such as pleiotropy.

Conclusion
We do believe that further investigation can be done on the same subject. In this article, 
sgPLS and joint-sgPLS have been applied with one component, but several components 
could be considered. This could lead to the selection of variables that are orthogonal to 
the selection of the first component but that have still a large participation to the covari-
ance matrix.

We acknowledge that on the application the stability of the method is an important 
point due to the fact that the cross-validation procedure is not satisfying for choosing 
the parameters of penalization. One improvement could consist in exploiting different 
the criteria of the procedure (the error prediction) with, for instance, stability measures 
[53]. Another improvement could consist in adaptating the adaptative Lasso [54] for our 
method which could bypass the stability questions.

Presented method uses a group architecture, but adding group-sub-group architecture 
is an interesting path of investigation for taking into account gene- and pathway-level 
information at the same time. The methods sgsPLS ( [36]) already offers a sparse partial 
least squares framework with group and subgroup architecture which is an extension of 
the sgPLS. A similar work could lead to a promising joint-sgsPLS.

In order to advance on the application, this study should be replicated on a larger data 
base. Particularly, thyroid cancer has been less studied than breast cancer, and data for 
thyroid are still scarce in this application. Other cases of pleiotropy could be investi-
gated, for instance for the case where the phenotype is multivariate for each subject. The 



Page 21 of 31Broc et al. BMC Bioinformatics           (2021) 22:86 	

joint-sgPLS is suitable for any kind of phenotype, continuous or qualitative. R code is 
available from the author to reproduce the results and is available on github (https​://
githu​b.com/camil​obroc​/BMC_joint​_sgPLS​).
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partial least squares; SKAT: SNP Kernel Association Test; TP: True positive; FP: False positive; FN: False negative; TN: True 
negative.
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Table 5  First pathways and their corresponding genes.

Gene Count

(1)

ENPP1 27

NMNAT3 25

AOX1 24

NMNAT2 21

ENPP3 15

BST1 14

CD38 11

NT5M 10

NT5C1A 9

NT5C2 8

PNP 8

NAMPT 7

NNMT 7

NT5C3 7

NADSYN1 6

NNT 6

NT5E 5

NMNAT1 4

NUDT12 4

QPRT 4

NT5C1B 3

NADK 2

NT5C 2

(2)

RORA 282

NPAS2 60

RORB 34

ARNTL 23

CUL1 22

BTRC​ 13

RORC 13

PER3 12

CLOCK 11

PER2 11

CRY2 9

CSNK1E 9

BHLHE40 8

FBXW11 8

CRY1 7

FBXL3 7

NR1D1 7

TIMELESS 7

PER1 5

SKP1 4

BHLHE41 3

CSNK1D 3

RBX1 2
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Table 5  (continued)

Gene Count

(3)

MTHFS 19

MTHFD1 11

MTHFR 11

MTHFD2L 9

MTHFD2 1

(4)

GLB1 22

MAN2B2 18

ENGASE 13

HEXB 12

MANBA 9

AGA​ 8

FUCA2 8

NEU2 5

FUCA1 3

HEXA 3

NEU3 3

GBA 2

MAN2B1 2

NEU1 2

NEU4 1

(5)

LRRN6C 197

FTO 122

NEGR1 93

SCARB1 33

ABCC8 31

SEC16B 25

LEPR 23

MAP2K5 23

NR3C1 18

FAIM2 17

DRD2 16

PPARG​ 16

SIM1 14

FANCL 12

GHRL 12

ADIPOQ 11

CRHR2 11

GNB3 10

INSR 10

GPRC5B 9

MC3R 9

PCSK1 9

TFAP2B 9

TNF 9

UCP1 9
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Table 5  (continued)

Gene Count

(5)

CRHR1 8

ETV5 8

IL1RN 8

LDLR 8

HTR2C 7

MCHR1 7

TMEM18 7

BDNF 6

KCTD15 6

UCP2 6

ACE 5

ADRB2 4

IL6 4

LEP 4

MC4R 4

PLIN 4

PTPN11 4

UCP3 4

GNPDA2 3

NR0B2 3

RETN 3

CCL5 2

LEPROTL1 2

SH2B1 1

(6)

RPA3 25

NEIL3 24

XRCC5 21

EXO1 19

MSH3 19

NEIL2 17

RPA1 17

BRCA2 16

RAD23B 16

RFC3 14

PARP4 13

POLD3 12

RFC5 12

CHEK1 11

CHEK2 11

MSH6 11

TERT 10

CASP7 9

MNAT1 9

PARP1 9

RFC1 9

XPC 9

CASP3 8
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Table 5  (continued)

Gene Count

ERCC5 8

ERCC6 8

(6)

TDG 8

XRCC1 8

DDB2 7

ERCC8 7

MSH2 7

PMS2 7

POLD1 7

POLE 7

RFC4 7

XRCC2 7

XRCC3 7

CDK2 6

GTF2H1 6

LIG1 6

MUTYH 6

PARP2 6

POLD2 6

POLE2 6

TP53 6

XPA 6

BRCA1 5

CDK7 5

CHRNA4 5

CUL4B 5

ERCC3 5

The number of SNPs for each gene is presented: The pathways are (1) Nicotinate and nicotinamide metabolism (2) Circadian 
rhythm (3) Folate metabolism (4) Other glycan degradation (5) Obesity and obesity-related phenotypes (6) DNA repair
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Table 6  Last pathways and their corresponding genes.

Gene Count

(6)

GTF2H5 5

LIG3 5

MAPK8 5

NTHL1 5

OGG1 5

RAD50 5

RPA4 5

APEX1 4

CDKN1A 4

ERCC2 4

FEN1 4

GTF2H4 4

MBD4 4

POLE3 4

RAD51 4

RFC2 4

UNG 4

CDKN2D 3

CETN2 3

CUL4A 3

ERCC1 3

MLH1 3

MPG 3

POLB 3

POLE4 3

(6)

POLL 3

RPA2 3

SSBP1 3

CCNH 2

ERCC4 2

GTF2H3 2

HMGB1 2

(7)

UGT1A8 58

UGT2A1 29

MGST2 22

CYP2C8 17

AKR1C2 16

CYP2C9 15

CYP2B6 14

EPHX1 14

MGST3 14

AKR1C4 13

COMT 12

CYP2C19 12

CYP2S1 12

CYP2C18 11



Page 27 of 31Broc et al. BMC Bioinformatics           (2021) 22:86 	

Table 6  (continued)

Gene Count

ADH1B 10

ADH7 10

GSTA4 10

GSTZ1 10

MGST1 10

NAT2 10

ADH1C 9

AHR 9

NAT1 9

ADH6 8

AKR1C3 8

(7)

CYP1B1 8

UGT2B4 8

ADH4 7

ADH5 7

AKR1C1 7

ALDH3B1 7

CYP2E1 7

NQO1 7

ALDH1A3 6

CYP2F1 6

DHDH 6

SOD2 6

GSTA2 5

GSTM3 5

GSTO2 5

GSTP1 5

CYP1A1 4

CYP1A2 4

CYP3A43 4

GSTA3 4

GSTM4 4

UGT2B7 4

AKR1A1 3

ALDH3B2 3

CYP2A6 3

(7)

CYP3A4 3

CYP3A7 3

GSTM2 3

GSTM5 3

UGT2A3 3

UGT2B11 3

ADH1A 2

CYP2D6 2

(8)

TGFBR3 77

EBF2 60
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Table 6  (continued)

Gene Count

BCAT1 51

VDR 34

KAL1 26

TM7SF3 19

CASC1 17

FGFR1OP2 12

FGFR1 11

KRAS2 10

CCR3 8

KISS1 8

PROK2 7

LIF 5

PROKR2 5

PTH1R 4

NKX2-1 2

(9)

TGFB2 22

IL18RAP 13

CYP4F11 12

EPHX2 12

IL7 11

IGFBP1 9

IGFBP3 9

IL17A 9

IL10 8

IGFBP4 7

IL15 7

MMP25 7

IL16 6

IL12A 5

IL13 5

IL18 5

IL19 5

IL2 5

IL9 5

PLA2G4B 5

IL3 4

TGFB1 4

IL1B 3

IL4 3

IL1A 2

IL23A 1

10)

EGFR 103

CCND3 29

MAPT 19

MAP2K4 15

EGF 11

MAP2K2 11
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